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The objective of this paper is to present an energy damage criterion for cohesive zone models within the
framework of the non-linear thermodynamics of irreversible processes. An isotropic elastic damageable
material is considered for isothermal transformations. Damage is then the only irreversible effect
accompanying the deformation process and this mechanism is assumed to be fully dissipative. Once a
separation law and a damage state variable have been chosen, it is demonstrated that the damage evolution
law can be automatically derived from the energy balance. From this observation, a cohesive zone model is
derived for a given choice of traction-separation law and damage state variable and the quality of its
numerical predictions is analyzed using an experimental benchmark bending test. Damage, elastic and
dissipated energy fields around the crack path are shown during this rupture test. Finally, a numerical
simulation of a Brazilian test is proposed where no pre-crack is present in the specimen. Then, as before,
the evolution of the dissipated energy fields are plotted during the loading until the total failure of the
specimen. In the case of the bending test, the crack path obtained with our model is in the experimental
envelope until the end of the simulation. Concerning the force vs. CMOD curve, it fits perfectly in the
section corresponding to the linear increase and estimates very well the maximum value and the initial
decay phase. In the case of the Brazilian test, with a heterogeneous material, we obtain a macro-crack
zigzagging through the all microstructure which starts near the loading plates, as observed in experimental
test. In this numerical simulation, a contact law is considered between the lips of the crack when the
interface represented by our model is completely ruptured.

Keywords: cohesive zone, damage, fracture, thermodynamics of irreversible processes, energy balance, finite element
analysis, Brazilian test

1 Introduction
In many industrial situations, the management of damage and failure of mechanical structures is
crucial. This is the reason why many academic and industrial laboratories have intensively
studied and still study this problem from an experimental, theoretical, and numerical point of
view. Behavioral models taking into account the damage, cracking and failure of structures have
followed roughly two distinct paths. Since the pioneering work of Dugdale (1960) and Barrenblatt
(1962), surface approaches were proposed. Their objective was to describe in a practical way the
material behavior during its rupture, more precisely during the onset and the propagation of
crack. The concept of traction-separation curve associated with the crack tip was introduced to
depict the gradual separation of material elements. This type of approach has led to the so-called
cohesive zone models. The other path can be characterized by continuum damage approaches
that have gradually developed since the works of Rabotnov (1969) and Kachanov (1986). Volume
descriptions have often used a scalar or tensorial damage variable to describe the progressive
degradation of the material. These variables are still often linked to the loss of material elastic
stiffness (Lemaitre 1996).

During these last thirty years, whether mechanical approaches are surface or volume, some
have been progressively presented within a thermodynamics of irreversible processes (TIP)
framework (Costanzo and Allen 1995; Chandrakanth and Pandey 1995). Thermodynamics
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provides indeed a consistent framework both for discussing the admissibility of the constitutive
equations that account for the irreversibility of damage mechanisms, and for characterizing the
energy properties of damage and crack growth phenomena. A significant number of works
dealing with volume approaches used the TIP with internal variables including state variables
related to the damage. The behavioral constitutive equations are then divided into two groups:
the state equations derived from the thermodynamic potential, characterizing the properties of
equilibrium states of the material, and the complementary (or evolution) equations derived either
from threshold functions generally defined in the space of thermodynamic forces associated
with the model, or from a dissipation potential in the framework of Generalized Standard
Materials (Kondo et al. 2007). Particular attention has been paid to the form of the evolution
equations such that the model predictions conform to the second principle of thermodynamics.

For cohesive zone models, the introduction of thermodynamics has been much the same as
for the bulk/continuum approaches. As noted by Costanzo and Allen (1995), Gurtin (1979) was
probably the first to propose a thermodynamic framework for cohesive zones in fracture. He
proposed to consider the crack surface as a two-dimensional thermodynamic system endowed
with a potential, (e.g., free energy), dependent on the crack temperature and the crack tip
opening displacement. Regarding the evolution laws, and particularly those related to the damage
variables, some, like Costanzo and Allen (1995) advocate the use of a dissipation potential in the
GSM framework. Others, probably more numerous, proposed forms of differential (kinetic)
equations. Although it is impossible to mention all the works related to how damage kinetics
were constructed, some references spanning the last twenty years include (Ortiz and Pandolfi
1999; Roe and Siegmund 2003; Evangelista et al. 2013; Serpieri et al. 2015; Kuna and Roth 2015),
and more recently (Shu and Stanciulescu 2020). Here again, when the evolution law is not
derived from a dissipation potential, it is necessary to check that the irreversible evolution of the
system is in accordance with the second principle of thermodynamics, often formulated via the
Clausius-Duhem inequality.

In this paper, we focus on the formulation of a CZ model for an isotropic elastic damageable
material. Its main objective is to show that when the damage is the only irreversible mechanism
and when this latter is fully dissipative, it is no longer necessary to formulate any hypothesis
concerning the damage evolution law, this one being entirely fixed by the energy balance. The
potential interest of such an observation is that from now on, experimental techniques dealing
with thermal and kinematic full-field measurements allow one to evaluate local energy balances
whose results will help to identify the CZ model (Richefeu et al. 2012).

The following sections are devoted to the construction of an energy damage criterion derived
from the energy balance for an isotropic elastic damageable material within the TIP framework.
Contrary to what is classically done, the damage kinetics is not derived, in this work, from an
ad-hoc threshold criterion or a dissipation potential but is based on the premise that the damage
progress is linked to a prescribed evolution in the maximum elastic energy that can be stored
within the material for a given damage state. From an energy standpoint, it must be noted that the
damage mechanisms are considered as the only microstructural irreversible effects accompanying
the deformation process and these mechanisms are fully dissipative (no energy storage induced
by the material degradation). Theses restrictive hypotheses are however often implicitly present
in the literature we have previously mentioned. To illustrate this statement, let us consider for
example the paper proposed by Bouvard et al. (2009). In this paper, the fact that the damage is
the only dissipative mechanism is described by a traction force defined via a state law (i.e. no
irreversibility is associated with the displacement jump). The fact that the damage mechanisms
are considered as fully dissipative can be established once looking at the dissipation form: the
dissipation is the product of the thermodynamic force associated with the damage multiplied
by the damage rate. In such a case, no energy storage (or release) accompanying the damage
progress should appear in the model simulations. Naturally, damage dissipation may induce
self-heating leading to non-isothermal deformation processes that are consequently irreversible
due to heat diffusion. However, for sake of simplicity, only isothermal transformations are
considered in the following sections, and the chosen state variables are the displacement jump
vector u and a scalar damage variable, denoted by 𝑢d. This damage variable 𝑢d is the maximum of
the equivalent opening displacement as used in many papers such as (Ortiz and Pandolfi 1999;
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van den Bosch et al. 2006; Park et al. 2009; Daridon et al. 2011; Blal et al. 2011) for example.
The layout of the paper is as follows. The energy criterion of the damageable elastic

cohesive zone model is presented in Section 2 through a one-dimensional scenario within
the TIP framework. In Section 3, a vectorial extension of the cohesive zone law is proposed
for an isotropic damage evolution. In Section 4, the capability of the model is investigated
using an experimental benchmark test (i.e. a single-edge notch-bending specimen for fracture
toughness testing) (Moës et al. 2011; Wojtacki et al. 2017; Galvez et al. 1996). Mechanical and
energy responses are shown and discussed. Several damage, elastic and dissipated energy fields
around the fracture paths are plotted during the crack propagation. As already mentioned, the
computation of the dissipated energy fields is of special interest since they can be compared
with the ones derived from quantitative infrared techniques (Chrysochoos 2012; Benaarbia
and Chrysochoos 2017). With this perspective, in the final section, a numerical simulation of a
Brazilian disc test is proposed. This type of test is well adapted to infrared imaging since the flat
surface of the specimen remains perpendicular to the optical axis of the camera until the crack
occurs.

2 One-dimensional scenario
The objective of the following section is to briefly review the mechanical concepts classically
introduced with cohesive zone models (CZM) in the case of a one-dimensional monotonic traction
and to embed them into the TIP framework to derive, through an energy criterion, a damage
evolution law.

2.1 Mechanical aspects
In the literature, the mechanical response of the cohesive zone is described by the correspon-
dence between the normal traction force 𝑓 supported by the interface and its normal opening
displacement 𝑢, often called separation, during a monotonic opening. Depending on the chosen
form of the traction-separation diagram, the relationships are called bilinear, polynomial or
exponential cohesive laws. In Figure 1, a polynomial form is chosen to illustrate the most common
features of these curves. We find the cohesive strength 𝑓0 corresponding to the maximum

Figure 1 Traction-separation diagram.
Monotonic envelope (solid
line), elastic unload or reload
(dashed line). An arbitrary
polynomial cohesive law is
chosen.
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of the traction–separation curve or its associated opening displacement 𝑢0, the maximum
value of separation 𝑢c corresponding to the crack opening. An energy parameter is also often
mentioned (Ortiz and Pandolfi 1999): this is the fracture energy (work of separation)

𝐴c =
∫ 𝑢c

0
𝑓 (𝑢) d𝑢 (1)

which is the area below the traction-separation curve.
This traction-separation curve is considered as a threshold over which the damage develops

irreversibly. This threshold is an intrinsic characteristic of the cohesive zone behavior. When
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unloading is considered, it is supposed to be purely elastic, assuming that the damage progress
stops as soon as the loading point is below the threshold curve. For convenience, the elastic
unloading paths are often directed towards the origin of the traction–separation diagram, see
Figure 1. This implies that the elasticity remains linear and that there is no residual opening at
the end of the unloading.

The progress of the damage can be depicted by a continuous decrease of the secant stiffness𝐾 =
𝑓 /𝑢 towards zero until rupture at 𝑢c. A classical scalar definition of the damage variable is

𝐷𝑘 =
𝐾0 − 𝐾
𝐾0

(2)

where 𝐾0 is the initial stiffness of the cohesive zone. The variable 𝐷𝑘 progressively increases
from 0 to 1 when the opening displacement increases from 0 to 𝑢c (or from 𝑢e to 𝑢c when a pure
elastic domain, [0, 𝑢e], is introduced in the traction-separation curve, see Figure 1).

A second possibility is to consider a normalized deformation energy definition of the
damage (Ortiz and Pandolfi 1999):

𝐷𝐴 =
𝐴

𝐴c
where 𝐴 =

∫ 𝑢

0
𝑓 (𝜐) d𝜐. (3)

Here again, this last definition slightly changes when an elastic domain limited by the point (𝑢e, 𝑓e)
is introduced. In such a case, Equation (3) requires a renormalization:

𝐷∗
𝐴 =

𝐴∗

𝐴∗
c

where 𝐴∗ =
∫ 𝑢

𝑢e

𝑓 (𝜐) d𝜐 and 𝐴∗
c =

∫ 𝑢c

𝑢e

𝑓 (𝜐) d𝜐. (4)

Then, by construction, 𝐷𝐴 and 𝐷∗
𝐴 belong to [0, 1]. In fact, there are many ways to define damage.

The damage process being assumed irreversible, the damage variable rate is often chosen to be
non-negative whatever the loading history, to depict its monotonic evolution. Damage develops
when the mechanical state (𝑢, 𝑓 ) corresponds to a point of the cohesive threshold curve. In
what follows we have chosen a kinematic definition of the damage variable. Like previously
done by numerous authors, e.g. (Serpieri et al. 2015), we have chosen the maximum value of the
separation 𝑢d ever reached by the cohesive zone until instant 𝑡 . This damage state variable is
then defined at instant 𝑡 by

𝑢d = max{𝑢 (𝜏),∀𝜏 ≦ 𝑡}. (5)

This variable monotonically increases during the damage progress from 0 to 𝑢c whatever the
loading path, see Figure 1.

2.2 Energy aspects
Usually during a load cycle, the deformation energy 𝑤def, which corresponds to the area
surrounded by the loading curve, see Equation (8), is transformed into dissipated energy, denoted
by𝑤d, and stored energy, denoted by𝑤s, due to the irreversible microstructural transformations
accompanying the deformation process. Part of𝑤def can also involve strong thermomechanical
coupling energy (heat)𝑤thm (Chrysochoos 2012). An illustrative example of such coupling effects
in the mechanical response is the famous thermoelastic damping introduced by Zener (1938). The
general form of the energy balance over a loading cycle can then be written as

𝑤def = 𝑤d +𝑤s +𝑤thm. (6)

For any other loading, the elastic energy𝑤e has to be added so that

𝑤def = 𝑤e +𝑤d +𝑤s +𝑤thm, (7)

where 𝑤e vanishes, by construction, over a loading cycle. In the present situation, we only
consider isothermal transformations with no thermomechanical coupling. Moreover, we assume
that damage is a pure dissipative mechanism and that, consequently, no energy storage or
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release of stored energy, due to microstructural changes, occurs during the loading. These
assumptions imply𝑤s = 𝑤thm = 0. For any kind of separation-controlled loading {𝑢 (𝜏),∀𝜏 ≦ 𝑡},
the deformation energy at instant 𝑡 is here defined by

𝑤def(𝑡) =
∫ 𝑡

0
𝑓 (𝜏) ¤𝑢 (𝜏) d𝜏 . (8)

For monotonic loadings, the mechanical state follows the traction-separation curve. The
deformation energy then represents the mechanical energy required to reach the damage
state 𝑢d = 𝑢 (𝑡). This cost in deformation energy can be defined by

𝑤d
def(𝑢d) =

∫ 𝑢d

0
𝑓 (𝜐) d𝜐. (9)

Another important mechanical energy term is the elastic energy𝑤e(𝑢,𝑢d) in the cohesive zone at
a given state of damage 𝑢d. It is defined by

𝑤e(𝑢,𝑢d) = 1
2𝐾 (𝑢d)𝑢

2. (10)

Note that this energy is mechanically recoverable during the unloading. This is why it does not
appear in the general form of the energy balance in Equation (6) for a complete loading cycle.

As previously done for the deformation energy during monotonic loading, we can define the
elastic energy by

𝑤d
e (𝑢d) =

1
2𝐾 (𝑢d)𝑢

2
d = 𝑤e(𝑢d, 𝑢d) (11)

which represents the maximum elastic energy mechanically recoverable for a given damage
state 𝑢d.

As previously assumed (no thermomechanical coupling energy, no energy storage), the
difference between𝑤d

def(𝑢d) and𝑤d
e (𝑢d) is attributed to the energy dissipation accompanying the

irreversibility of damage mechanisms. The dissipated energy𝑤d
d (𝑢d) is then defined by

𝑤d
d (𝑢d) = 𝑤d

def(𝑢d) −𝑤d
e (𝑢d), (12)

all quantities being illustrated in Figure 2. Based on the mechanical response chosen in Figure 1,

Figure 2 Energy version of the
traction-separation diagram.
Monotonic envelope (solid
line) and elastic unload
(dashed line). wd

d(ud)
wd
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wd
def(ud)

0 ud uc
0
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f

the evolutions of the three different energies associated with a loading-unloading tensile test are
pictured in Figure 3 showing the deformation, elastic, and dissipated energies. The deformation
energy𝑤def is naturally the sum of the dissipated and elastic energies, respectively𝑤d and𝑤e
in Equation (7), since the damage is supposed to be the only microstructural transformation
which is fully dissipative during loading, see Equation (12) (no energy storage is induced by the
microstructural transformations). Figure 3(a) illustrates that during the elastic unloading,𝑤d

e
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0 𝑢 = 𝑢d 𝑢c

𝑤d

𝑤d
d

𝑤e

𝑤d
e

𝑤def

𝑤d
def

(a)

Normal separation

En
er
gy

0 𝑢 = 𝑢d 𝑢c

𝑤d

𝑤e

𝑤def

(b)

Figure 3 Energy balance evolution during a load-unload-reload process. Solid lines are associated with the
monotonic envelope, dashed lines correspond to the elastic unload and reload. (a) Loading up to 𝑢 = 𝑢d
and unloading. (b) Reloading until rupture.

remains constant (no evolution of damage) while𝑤e returns to zero. In parallel, the deformation
energy𝑤def also decreases and tends towards the energy previously dissipated during the first
loading cycle,𝑤d

d . In Figure 3(b), the elastic reloading while 𝑢 ⩽ 𝑢d is shown and extended by a
monotonic loading until rupture for 𝑢d = 𝑢c.

Under these restrictive assumptions, the area under the traction-separation curve, Figure 1
(equivalent to a monotonic traction rupture) is completely dissipated when the cohesive zone
vanishes. In the next sub-section once the thermodynamic working framework has been
specified, this important property is discussed. Then, another point to underline is that if the
traction-separation curve is classically considered as the constituent element of the behavior
of the cohesion zone, it is thus the same for the evolutions of𝑤d

def(𝑢d) and𝑤d
e (𝑢d). Therefore,

instead of using the tension-separation curve to describe the damage progress, associated with
the loss of stiffness, it is also possible to use the evolution of the allowable maximum elastic
energy𝑤d

e to define the threshold function associated with the damage rate.

2.3 Thermodynamics aspects
In this sub-section, the above results and comments are integrated into the TIP framework.

2.3.1 Cohesive zone potential and state laws

In the case of isothermal transformations, the chosen state variables are (𝑢,𝑢d). The thermome-
chanical approach starts with the assumption of the existence of a potential𝜓 (𝑢,𝑢d) capable of
gathering all the state laws. Here, we identify this potential to the elastic energy𝑤e defined in
Equation (11):

𝜓 (𝑢,𝑢d) = 1
2𝐾 (𝑢d)𝑢

2. (13)

The state laws are, by construction, the partial derivatives of the potential with respect to the
state variables. We then define the conjugate variable 𝑓 r, associated with 𝑢 which represents the
reversible part of the traction force, and 𝐴d, the conjugate variable associated with 𝑢d:

𝑓 r =
𝜕𝜓

𝜕𝑢
= 𝐾 (𝑢d)𝑢 and 𝐴d =

𝜕𝜓

𝜕𝑢d
=
1
2𝐾

′(𝑢d)𝑢2. (14)

2.3.2 Clausius-Duhem inequality

The irreversibility of the mechanisms accompanying the opening of the cohesive zone is depicted
by the Clausius-Duhem inequality which enables the definition of the intrinsic dissipation𝑤o

d . In
the present framework, it can be written as

𝑤o
d = 𝑤o

def − ¤𝜓 = 𝑓 ¤𝑢 − 𝜕𝜓

𝜕𝑢
¤𝑢 − 𝜕𝜓

𝜕𝑢d
¤𝑢d = 𝑓 ir ¤𝑢 + 𝑋d ¤𝑢d ⩾ 0. (15)
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The terms 𝑤o
d and 𝑤

o
def determine the dissipated and deformation energy rates, respectively.

The symbol •o is introduced to underline that𝑤d and𝑤def are not a priori state functions and
are then path dependent. Equation (15) also introduces the irreversible part of the traction
force 𝑓 ir = 𝑓 − 𝑓 r, and the thermodynamic force 𝑋d associated with ¤𝑢d. Note that during
an irreversible transformation ¤𝑢d > 0, we get 𝑋d = −𝐴d. If damage is the only irreversible
process, no dissipation has to be associated with ¤𝑢. In such a case the irreversible traction force
vanishes 𝑓 ir = 0. The traction force 𝑓 can then be directly defined via the state law

𝑓 = 𝑓 r = 𝐾 (𝑢d)𝑢. (16)

Moreover, with Equation (14) and Equation (15), the intrinsic dissipation becomes

𝑤o
d = 𝑋d ¤𝑢d = −12𝐾

′(𝑢d)𝑢2 ¤𝑢d ⩾ 0. (17)

The fact that ¤𝑢d ⩾ 0 implies 𝐾 ′(𝑢d) ⩽ 0 is physically consistent. The irreversible nature of
damage leads to a degradation of the secant stiffness.

2.3.3 Threshold function and damage evolution law

In the TIP framework the thermodynamic forces are supposed to be function of the state variable
rates. In the case of the linear TIP proposed by Onsager (1931), the correspondence between
thermodynamic forces and state variable fluxes is linear. The Onsager matrix is supposed to be
symmetric positive definite in order to verify the Clausius-Duhem inequality (positive dissipation)
whatever the thermodynamic process. Extension to non-linear theory exists as for example
the formalism of Generalized Standard Materials (Halphen and Quoc-Son 1975). Based on the
hypothesis of normal dissipation, the thermodynamic forces derive from a convex dissipation
potential or equivalently, state variables rates derived from a dual dissipation potential, function
of the thermodynamic forces. This dissipation potential can also involve the state variables of the
model as parameters (Lemaitre 1996). A common approach is then

• to define a threshold function depending on the thermodynamic forces (and possibly state
variables),

• to write that irreversibility occurs and develops if the thermodynamic state is on the threshold
and remains on it during a time increment.

Note that once the state laws (derived from the thermodynamic potential) and complementary
laws (derived from the dissipation potential) have been derived, it is possible to deduce the
evolution of the energy balance associated with the transformation.

In what follows, the existence of the threshold function will not be associated with the
normal dissipation hypothesis as the energy balance form imposes by construction non-negative
dissipation. Indeed, the current elastic domain is characterized by𝑤d

e (𝑢d), the maximum elastic
energy available for a given damage state which also corresponds to the energy required to
further damage the material. Then, the damage energy criterion based on the energy balance is
defined by

𝑤e(𝑢,𝑢d) ⩽ 𝑤d
e (𝑢d) . (18)

The evolution law for 𝑢d is then derived from the fact that for the damage to occur, the
maximum elastic energy allowable in the material has to be and remain on the threshold during
the loading step, i.e.

𝑤e(𝑢,𝑢d) = 𝑤d
e (𝑢d) (19a)

¤𝑤e(𝑢,𝑢d) = ¤𝑤d
e (𝑢d) . (19b)

The first equality implies 𝑢d = 𝑢. The second equality leads to a proposal of evolution equation
for the damage:

¤𝑢d =
{
¤𝑢 if 𝑢 = 𝑢d and ¤𝑢 ⩾ 0
0 if 𝑢 < 𝑢d or ¤𝑢 ⩽ 0,

(20)

Journal of Theoretical, Computational and Applied Mechanics

��
March 2022

��
jtcam.episciences.org 7

��
20

https://jtcam.episciences.org


André Chrysochoos et al. A damage criterion based on energy balance for cohesive zone model

which is consistent if we remind the definition of the damage state variable Equation (5) and the
fact that the damage increases irreversibly, ¤𝑢d ⩾ 0.

To be fully compatible with non-linear TIP framework, the final step is to introduce a
threshold function that accounts for the thermodynamic force 𝑋d. As previously stated, we
consider a derivative form of the energy balance to get this threshold function Equation (19b).
Using Equation (14) and Equation (17), we get

¤𝑤e = −𝑋d ¤𝑢d + 𝐾 (𝑢d)𝑢 ¤𝑢. (21)

On the threshold, Equation (21) becomes

(𝑤d
e ) ′ ¤𝑢d = (−𝑋d + 𝐾 (𝑢d)𝑢d) ¤𝑢d. (22)

Then, a threshold function 𝐹 involving the thermodynamic force 𝑋d and the state variables can
be considered in the form

𝐹 (𝑋d;𝑢,𝑢d) = 𝐾 (𝑢d)𝑢 − 𝑋d − (𝑤d
e ) ′ ⩽ 0. (23)

To be consistent with the incremental form of the energy balance, the equality 𝐹 (𝑋d;𝑢,𝑢d) = 0
implies, once again, 𝑢d = 𝑢 while the consistency condition d𝐹 = 0 leads to d𝑢 = d𝑢d, or
equivalently to Equation (20). To be precise, the full calculation of d𝐹 = 0 at 𝑢 = 𝑢d leads to

(𝐾 (𝑢d) + 2𝐾 ′(𝑢d)𝑢d) (d𝑢 − d𝑢d) = 0, (24)

and then, d𝑢 = d𝑢d, except possibly when 𝑢d = −𝐾 (𝑢d)/(2𝐾 ′(𝑢d)).

2.3.4 Comments on the damage evolution equations

To depict the evolution of damage, in addition to the traction-separation curve data, the literature
often proposes a specific evolution equation in the form of ¤𝐷 = ¤𝐷 (𝑓 , 𝐷, ¤𝑢) whatever the definition
of the damage variable 𝐷 (Roe and Siegmund 2003; Bouvard et al. 2009; Kuna and Roth 2015).

In the foregoing, because of the hypotheses explicitly made on the energy balance (i.e. damage
is the only dissipative mechanism and it is totally dissipative), the damage evolution law is fixed
by the definition of the damage variable itself and by the explicit form of the energy balance.
Note that the damage evolution law (20) deduced from the energy criterion (19) is perfectly
compatible with the definition of the damage variable itself given in Equation (5). We can also
note that this evolution law is an extremely simple form of the general equation proposed by Roe
and Siegmund (2003), but here, this law is totally imposed by the shape of the traction-separation
curve, or equivalently, by the threshold𝑤d

e (𝑢d) of Equation (11).
To set ideas, let’s consider the following simple case: let 𝑓 (𝑢) be a one-dimensional traction-

separation law. We suppose that the elastic energy is, as often, written as 2𝜓 (𝑢, 𝐷) = (1−𝐷)𝐾0𝑢
2,

where 𝐷 is the isotropic damage variable, 𝑢, the displacement jump, and 𝐾0, the elastic stiffness
of the virgin cohesive zone. We consider a monotonic loading. The deformation energy rate is, by
definition,

¤𝑤def = 𝑓 (𝑢) ¤𝑢 (25)

where 𝑓 (𝑢) follows the traction-separation curve. The elastic energy rate can be split into two
parts:

¤𝑤e = (1 − 𝐷)𝐾0𝑢 ¤𝑢 − 𝐾0
𝑢2

2
¤𝐷. (26)

If we assume now that the damage is the only irreversible mechanism, then the traction force is
the conjugate variable of the displacement jump, where

𝑓 (𝑢) = 𝜕𝜓 (𝑢, 𝐷)
𝜕𝑢

= (1 − 𝐷)𝐾0𝑢 and ¤𝑤e = ¤𝑤def − 𝐾0
𝑢2

2
¤𝐷. (27)
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If the damage is supposed to be exclusively dissipative (no internal stored energy), then the
dissipation is given by

¤𝑤d = 𝐾0
𝑢2

2
¤𝐷 = ¤𝑤def − ¤𝑤e. (28)

Following the traction-separation curve, the damage evolution has to satisfy

¤𝐷 = 2 ¤𝑤def − ¤𝑤e
1
2𝐾0𝑢2

. (29)

Noting that for each current point (𝑢, 𝑓 (𝑢)) of the traction separation curve, we have 2𝑤e = 𝑓 (𝑢)𝑢 ,
the time differentiation, following the curve, reads

2 ¤𝑤e = 𝑓 (𝑢) ¤𝑢 + ¤𝑓 (𝑢)𝑢 (30)

and, as a consequence,

¤𝐷 =
𝑓 (𝑢) ¤𝑢 − ¤𝑓 (𝑢)𝑢

1
2𝐾0𝑢2

. (31)

The right-hand member of this equation is fully determined by the traction-separation curve.
Any form of damage evolution law, incompatible with this previous equation, would lead to an
energy balance form incompatible with the initial energy assumptions (i.e. form of the free
energy, damage unique and exclusive dissipative mechanism). The consequences could be the
emergence of energy storage mechanisms, i.e. ¤𝑤d

d < ¤𝑤d
def − ¤𝑤d

e , or internal energy transformation
into dissipated energy (release of stored energy), i.e. ¤𝑤d

d > ¤𝑤d
def − ¤𝑤d

e . Taking into account this
stored energy, variations should lead to the introduction of new internal state variables and/or to
a change of the deformation energy rate definition (Frémond 2002).

3 Three-dimensional cohesive zone model
In this section, we propose an extension to a three-dimensional vectorial version of the CZM
where the isotropic damage is controlled by the evolution of the maximum recoverable elastic
energy,𝑤e

d(𝑢d). Isotropic damage means here that a scalar state variable is solely used to describe
the damage evolution. This generalization has been made by following the same approach as the
one previously proposed, namely define a damage variable and a energy balance where the
damage is the only dissipative phenomenon.

3.1 Mechanical variables
Regarding the mechanical description of the cohesive zone, the traction force and the separation
become now vectors. Let us introduce a frame of reference where directions 1 and 2 correspond
to the tangent plane of the cohesive zone while direction 3, is the normal direction. The traction
vector, f , with components (𝑓t1, 𝑓t2, 𝑓n) and the separation vector, u, with components (𝑢t1, 𝑢t2, 𝑢n),
are introduced. As conventionally admitted in CZM, the normal move jump denoted by 𝑢n is
positive or null. This unilateral condition is taken into account by a Signorini type relationship in
the numerical simulations using the open source software LMGc90 (Dubois and Jean 2005) and
exposed at the end of this article.

3.2 Cohesive zone potential and state equations
A set of state variables has first to be chosen. Here, we selected the components (𝑢t1, 𝑢t2, 𝑢n) of
the separation vector and a scalar damage variable denoted by 𝑢d. Then, to generalize the form of
the cohesive zone potential proposed in Equation (13), the form

2𝜓 (u, 𝑢d) = 2𝑤e(u, 𝑢d)
= 𝐾n(𝑢d)𝑢2n + 𝐾t(𝑢d)𝑢2t1 + 𝐾t(𝑢d)𝑢2t2
= 𝐾n(𝑢d) (𝑢2n + 𝛼𝑢2t1 + 𝛼𝑢2t2)
= 𝐾n(𝑢d)𝑢2eq, with 𝑢eq =

√
𝑢2n + 𝛼𝑢2t1 + 𝛼𝑢2t2 .

(32)
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inspired by Bouvard et al. (2009) is adopted. The parameter 𝛼 is the ratio between 𝐾t(𝑢d)
and 𝐾n(𝑢d), the tangential and normal secant stiffnesses, respectively, at a given 𝑢d. In the case of
isotropic damage, 𝛼 is a constant.

A three-dimensional formulation of the scalar depicting the isotropic damage is

𝑢d = max
{
𝑢eq(𝜏),∀𝜏 ≦ 𝑡

}
. (33)

By construction, 𝑢d takes the three-dimensional aspect of the separation vector u into account
and then ¤𝑢d is non-negative and de facto respects the irreversibility of the damage progress.

By definition, the state laws are the partial derivatives of the cohesive zone potential of
Equation (32). They introduce the components of the reversible traction vector f r and the
conjugate variable 𝐴d associated with (𝑢t1, 𝑢t2, 𝑢n) and 𝑢d, respectively:

𝑓 rn =
𝜕𝜓

𝜕𝑢n
= 𝐾n(𝑢d)𝑢n,

𝑓 rt1 =
𝜕𝜓

𝜕𝑢t1
= 𝛼𝐾n(𝑢d)𝑢t1 = 𝐾t(𝑢d)𝑢t1,

𝑓 rt2 =
𝜕𝜓

𝜕𝑢t2
= 𝛼𝐾n(𝑢d)𝑢t2 = 𝐾t(𝑢d)𝑢t2,

𝐴d =
𝜕𝜓

𝜕𝑢d
=
1
2𝐾

′(𝑢d)𝑢2eq.

(34)

Because only damage induces irreversibility, no dissipation has to be associated with the
component of the separation vector. The reversible part f r of the separation can therefore be
identified with f , that is f = f r.

3.2.1 Energy definition of the damage threshold

To extend the damage energy criterion to a three-dimensional isotropic damageable CZM, it is
possible to choose the damage variable, 𝑢d, whose evolution is directly related to that of the
elastic energy 𝑤d

e . In the three-dimensional case, this maximum elastic energy, for a given
damage state 𝑢d, describes, in the displacement space, a half spheroid of radii

𝑟n(𝑢d) =
(2𝑤d

e (𝑢d)
𝐾n(𝑢d)

) 1
2 and 𝑟t(𝑢d) =

( 2𝑤d
e (𝑢d)

𝛼𝐾n(𝑢d)
) 1
2
=
𝑟n(𝑢d)√

𝛼
(35)

as shown in Figure 4. As the normal jump 𝑢n is, by definition, positive or null, only half of the

Figure 4 Reachable separation states
for a given damage state 𝑢d.
The color represents the
value of 𝑢n.

𝑢n

𝑟n

𝑟t𝑢t1

𝑢t2

spheroid is reachable for any separation states.
As long as the further separation states, u, respect the damage energy criterion (i.e. 𝑤e(u, 𝑢d) <

𝑤d
e (𝑢d)), the behavior remains elastic. Then, for a given opening such that 𝑢eq = 𝑢d, the elastic

energy reaches the maximal value associated with this damage state (i.e. 𝑤e(u, 𝑢d) = 𝑤d
e (𝑢d)).

Once the surface of the spheroid is reached:
• either the separation increment 𝛿u is directed towards the inside of the spheroid, and an elastic
unloading at constant damage can be observed,

• or 𝛿u is directed towards the outside of the spheroid, and then the damage develops and defines a
new elastic limit surface.
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For isotropic damage, a single evolution equation for 𝑢d is required. We have already
underlined that for threshold behavior law, the yield function depends on the thermodynamic
forces and possibly on the states variables themselves, acting as parameters. In the present
case, the thermodynamic force of the model, associated with the damage variable rate, is 𝑋d.
A generalized form of the yield criterion (23) is chosen where the role of 𝑢 used in the one-
dimensional scenario is played by 𝑢eq. Accordingly, the proposed yield energy criterion (18) may
be rewritten using the thermodynamic force 𝑋d as

𝐹 (𝑋d;𝑢eq, 𝑢d) = 𝐾n(𝑢d)𝑢eq − 𝑋d − (𝑤d
e ) ′ ⩽ 0. (36)

Damage develops if the threshold is reached, that is 𝐹 (𝑋d;𝑢eq, 𝑢d) = 0, and if the consistency
condition ¤𝐹 (𝑋d;𝑢eq, 𝑢d) = 0 is satisfied. For the same reasons as the ones shown for the one-
dimensional model, the evolution law of the parameter 𝑢d is expressed as

¤𝑢d = ¤𝑢eq if 𝑢d = 𝑢eq and ¤𝑢eq ≥ 0. (37)

This evolution law, as already underlined, is induced by the very definition of the damage variable.
An illustration of the energy criteria is given in Figure 5. Following a monotonic loading (i.e.

remaining on the𝑤d
e (𝑢d) curve), 𝐾n(𝑢d)𝑢d is the slope of the deformation energy𝑤d

def, 𝑋d is the
slope of the dissipated energy 𝑤d

d and (𝑤d
e ) ′ is naturally the slope of the maximal allowable

elastic energy𝑤d
e .

Figure 5 Damage energy criterion 𝑢eq = 𝑢d
where 𝐾n (𝑢d)𝑢d = (𝑤d

e ) ′𝑢d + 𝑋d.
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0
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𝐾n (𝑢d)𝑢d
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(𝑤d
e )′

𝑢d

𝑤d
d

𝑤d
e

𝑤d
def

To conclude the present section, we would like to stress once again the fact that the damage
evolution law is not here a matter of choice. It is imposed by the form of the energy balance and
by the definition of the damage state variable.

The state (34) and the evolution (37) are, in what follows, implemented in a home-made finite
element code. The material parameters of the constitutive equations will be specified. In order to
show the capabilities of such a CZM, two types of simulations are undertaken. The first one is a
bending test whose numerical results are compared with experimental ones. The second one is a
Brazilian disc test whose material is made of heterogeneous elastic grains.

4 Numerical implementation
To illustrate the potential of the proposed model, simulations reproducing a common benchmark
extracted from the literature (Galvez et al. 1996) were carried out. It is important to notice
that the objective of this practical comparison is simply to demonstrate the use of the model
and not to optimize its parameters in order to fit the benchmark. The previous model is then
numerically implemented in the code LMGc90based on the Non-Smooth Contact Dynamics (NSCD)
method (Moreau 1988; Jean 1999; Jean et al. 2001). The NSCD method is dedicated to solving
problems related to dynamic systems with unilateral constraints. It is therefore particularly
suitable for unilateral contact problems with friction. It offers a non-smooth treatment (no
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compliance, no penalty) of the conditions of contact (Jean 1999), which is explicit in the definition
of 𝑢n. The way adhesion is taken into account in this method makes it possible to consider each
point of contact as a cohesive zone. The mechanical behavior of the cohesive zones may then vary
at any point of the spatial discretization of the problem. This relevant modeling framework was
adopted to numerically simulate crack propagation with cohesive zone (Champagne et al. 2014).

4.1 Bending test
To compare the proposed model with a benchmark solution (Galvez et al. 1996), the form of the
maximum storable elastic energy𝑤d

e (𝑢d) must be specified in order to be implemented in LMGc90
(Dubois et al. 2022), the open source platform used to carry out the simulations (Dubois et al.
2011). This benchmark, illustrated in Figure 6, traces the evolution of a crack in mixed mode to be
followed. In the context of this feasibility study, a simple quadratic form of𝑤d

e (𝑢d) is proposed.

H

!1

H/2

H

4H

A

B
C

Figure 6 Characteristics of the benchmark issued from Galvez et al. (1996) used for simulation

In what follows, we also assumed the existence of a pure elastic domain and thus the existence of
a threshold equivalent elastic displacement 𝑢eeq, denoted by 𝑢e. The maximum storable elastic
energy as a function of the damage parameter 𝑢d simply reads

𝑤d
e (𝑢d) = 𝐴(𝑢d − 𝑢c)2 + 𝐵(𝑢d − 𝑢c) if 𝑢e ⩽ 𝑢d ⩽ 𝑢c (38)

where 𝑢c is the critical equivalent displacement corresponding to the crack onset. Parameters 𝐴
and 𝐵 are two constants chosen to ensure the 𝐶1 continuity of the maximum storable elastic
energy 𝑤d

e (𝑢d) at the threshold equivalent elastic displacement 𝑤d
e (𝑢e) = 1

2𝐾
0
n𝑢

2
e . They are

defined by

𝐴 = −12𝐾
0
n𝑢e

2𝑢c − 𝑢e
(𝑢c − 𝑢e)2 and 𝐵 = −𝐾0

n
𝑢c𝑢e
𝑢c − 𝑢e (39)

where 𝐾0
n is the initial normal stiffness of the CZM.

The thickness 𝐻 of the sample is equal to 0.3m while its length is equal to 1.2m. A 0.15m
pre-crack is located in the middle of the lower edge. The point 𝐵 is fixed in both 𝑥 and 𝑦 directions
whereas the point 𝐴 is only fixed in the 𝑦 direction. A displacement is imposed on point 𝐴 to load
the structure. The mesh is composed of three parts: two coarse meshes, the left and the right
parts of the structure composed respectively of 958 and 2063 T3 elements, where no interface
elements have been introduced between the different meshes and a finer mesh, guarantying
the continuity of the structure (domain Ω1 in Figure 6), composed of 6723 T3 elements where
the crack path is supposed to appear and where interface elements are therefore introduced
between each element. The interactions between elements of Ω1 are governed by the proposed
cohesive zone model where the initial secant elastic stiffnesses, 𝐾0

n and 𝐾0
t , are chosen to satisfy

the criterion proposed in (Blal et al. 2011) to limit the reduction of stiffness due to the presence of
CZM. It is important to highlight that the objective of this practical comparison is simply to
show the functional features of the model and not to optimize its parameters in order to fit the
benchmark. The values of the CZM parameters are listed in Table 1.
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Table 1 Parameter values of the CZM for the bending test. 𝐾0
n (Nm−1) 𝛼 𝑢e (m) 𝑢c (m)
2.48 109 0.5 0.5 10−6 1.5 10−6

Figure 7 shows the evolution, at various simulation times, of different characteristic quantities
associated with the model: the damage variable, the elastic energy𝑤e and the dissipated energy𝑤d.
In order to present a quantity varying from 0 to 1, the damage ratio, as a function of the damage
variable, is introduced and defined by ⟨𝑢d−𝑢e ⟩+

𝑢c−𝑢e
. To improve the visibility of these different

quantities supported by the interfaces, they are projected on adjacent elements.
w
d
(J
/m

2 )

10

0

w
e
(J
/m

2 )

3.2

0

⟨u
d−
u
e⟩
+

u
c−
u
e

1

0

(a) (b) (c)

Figure 7 Damage ratio (top), elastic energy (center) and dissipated energy (bottom) during crack propagation.
Labels (a), (b) and (c) apply column-wise.

Figure 7(a), corresponding to a pre-cracking state, shows a concentration of the elastic energy
at the outset of the crack tip. However, the damage criterion has not been reached within the
cohesive zone so that no damage or dissipation has yet occurred, see Equation (18). The maps
corresponding to ⟨𝑢d−𝑢e ⟩+

𝑢c−𝑢e
and𝑤d are then uniformly equal to 0. As expected, Figure 7(b) and

Figure 7(c), corresponding to two post-cracking steps, highlight the correlation between the
evolution of the dissipated energy and the damage ratio. The elastic energy is still concentrated
ahead of the crack tip, then returns to zero along the crack lips. In contrast, the dissipated energy
related to the damage evolution can be exhibited all along the crack path. Similarly, the damage
field allows the cracking path to be tracked.

To exhibit the capability of our CZM where only the shape of the cohesive energy associated
with a simple energy balance is needed, see Equation (38), various quantities, numerically
obtained, are compared with experimental measurements from the literature (Cendón et al. 2000).
For such comparisons, Figure 8 presents both the classical crack path monitoring and the load vs.
CMOD curve (Crack Mouth Opening Displacement).

In Figure 8(a) and Figure 8(b), dots correspond to the simulation while the dashed lines
represent the crack envelop obtained experimentally by Cendón et al. (2000). In Figure 8(a), the
crack obtained numerically corresponds closely to the experimental envelope. The starting
angle is strongly related to the discretization around the initiation point, explaining the slight
difference at the beginning of the initiation. Then, the path is corrected and repositioned in the
experimental envelope until the end of the simulation.

Concerning the force vs. CMOD curves, they fit perfectly in the section corresponding to the
linear increase. This highlights that the introduction of a two-dimensional interface element,
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Figure 8 Comparison of numerical macroscopic measurements associated to the crack evolution with experimental
results (Cendón et al. 2000). (a) Crack path and (b) load vs. CMOD curve.

where the values of 𝐾0
n and 𝐾0

t satisfy the criterion proposed in (Blal et al. 2011) between each
elements of Ω1 do not affect the global stiffness of the sample. The maximum force obtained is
also in good agreement with that obtained in the experiment, as well as the beginning of the
non-linear decreasing part of the CMOD curve occurring at the initiation of cracking. In the
last part, the curves diverge. This difference is partly explained by the fact that the numerical
simulation is two-dimensional while the experiments are three-dimensional. Indeed, not all
deformation modes are taken into account (especially out-of-plane modes), which explains this
different behavior at the end of the simulation. Moreover, we have arbitrarily chosen a second
degree polynomial to characterize the damage of the cohesive zone model, see Equation (38). This
choice could be fine-tuned in order to better account for experiences by taking a Needleman-type
damage (van den Bosch et al. 2006; Needleman 1990).

4.2 Sensitivity analysis

Finally, in order to see the impact of a variation in the parameters 𝑢e and 𝑢c on the overall
behavior of the system and more particularly on the evolution of the force vs. CMOD curves,
a sensitivity study is proposed. The influence of these parameters on the crack path is not
presented because it is not very significant. The influence of these parameters on the energy
available to be dissipated in the model is pointed out in Figure 9. The parametric study is carried
out relative to the reference point (0, 0) corresponding to the results presented in Figure 8(b)
with the parameters defined in Table 1. With the chosen law, a variation of 𝑢c has almost the
same consequence as a variation of 𝑢e in terms of energy available to be dissipated. The map
in Figure 9 is quasi-symmetric with respect to the circle-triangle diagonal. Concerning the
parametric studies, the color code used for the curves is defined in Figure 9.

Figure 9 Map of the normalized dissipated
energy variations as a function of
the variations of 𝑢e and 𝑢c. Symbols
at the four corners of the map
identify the curves in Figure 10.
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Figure 10 presents the normalized plots of 𝑤d
e (𝑢d) for different values of 𝑢e and 𝑢c and

the corresponding force vs. CMOD curves. The normalization parameters are 𝑢e,0 = 0.5 10−2
and𝑤e,0 = 𝑤d

e,0(𝑢e,0) using the values in Table 1. Even if the shape of the curves is significantly
different in Figure 10(a), the energies available to be dissipated for the case represented by a
cross and the one represented by a square are of same order of magnitude. The maxima order
observed at the scale of the CZM models in Figure 10(a) is preserved at the scale of the structure
in Figure 10(b).
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Figure 10 (a) Normalized 𝑤d
e (𝑢d) for different values of 𝑢e and 𝑢cwith 𝑢e,0 = 0.5 10−2 and 𝑤e,0 = 𝑤d

e,0 (𝑢e,0) using
values in Table 1. (b) Corresponding force vs. CMOD curves.
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Figure 11 Comparison between the reference load vs. CMOD curve and the ones related to the variation of (a) 𝑢c
of ±20 % while 𝑢e = 𝑢e,0 and of (b) 𝑢e of ±20 % while 𝑢c = 𝑢c,0.

In Figure 11 to Figure 12, we observe respectively the influence of 𝑢c and 𝑢e on the force vs.
CMOD curves. These figures show that the influence of the variation of 𝑢c is less than that
of 𝑢e. Indeed, where we observe a variation of less than 10 % on the critical values of the curve
(𝐹max and CMODmax) for a variation of 𝑢c, we observe a variation of more than 20 % for an
equivalent variation of 𝑢e. Nevertheless, in both cases, an increase of the damage energy𝑤d
induces an increase of the CMOD and loading maxima in the Load vs. CMOD curve. In this
model, where an elastic domain is assumed, 𝑢e is the threshold where the damage begins to occur.
This value determines the outset of the non-linear response of the structure. This is exhibited in
Figure 11(b) where an increase of 𝑢e at the local scale induces an increase of the maximal force at
the macroscopic scale and a delay of the occurrence of the nonlinear response of the curves.

Figure 12 demonstrates that the non-linear region of the curve is also governed by the shape
of the energy curve, see Figure 10. Although the dissipative energy in this parametric study is
almost constant, we observe a variation of about 10 % on the characteristic values of the response
curve. Accordingly, by combining the effects of 𝑢e, 𝑢c and the shape of the local curve, see
Figure 10, it is possible to obtain a better optimal result to fit experiments. The experimental
characterization of this type of local curve depicting the micro-structural phenomenon linked to
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Figure 12 Comparison between the reference
Load vs. CMOD curve (dash line)
and the ones related to the variation
of 𝑢c and 𝑢e of ±20 % while𝑤o

d is
constant.
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fracture is relevant and is still an on-going problem.

4.3 Brazilian test

As a complement to the previous numerical simulation and as an opening to the continuation of
the present work, the developed CZM law is used in the simulation of a Brazilian test, with
CZM parameters listed in Table 2. This test consists of the compression of a circular sample

Table 2 Parameter values of the CZM for the Brazilian test. 𝐾0
n (Nm−1) 𝛼 𝑢e (m) 𝑢c (m)
2.48 1015 0.4 0.8 10−6 10−6

located between two rigid plates. In contrast to the previous case, no pre-crack is introduced in
the numerical model. The microstructure of the sample used is presented on the left side of
Figure 13. This microstructure has been generated using the open-source Software Neper (Quey

Figure 13 Meshed microstructure used
in the simulation of the
Brazilian disc test.

et al. 2011). It is composed of 1000 elastic grains following a normal size distribution to make the
microstructure heterogeneous (Ma and Huang 2018). In these case, the cohesive zones are only
introduced at the grain boundaries. The mesh size used for meshing is identical for all grains and
calibrated so that the smallest grains have at least two elements on their smallest side. The total
number of elements is 98378. A zoom of the mesh is shown on the right hand side of Figure 13.
For the sake of simplicity, the diameter of the sample is unitary. A vertical velocity is imposed on
both walls to compress the sample. The simulation is carried out within the framework of large
deformations in order to manage possible strain localization and grain rotations. The elastic
constitutive equations are those of the linear elasticity where stresses and strains are respectively
represented by the second Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor.

For an homogeneous material during Brazilian test, a tensile state is induced in the center of
the disc perpendicular to the load direction. Increasing the load leads to an increase in tensile
stress until a crack appears in the center of the disc. Under the effect of the load, the crack
develops until the disc eventually separates into, at least, two parts. For a heterogeneous material,
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the damage occurs near the rigid plates and then develops along the loading axis until the disk
breaks (Na et al. 2017). Figure 14 shows a visual of the sample at the end of the simulation.

(a) (b)

∥u∥
D

5 · 10−3

0

Figure 14 Final state of the simulation. (a) Crack through the microstructure. (b) Displacement field norm normalized
by the diameter 𝐷 within the sample.

Figure 14(a) shows the macro crack zigzagging through the microstructure. This extends
from the contact between the sample and the rigid plates away from the centre of the sample.
Figure 14(b) shows the norm of the nondimensionalised displacement field within the sample. The
discontinuities highlight the multiple cracking paths generated during compression. Numerous
disjointed fragments can be particularly seen in the volume near the top wall.

To complete these observations, the evolution of the dissipated energy fields is presented in
Figure 15. Figure 15(a) corresponds to the initiation of the crack while Figure 15(f) corresponds

wd (kJ/m2)
80

(a) (b) (c)

(d) (e) (f)

Figure 15 Evolution of the dissipated energy field from the crack initiation (a) to the end of simulation (f).

to the end of the simulation. The other images are captured at intermediate times. Through
Figure 15(a) to Figure 15(f), the damage evolution is exhibited where branching is observed until
the coalescence of the macro crack. The next step is to experimentally perform the same type
of test using an experimental setup coupling kinematic and thermal full-field measurements.
The kinematic measurements will allow us to locate zones of strain localization and even
discontinuities of the displacement fields while the thermal measurements will be used to
determine the zones where the dissipation is localized. The confrontation of these two pieces of
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information should help us check the relevance of this energy approach of cohesive zones.

5 Conclusion
In this paper, we present an energy criterion for cohesive zone models where the damage progress
is assessed along with the ability of the material to store energy elastically. The damage state
variable used is 𝑢d(𝑡) = sup{𝑢eq(𝜏), 𝜏 ⩽ 𝑡} where 𝑢eq is an equivalent displacement compatible
with the isotropic evolution of the damage progress. The paper shows that if damage is the
unique and exclusive dissipative mechanism, the damage evolution law is automatically set by the
evolution of the maximum storable elastic energy𝑤d

e (𝑢d). We have also underlined that the data
of this energy is equivalent, in a one-dimensional formalism, to the one of a traction-separation
law. The interest of this energy approach is its immediate generalization to three-dimensional
cohesive zone models. In order to check the operational character of this type of approach,
the isotropic damage model has been implemented in the open source software LMGc90 based
on Non-Smooth Contact Dynamics and used to perform numerical simulations in the case of
bending and Brazilian tests. The results obtained for this plain stress modeling are encouraging.
Using a simple quadratic function 𝑤d

e (𝑢d) for the interface, we obtained a close correlation
between the simulations and the experimental observations of the crack path for the bending
test along with realistic multicrack propagations in the case of the Brazilian test. A parametric
study of the macroscopic response of the structure naturally demonstrates the importance of the
shape of the function𝑤d

e (𝑢d) which characterizes the interface behavior between two elements.
It is indeed this quantity that should be identified experimentally. In subsequent theoretical
developments, we will consider an extension to a non-isotropic degradation of the material
elastic properties. From an experimental stand point, Brazilian tests will be performed using full
field techniques during monotonic loadings, the goal being to extract from the experimental data
valuable information on the form of the energy balance and particularly on𝑤d

e (𝑢d).
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