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An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital

Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision

regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for

full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global

stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on

physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the

usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the

Region of Interest, which makes it possible to compare a model with different observations (real images

taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable

for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated

on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes

called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement

measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are

compared for two completely different sets of pictures. Eventually, a large displacement of the structure is

measured using a well-chosen single image.

Keywords: multi-view scan, data assimilation, physically based model, finite-element digital image correlation, large

deformations, lighting effects

1 Introduction

Ever-increasing interest is being shown in full-field measurement methods able to provide

data-rich monitoring of structural tests (Avril et al. 2008; Dalémat et al. 2019; Leygue et al. 2019;

Neggers et al. 2018; Schreier et al. 2009; Wittevrongel et al. 2015). Among them, Stereo Digital

Image Correlation (SDIC) is a popular easy-to-setup method as it requires only a few cameras and

lights together with an optical path to the Region Of Interest (ROI). It provides a 3D displacement

field, on a possibly non-planar surface, associated with the matching of pictures (coming from

at least two non-coplanar camera positions) taken at different deformation states of the ROI.

Different approaches often referred to as local (Lucas and Kanade 1981; Kahn-Jetter and Chu

1990; Luo et al. 1993) and global exist (Beaubier et al. 2014; Dufour et al. 2015; Pierré et al. 2017;

Réthoré et al. 2013). Figure 1 provides two diagrams illustrating the main differences between

Subset-based SDIC, which belongs to the local approaches, and Finite-Element SDIC (FE-SDIC),

which is associated to the global ones.

In both cases, we consider multi-view pictures of the ROI in the reference state (time 𝑡0) and

in the deformed state (time 𝑡0 + Δ𝑡 ), so as to observe a large part of the structure surface. Note
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(a) Subset-based Stereo Digital Image Correlation (b) Finite-Element Stereo Digital Image Correlation

Figure 1 Diagrams introducing in a graphical manner the current Subset-based and Finite-Element Stereo Digital
Image Correlation frameworks.

that there are as many reference state images as deformed state ones, which naturally leads to

setups where there are as many cameras as there are pictures at each state. A first step consists in

calibrating the cameras.

In the case of Subset-based SDIC, in Figure 1(a), cameras are paired and for each camera

pair a master camera is defined (the left one in our case) (Schreier et al. 2009). This allows to

define the subsets (depicted as yellow squares in the left images of the reference state (𝑓𝑖,𝐿)𝑖 )

which are used to generate a point cloud associated to a specific part of the ROI. Basically, each

subset of the left image is sought in the right image thanks to standard 2D DIC technique. The

knowledge of the positions of the cameras with respect to the scene allows then to obtain the

position of each subset centre in the world reference frame (triangulation), which will be added

to the corresponding point cloud. Finally, all point clouds are stitched together to generate

a 3D representation of the reference state of the whole ROI which we denote 𝑆 . Regarding

the deformed state, the procedure is the same, except that the subsets remain defined in the

reference state left image 𝑓𝑖,𝐿 . Thus additional 2D DIC procedures are used to obtain the position

of each subset in both left and right deformed state images 𝑔𝑖,𝐿 and 𝑔𝑖,𝑅 . Then, thanks again to

triangulation, the position of the subset centres in the deformed state 𝑆 ′ are retrieved. Finally, the

displacement𝑈 is obtained as a difference between the two point clouds: 𝑈 = 𝑆 ′ − 𝑆 .

In contrast, in the case of FE-SDIC, in Figure 1(b), no so-called master camera is defined.

Instead, pictures are interrogated at pixel positions corresponding to physical points defined on a

FE mesh of the ROI thanks to projectors (𝑃𝑐)𝑐 (𝑃𝑐 maps a 3D point in the world reference frame

R𝑤 to a 2D point in the camera 𝑐 reference frame). In the shape measurement step based on

reference state images (𝐼 0𝑖 )𝑖 , the position of each physical point is adjusted so that the different

grey levels associated to the projection of this point in each picture match. The best shape 𝑆

minimising the discrepancies over all reference state image pairs is sought. In this context, shape

measurement is an extremely ill-posed problem, as the mesh may slide on the object (Pierré et al.

2017, Figure 3). The cause is that the texture and the mesh are not attached to one another. Then,

the displacement measurement step is performed by adjusting the new position of physical

points so that the grey levels in the deformed state pictures (𝐼𝑖)𝑖 associated to this point match.

However, and unlike the previous step, the minimisation of grey level discrepancy is performed
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on a camera by camera basis only (i.e. registration between images 𝐼𝑖 and 𝐼
0
𝑖 ).

Subset-based SDIC is a robust method as it relies on well-studied 2D image registration

techniques, but in comparison FE-SDIC exhibits two main advantages. The first one is related to

the choice of the measurement kinematic basis. In FE-SDIC, this kinematic basis is the same as

FE analysis, making it straightforward to compare measurements and simulations. Second, in

FE-SDIC the displacement field 𝑈 is directly the solution of a minimisation problem, while in

Subset SDIC, it is computed in a post-processing step using outputs of several minimisation

problems. Formulating the problem as a minimisation with𝑈 as variable allows to easily make

use of a priori knowledge of the sought displacement field (Passieux et al. 2018; Rouwane et al.

2021). With such data, a wide variety of powerful algorithms allows to adjust physical parameters

associated with numerical models (e.g. FEMU, IDIC) (Hild and Roux 2006; Lecompte et al. 2007;

Passieux et al. 2015), densely measure shapes (Colantonio et al. 2020; Dufour et al. 2015; Etievant

et al. 2020) or even identify mode shapes during dynamic tests (Berny et al. 2018b; Passieux et al.

2018).

Yet, SDIC is currently limited to experimental setups where the surface area visible by a

given camera does not change excessively during an experiment. To clarify this point, we will

distinguish, as in (Passieux and Bouclier 2019), the case of small deformations (displacements,

rotations and strains are assumed to be small) and the small-strain or large-deformation one (only

strains are small). The matching of surface areas that were not visible in previous pictures from

the exact same camera is not possible in current SDIC frameworks, thus it is limited to a certain

class of large deformations. Also, effects associated with light and surface pixel sampling (which

are not accounted for) are strongly related to the local normal vector to the surface (Delaunoy

and Pollefeys 2014; Tsiminaki et al. 2019), hence the current framework is rather limited to

small-strain contexts. Overall, this results in the use of SDIC only in small-deformation cases. We

believe this is because SDIC emerged from 2D DIC based on the same algorithms and assumptions,

namely the grey level conservation equation (Horn and Schunck 1981; Lucas and Kanade 1981).

This equation can be seen, in the case of 2D DIC, as a way to inverse a forward problem consisting

in warping a flat picture with a given displacement field. Yet its extension to SDIC, although

practical from an algorithmic standpoint, since it involves only slight modifications of the

routines, is quite far-fetched from a physical and mathematical one. Among others, this results in

the need for different functionals to be minimised in the current FE-SDIC framework (i.e. one

functional for extrinsics calibration and shape measurements and another one for displacement

measurements), but most importantly in the lack of physical understanding. In the current

state-of-the-art, there is indeed no so-called ‘forward problem’ allowing to generate virtual

images at various deformation states under given lighting conditions of structural tests integrated

in a framework (yet methods to generate virtual images to compare measures to a so-called

‘ground truth’ do exist (Balcaen et al. 2017b)). Thus, we cannot compare these predictions with

the observations in actual pictures. As explained by Tarantola (2005), łthe comparison of the

predicted outcome and the observed outcome allows us to ameliorate the theoryž. Therefore, we

believe a unified framework including a rendering model, mapping an ‘intrinsic texture’ (further

details are provided regarding this expression in Section 2) to a grey level is needed in SDIC. This

would allow to rely on an explicit physical modelling that could be further improved instead of

on implicit assumptions.

Interestingly, formulations including rendering models already exist in the Computer Vision

(CV) Community. They are very similar to those used in DIC (probably because DIC emerged from

CV in the 80’s). Not only do they propose a physical model, but they come up with astonishing

results. Among others, these CV formulations encompass multi-view picture frameworks

accounting for simple lighting effects (Birkbeck et al. 2006), frameworks accounting for spatial

sampling (Goldlücke et al. 2014) or even frameworks allowing to retrieve shape, texture and

camera poses without any prior knowledge (Jancosek and Pajdla 2011; Griwodz et al. 2021;

Moulon et al. 2012). Up to the authors knowledge, in the computer vision literature, such

approaches have never been used to track displacement or strain fields. This certainly explains

why such recent works were hardly included as references in related DIC research works. In

this paper, we modestly aim at (i) introducing such formulations to the DIC community and

(ii) proposing a formalism to extend such enhanced computer vision methods to displacement
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measurement. The measurement of displacement fields in such a framework would open the door

to very interesting perspectives such as, for instance, the instrumentation of a twisting sample

(where it is not possible to see a given point in the reference and deformed state images from the

same viewpoint).

The idea is to extend the Global SDIC framework (by relying on FEDIC in this work), in

which a model of the structure is available (that is, a FE mesh herein) while taking advantage of

the strong regularisation allowed by the knowledge of the initial object texture, such as the

one provided by the master reference state image in Subset-based SDIC. To achieve this goal,

we propose in the present work a framework relying on a Textured Digital Twin of the ROI

constituted thanks to a physical modelling of the scene, see Figure 2. In a preliminary step 𝑡0,

Figure 2 Proposed Photometric Stereo Digital Image Correlation (PhDIC)

denoted calibration herein, the object is ‘scanned’ thanks to numerous multi-view pictures (𝐼𝑖)𝑖
allowing to elaborate a refined model of the structure, the Digital Twin, encompassing both a

shape correction field 𝑆 and an albedo 𝜌 (or intrinsic texture). Note that in this step data are not

compared to one another anymore. Instead, the Digital Twin is used as a common thread to

compare pictures with. In this sense, a parallel can be drawn with the work proposed in Digital

Volume Correlation by Leclerc et al. (2015). Then, in the displacement measurement step 𝑡1, the

deformed state images (𝐽 𝑗 )𝑗 are compared to the model and the sought displacement field is

identified. Note that both the number of deformed state pictures and the associated viewpoints may

be different from the reference ones. The position of the specimen and the lighting conditions can

also be different, for instance the calibration can be done outside the testing machine. We call this

framework Photometric Stereo Digital Image Correlation (PhDIC) as both steps rely on the same

photometric error. We denoted the time associated to the displacement measurement step 𝑡1
instead of 𝑡0 + Δ𝑡 as in Figure 1. There are two reasons for that. First, time 𝑡0 may correspond to a

scan of the structure without mechanical loading. Second, the displacement measurement step 𝑡1
can also stand for the positioning of the specimen in the test setup (which may apply loads that

are usually neglected) and camera removal.

This article is structured as follows. We first propose in Section 2 a modelling of the camera

as a sensor converting a surface power density into grey levels (in the same way as it is usually

considered as a projector mapping a 3D point in the scene to a 2D point in the image). This offers

the opportunity to provide a general framework and to show that further assumptions regarding

surface response to lighting and light distribution are needed. Especially, simple models relevant
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in the DIC context can be introduced, namely the Lambertian (surface response) and distant

point light source (light distribution) ones. This allows to build a general unified photometric

functional. Then the Lambertian and distant point light source models are plugged into this

functional. In this section, a particular care is also taken to review some important and delicate

points discussed in CV in a condensed and comprehensible manner for their significance in the

experimental mechanics community.

Next, Section 3 focuses on the photometric calibration phase (shape and albedo measurement)

whereas Section 4 details the photometric displacement measurement phase. In these sections,

we present a practical setup and further assumptions that we made in order to provide a working

algorithm. It is based on the same functional for the extrinsics and shape measurement, and for

the associated displacement measurement. As a first but illustrative example, we consider an

open hole plate subjected to a 90° rigid-body rotation. Such a transformation would be extremely

difficult to capture with usual SDIC approaches while it is direct with our methodology. The

associated results are presented and discussed. This finally brings us to Section 5 were concluding

remarks are provided together with some outlooks.

2 Photometric Digital Image Correlation

In this section we want to develop a photometric functional based on the comparison between

a prediction and an observation, and then discuss some important features of the proposed

framework. Before that, we propose to expose to the reader the general key elements of scene

modelling derived from CV. Hence, readers already familiar with radiometric and photometric

principles can directly jump to Section 2.2.

2.1 From the light source to the grey level value

Here below, we present the irradiance equation and the associated physical considerations. We

first intend to put forward some challenges in computer graphics and rendering (among others).

This general overview is then progressively simplified by explicitly making assumptions that are

commonly implicitly adopted in the DIC community.

2.1.1 General overview

As explained earlier, we wish here to describe a general unified framework for SDIC, based on a

photometric error. By photometric error we mean an error thought as a distance between a

prediction from a model and an observation in a picture. This kind of error can be based on the

image irradiance equation (Horn 1986). Irradiance 𝐼 (or 𝐸) is the amount of light falling on a

surface (power per unit area) while radiance 𝐿 is the amount of light radiated from a surface

(power per unit area per unit solid angle). As discussed by Horn (1986), the slightly more intricate

unit for radiance comes from the fact that a surface can emit different amounts of light depending

on the emission directions. The image irradiance equation states that the radiance 𝐿𝑒 coming

from a point on an object (what we want to model) is proportional to the irradiance 𝐼 at the

corresponding point in the image (what we observe).

To formalise this equation, we denote 𝑥 the pixel coordinates in the image of the associated

3D point 𝑋 in the world reference frame. In this case, the image irradiance equation reads

𝐼 (𝑥) = 𝛼𝐿𝑒 (𝑋, 𝑟 ), (1)

where 𝑟 is the unit vector pointing from 𝑋 to the optical centre of the camera, see Figure 3, and 𝛼 ,

called the throughput (Cohen and Wallace 1993), depends on the 𝑓 -number and the angle formed

by 𝑟 and the optical axis of the camera. However, this dependency of 𝛼 on the angle formed by 𝑟

and the optical axis is usually neglected (Horn 1986) so that 𝛼 is considered constant. In the

following, we will not distinguish the image irradiance from the corresponding grey level value,

as we assume the camera sensor to provide a linear relationship between these two quantities.

The multiplicative constant is thus included in 𝛼 . Note that Equation (1) is fundamentally different

from the grey level conservation equation (Horn and Schunck 1981; Lucas and Kanade 1981).
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Figure 3 Bidirectional Reflectance Distribution Function parameterisation.

Remark This model assumes a homogeneous and transparent medium. Hence the distance from 𝑋 to the

viewpoint was omitted in Equation (1). The dependency with respect to light frequency was also

omitted, as we usually deal with monochrome cameras in DIC.

Before choosing a simplified model for the radiance emitted by a surface under given lighting

conditions (model 𝐿𝑒 (𝑋, 𝑟 )), we will first introduce a more general framework. In the general

case, Horn (1986) explains that the radiance 𝑑𝐿𝑒 emitted from a point depends on the amount of

light falling on it, the irradiance 𝑑𝐸𝑓 , as well as on the irradiance fraction which is reflected per

unit solid angle. The radiance 𝑑𝐿𝑒 also depends on the geometry and light position, as illustrated

by specular reflections. Thus, we can locally parameterise the problem thanks to four degrees

of freedom (dofs): two for the incident light direction (the incident polar and azimuth angles,

respectively 𝜃 𝑓 and 𝜑 𝑓 ) which allow to define a unit incident vector 𝑛𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) and two for the

emission direction (respectively 𝜃𝑒 and 𝜑𝑒 ) which allow to define a unit emission vector 𝑛𝑒 (𝜃𝑒 , 𝜑𝑒).

The definition of these angles with respect to the local normal vector 𝑛(𝑋 ) and an arbitrary vector

belonging to the tangent plane to the surface can be seen in Figure 3. The fraction of incident

light coming from the direction (𝜃 𝑓 , 𝜑 𝑓 ) reflected in the direction (𝜃𝑒 , 𝜑𝑒) is usually denoted

𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝜃𝑒 , 𝜑𝑒) (per unit solid angle) and is called the Bidirectional Reflectance-Distribution

Function (BRDF). For the sake of simplicity, we omit, in 𝑓 and in following developments, the

space dependency of each quantity (with respect to 𝑋 ).

Remark Since we assume that the only way out for incoming energy is to be reflected, and since the

incident light should come from the outside of the surface, both 𝜃𝑒 and 𝜃 𝑓 belong to [0, 𝜋/2], as

shown in Figure 3. Thus, effects such as transmission and subsurface scattering are not accounted

for. For an even more general concept than BRDF which is called Bidirectional Scattering-Surface

Reflectance-Distribution Function (BSSRDF), we refer the interested reader to (Nicodemus et al.

1977).

Hence, the radiance can be written as a function of the irradiance and the BRDF

𝑑𝐿𝑒 (𝜃𝑒 , 𝜑𝑒) = 𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝜃𝑒 , 𝜑𝑒)𝑑𝐸𝑓 (𝜃 𝑓 , 𝜑 𝑓 ), (2)

with

𝑑𝐸𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) = 𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 )⟨𝑛𝑓 (𝜃 𝑓 , 𝜑 𝑓 ), 𝑛⟩︸                          ︷︷                          ︸
Normal component of the radiance

𝑑Ω𝑓 = 𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) cos𝜃 𝑓 sin𝜃 𝑓 𝑑𝜑 𝑓 𝑑𝜃 𝑓︸          ︷︷          ︸
𝑑Ω𝑓

(3)

where 𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) denotes the incident radiance coming from the direction −𝑛𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) and 𝑑Ω𝑓

the solid angle delimited by [𝜃 𝑓 , 𝜃 𝑓 + 𝑑𝜃 𝑓 ] and [𝜑 𝑓 , 𝜑 𝑓 + 𝑑𝜑 𝑓 ]. Thus, the total radiance emitted

by the surface in direction 𝑛𝑒 is given by the integral over all elementary contributions coming

from every single direction:

𝐿𝑒 (𝜃𝑒 , 𝜑𝑒) =

∫ 𝜋/2

𝜃 𝑓 =0

∫ 2𝜋

𝜑𝑓 =0

𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝜃𝑒 , 𝜑𝑒)𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) cos𝜃 𝑓 sin𝜃 𝑓 𝑑𝜑 𝑓 𝑑𝜃 𝑓 . (4)
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Remark Equation (4) is called the reflection equation. In computer graphics, it is called the rendering

equation and a second term in the right-hand side may be included. The latter is an outgoing

radiance in the case where the surface emits light by itself, in addition to the reflection from

incident light. We chose to discard this term as, in structural mechanics, materials generally do

not act as light sources.

At this point, we can observe that the emitted radiance coming from (𝜃𝑒 , 𝜑𝑒) depends on the

contributions of all incident radiances 𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ). Each of these incident radiances is in turn the

solution of the same kind of equation as Equation (4) and so on. This is an infinite-dimensional

problem and further assumptions are needed to be able to model this radiance.

Remark Note the difficulty to define an ‘intrinsic’ texture. The albedo 𝜌 is defined as the ratio of emitted

irradiance over incident irradiance and depends in general on the incident radiance distribution:

𝜌 (Ω𝑓 ,Ω𝑒 , 𝐿𝑓 ) =

∫
Ω𝑓

∫
Ω𝑒

𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝜃𝑒 , 𝜑𝑒)𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) cos𝜃 𝑓 cos𝜃𝑒𝑑Ω𝑓 𝑑Ω𝑒∫
Ω𝑓

𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) cos𝜃 𝑓 𝑑Ω𝑓

, 0 ⩽ 𝜌 ⩽ 1. (5)

2.1.2 The Lambertian model

Most of the time in SDIC, the grey level conservation equation is used. In Global SDIC, whether it

be for shape measurement, where the grey level associated to a physical point is assumed to be

the same in each camera, or for displacement measurement, where the grey level associated to a

physical point is assumed to remain constant in time for a given camera, it relies on a Lambertian

assumption. That is, the incoming light is assumed to be reflected with equal intensity 𝐿𝑒 in all

directions (𝜃𝑒 , 𝜙𝑒) (i.e. ∀(𝑋, 𝜃𝑒 , 𝜙𝑒), 𝐿𝑒 (𝑋, 𝜃𝑒 , 𝜙𝑒) = 𝐿𝑒 (𝑋 )). Obviously, this assumption is not

correct if the motion/rotation of the object is significant for the displacement measurement

step (e.g. if the surface orientation with respect to the light changes). Regarding the shape

measurement one, the grey level conservation equation assumes that the throughput 𝛼 is the

same for all cameras, which may not be the case.

Some works tried to account for surface illumination changes and optical system differences

in cameras. The first step toward this goal in DIC was to use a Zero-Mean Normalised Sum of

Squared Differences cost function as a matching criterion between pictures (Tong 2005). The

same idea was introduced earlier by Faugeras and Keriven (1998) in CV. Because a correction

on the whole ROI was not always sufficient to explain higher residual values in some areas,

local corrections were introduced in SDIC on a finite-element basis (Colantonio et al. 2020) for

instance, or thanks to low-order polynomials (Dufour et al. 2015; Charbal et al. 2020).

Instead of a Lambertian assumption, or unphysical corrections, we use here a Lambertian

model. It follows that 𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝑋, 𝜃𝑒 , 𝜑𝑒) = 𝑓 (𝑋 ) = 𝜌 (𝑋 )/𝜋 (Nicodemus et al. 1977, Appendix C).

From Equation (4), we get

𝐿𝑒 (𝑋 ) =
𝜌 (𝑋 )

𝜋

∫ 𝜋/2

𝜃 𝑓 =0

∫ 2𝜋

𝜑𝑓 =0

𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 , 𝑋 ) cos𝜃 𝑓 sin𝜃 𝑓 𝑑𝜑 𝑓 𝑑𝜃 𝑓 . (6)

Note that 𝜌 is independent of the viewpoint and light direction in the Lambertian model. Thus,

we could refer to it as the intrinsic texture, but we prefer a physical designation: the albedo.

From Equation (6), we can see that further assumptions are required to model the radiance 𝐿𝑒 ,

in particular regarding the incident light distribution 𝐿𝑓 .

2.1.3 Distant point light source

We further assume infinitely distant point light sources. This way, neither the surface power,

nor the direction of the light depend on the position in the scene. These light sources are

parameterised by 𝑠 ∈ J1, 𝑁𝑠K. It is also assumed that indirect illumination (contribution of the

radiance emitted by all other points in the scene to the incident radiance to a point) is negligible

compared to the direct illumination from the light sources. In this case, 𝐿𝑓 does not depend on 𝑋
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and (Horn 1986)

𝐿𝑓 (𝜃 𝑓 , 𝜑 𝑓 ) =

𝑁𝑠∑
𝑠=1

Φ𝑠

𝛿 (𝜃 𝑓 − 𝜃𝑠)𝛿 (𝜑 𝑓 − 𝜑𝑠)

sin𝜃𝑠
(7)

where Φ𝑠 denotes the irradiance and (𝜃𝑠 , 𝜑𝑠 ) the direction associated to the light source 𝑠 , see

again Figure 3. Finally, we get

𝐿𝑒 (𝑋 ) =
𝜌 (𝑋 )

𝜋

𝑁𝑠∑
𝑠=1

Φ𝑠 cos𝜃𝑠 =
𝜌 (𝑋 )

𝜋

𝑁𝑠∑
𝑠=1

Φ𝑠 ⟨𝑛𝑓 (𝜃𝑠 , 𝜑𝑠), 𝑛(𝑋 )⟩. (8)

In this case, Equation (1) becomes

𝐼 (𝑥) = 𝛼𝐿𝑒 (𝑋 ) = 𝜌 (𝑋 )

𝑁𝑠∑
𝑠=1

𝑙𝑠 ⟨𝑛𝑓 (𝜃𝑠 , 𝜑𝑠), 𝑛(𝑋 )⟩, with 𝑙𝑠 =
𝛼Φ𝑠

𝜋
. (9)

Remark From Equation (9), (Horn 1986, Lightness & Color) and (Woodham 1980), it is possible to identify

𝜌 (𝑋 )𝑙1 with one single light 𝑙1 but at least three different non-coplanar lighting conditions (three

non-coplanar vectors 𝑛𝑓 ). An object in the scene of which the albedo is known allows to evaluate

𝑙1 and thus to retrieve 𝜌 (𝑋 ). It is important to stress that varying lighting conditions is essential

to estimate the albedo (Mélou et al. 2018), since papers in SDIC pretend that it is possible to

recover a so-called intrinsic texture, independent of the experimental setup, with one single light

position (Dufour et al. 2015; Vitse et al. 2021).

Remark Via Equation (9), we can make explicit the assumptions on which grey level conservation

equation in DIC relies. In the displacement measurement step, it assumes that the scalar product

⟨𝑛𝑖 (𝜃𝑠 , 𝜑𝑠), 𝑛(𝑋 )⟩ remains constant over time. This results in constraining DIC to operate in

setups where displacements and strains are rather small.

Of course, more sophisticated parametric models can be derived in the same way, accounting

for an ambient lighting term and/or specular reflections (Birkbeck et al. 2006; Yu et al. 2004).

Now that both a substitute to the grey level conservation equation and a way to model the

scene radiance have been introduced, the corresponding framework developed for SDIC can be

presented.

2.2 Photometric functional

Based on the work by Goldlücke et al. (2014), we consider a set of 𝑁𝑐 cameras. Each camera takes

𝑁𝑖 images of the ROI Ω̃ (typically a surface of R3). That is, we consider multi-view pictures of Ω̃.

The image 𝑖 ∈ J1, 𝑁𝑖K taken by the camera 𝑐 ∈ J1, 𝑁𝑐K is denoted

𝐼𝑐𝑖 : Π𝑐
𝑖 → R

𝑥 ↦→ 𝐼𝑐𝑖 (𝑥)
(10)

where Π𝑐
𝑖 stands for the image plane. Note that Π𝑐

𝑖 depends on 𝑖 . We adopt a general formulation

where camera positions may change. Some of the introduced notations are presented in Figure 4

for better understanding. 𝑃𝑐𝑖 is the camera model associated to Π
𝑐
𝑖 , mapping a 3D point 𝑋 from

the physical spaceW to 2D pixel coordinates 𝑥 in the image plane Π𝑐
𝑖 :

𝑃𝑐𝑖 :W × P → Π
𝑐
𝑖

(𝑋, 𝑝𝑐𝑖 ) ↦→ 𝑥 = 𝑃𝑐𝑖 (𝑋, 𝑝
𝑐
𝑖 )

(11)

where P denotes the space of camera parameters, whose definition depends on the chosen camera

model. Usually in SDIC, it contains at least the 6 extrinsic parameters (three rotations and three

translations) defining the rigid-body transformation between the world reference frame R𝑤 and

the camera reference frame R𝑐 . It also contains at least four intrinsic parameters (focal/sampling

parameters (𝑓𝑥 , 𝑓𝑦), optical centre pixel coordinates (𝑢0, 𝑣0)). The other possible parameters are
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distortion parameters (skew and/or radial, prismatic and decentring distortions). In the following,

to reduce the amount of notation, we will simply write 𝑃𝑐𝑖 (𝑋 ) instead of 𝑃𝑐𝑖 (𝑋, 𝑝
𝑐
𝑖 ). We also

define the silhouettes 𝑆𝑐𝑖 = 𝑃𝑐𝑖 (Ω̃) ∩ I
𝑐
𝑖 = 𝑃𝑐𝑖 (Ω̃

𝑐
𝑖 vis) where I

𝑐
𝑖 (⊂ Π

𝑐
𝑖 ) stands for the bounded

domain of Π𝑐
𝑖 corresponding to the image. Ω̃𝑐

𝑖 vis denotes the visible part of Ω̃ in the picture 𝑖

taken by camera 𝑐 such that there is a one-to-one relation between Ω̃
𝑐
𝑖 vis and 𝑆

𝑐
𝑖 thanks to the

projection map 𝑃𝑐𝑖 .

Remark Strictly speaking, in Equation (10), 𝐼𝑐𝑖 is defined over I𝑐𝑖 . Yet, as images are usually interpolated

in DIC, this makes it possible to define 𝐼𝑐𝑖 over the whole image plane Π𝑐
𝑖 .

Finally, we need to introduce theoretically the backprojection operator

𝛽𝑐𝑖 : 𝑆
𝑐
𝑖 → Ω̃

𝑐
𝑖 vis ⊂ Ω̃

𝑥 ↦→ 𝑋,
(12)

which denotes the inverse function of the restriction of 𝑃𝑐𝑖 to Ω̃
𝑐
𝑖 vis. As of now, we note that this

operator is only introduced for the sake of consistency in our theoretical developments but will

not be used in our implementation.

Figure 4 Diagram introducing different applications and notations used herein. Note that the sphere will not be
used in this study for the construction of the light model.

Retrieving Ω̃ on the sole basis of Equation (1) is an ill-posed problem, similar to the

measurement of a displacement field based on the grey level conservation equation between a

reference and a deformed state image. Equation (1) does not account indeed for spatial averaging

(pixelation), that is we have a finite set of equations. On top of that, grey level values, which

are the result of the sum of an integral of the irradiance over each photosensor together with

noise, are quantised. The existence of a solution is thus not guaranteed. The usual way to

deal with these issues is to reformulate the problem (whether it be shape measurement or

displacement measurement) as a functional minimisation. Thus, a norm of the residual associated

to Equation (1) is integrated and the functional is built up by adding the integrals of all images

together. Finally, the configuration Ω̃ is sought in a smaller space (finite dimension because of

the finite set of equations). Based on CV literature (Faugeras and Keriven 1998; Soatto et al.

2003; Goldlücke et al. 2014), we pretend that the right place to compute these integrals are the

silhouettes 𝑆𝑐𝑖 . The idea is that the relevant quantum of information is the pixel. The unit weight

associated to the residual norm should thus be assigned in the image plane. We will discuss that

later on (see Section 2.3). According to these considerations, the photometric functional denoted

by 𝐹 reads

𝐹 =

𝑁𝑐∑
𝑐=1

𝑁𝑖∑
𝑖=1

∫
𝑆𝑐𝑖

(𝐼𝑐𝑖 (𝑥) − 𝛼
𝑐𝐿𝑒 (𝛽

𝑐
𝑖 (𝑥), 𝑟

𝑐
𝑖 (𝛽

𝑐
𝑖 (𝑥))))

2𝑑𝑥. (13)

Journal of Theoretical, Computational and Applied Mechanics
�� August 2022 �� jtcam.episciences.org 9

�� 32

https://jtcam.episciences.org


Raphaël Fouque et al. Photometric DIC: a unified framework for global Stereo Digital Image Correlation

Remark For the sake of simplicity, we assumed in Equation (13) that images (𝐼𝑐𝑖 ) provide equally reliable

data. Otherwise, residuals may be scaled appropriately (as in (Mathieu et al. 2015, noise variance)

for instance).

Since 𝑆𝑐𝑖 = 𝑃𝑐𝑖 (Ω̃
𝑐
𝑖 vis), we can then express this functional over the visible parts of the ROI

Ω̃
𝑐
𝑖 vis thanks to integrations by substitutions, in the same way as Goldlücke et al. (2014):

𝐹 =

𝑁𝑐∑
𝑐=1

𝑁𝑖∑
𝑖=1

∫
Ω̃
𝑐
𝑖 vis

(J𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 (𝑋 )) (𝐼

𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 (𝑋 ) − 𝛼

𝑐𝐿𝑒 (𝑋, 𝑟
𝑐
𝑖 ))

2𝑑𝑋, (14)

where

J𝑐
𝑖 = |det(∇𝑃𝑐𝑖 ) | ◦ 𝛽

𝑐
𝑖 = |det(∇𝛽

𝑐
𝑖 ) |
−1

= ∥𝜕𝑢𝛽
𝑐
𝑖 × 𝜕𝑣𝛽

𝑐
𝑖 ∥
−1

2 (15)

and 𝑥 = (𝑢, 𝑣)⊤. det(∇𝑃𝑐𝑖 ) and det(∇𝛽
𝑐
𝑖 ) denote the area elements of the corresponding projection

maps and ◦ obviously stands for the composition between two applications. Note that, as

in (Goldlücke et al. 2014), we denoted here the differential (Jacobian matrix) in the same way as

the gradient operator, for the sake of notational simplicity.

Remark For a simpler understanding of the integration by substitution from Equation (13) to Equation (14),

note that J𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 could be substituted by |det(∇𝑃𝑐𝑖 ) | in Equation (13). Yet, Equation (13) actually

was preferred to make a parallel with the field of CV where the weighting defined in the images

is introduced, i.e. J𝑐
𝑖 .

In a general framework, computing J𝑐
𝑖 is complex and costly. For this reason, and by

assuming a pinhole camera model without distortions, we give an analytical expression for this

area element:

J𝑐
𝑖 =

𝑓 𝑐𝑥 𝑓
𝑐
𝑦

(𝑍𝑐
𝑐,𝑖)

2

∥𝑂𝑐
𝑐,𝑖𝑀 ∥2

|𝑍𝑐
𝑐,𝑖 |

|⟨𝑛, 𝑟𝑐𝑖 ⟩|, (16)

where 𝑋 = 𝑂𝑤𝑀 , 𝑂𝑤 and 𝑂𝑐
𝑐,𝑖 respectively denote the world reference frame origin and the

camera reference frame origin associated to the picture 𝑖 taken by camera 𝑐 , 𝑍𝑐
𝑐,𝑖 stands for the Z

coordinate of point 𝑋 in the camera reference frame associated to the picture 𝑖 taken by camera 𝑐 ,

and 𝑟𝑐𝑖 = −𝑂𝑐,𝑖𝑀/∥𝑂
𝑐
𝑐,𝑖𝑀 ∥2, see Figure 4. Be careful that 𝑐 as a subscript denotes a vector or a

point associated to a camera reference frame R𝑐 whereas 𝑐 as a superscript is an index 𝑐 ∈ J1, 𝑁𝑐K.
Expression (16) can be found in the CV literature (Soatto et al. 2003; Delaunoy and Pollefeys 2014).

However, no proof is given in the literature reviewed. For this reason, a detailed demonstration

and physical interpretation of this equation are given in Appendix A.

We can then integrate over the whole observed ROI Ω̃ introducing a visibility function 𝑉 𝑐
𝑖 :

𝐹 =

𝑁𝑐∑
𝑐=1

𝑁𝑖∑
𝑖=1

∫
Ω̃

𝑉 𝑐
𝑖 (𝑋 ) (J

𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 (𝑋 ))

(
𝐼𝑐𝑖 ◦ 𝑃

𝑐
𝑖 (𝑋 ) − 𝛼

𝑐𝐿𝑒 (𝑋, 𝑟
𝑐
𝑖 )
)2
𝑑𝑋, (17)

with:

𝑉 𝑐
𝑖 (𝑋 ) =

{
1 if 𝑃𝑐𝑖 (𝑋 ) ∈ 𝑆

𝑐
𝑖 and 𝛽𝑐𝑖 ◦ 𝑃

𝑐
𝑖 (𝑋 ) = 𝑋

0 elsewhere.
(18)

The condition 𝑃𝑐𝑖 (𝑋 ) ∈ 𝑆
𝑐
𝑖 makes sure that the projection of 𝑋 lies in the image frame I𝑐𝑖 while

the condition 𝛽𝑐𝑖 ◦𝑃
𝑐
𝑖 (𝑋 ) = 𝑋 ensures that the considered point is not hidden due to self-occlusion

for instance.

Remark J𝑐
𝑖 and 𝑉 𝑐

𝑖 naturally appear when the residual is defined with unit weight in the images, no

further assumptions are needed for this weighting scheme. This is a direct consequence of the

adopted variational formulation (Goldlücke et al. 2014). Further discussions regarding this matter

are presented in Section 2.3.
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At this point, we should note that the residual is computed over what is observed in the

images. Thus, what is observed is a deformed (or uncalibrated) state Ω̃ in Equation (17). Yet, Ω̃ is

one of the unknowns which should be described. Considering that a model is available, a simple

way to do so is to introduce the discrepancy map 𝐷 . In the standard SDIC framework (Pierré et al.

2017), 𝐷 stands for either a shape correction field 𝑆 , or a displacement field𝑈 defined on the

reference configuration Ω (which is consistent with the solid mechanics formalism) standing

respectively for the nominal geometry or the undeformed state. Usually, this discrepancy map

belongs to the linear span of a set of chosen shape functions (e.g. FE shape functions (Pierré et al.

2017), splines (Dufour et al. 2015)), but it should be stressed that no prior assumptions are needed

regarding the discrepancy map which still belongs to an infinite-dimensional space at this point.

We define

𝜙𝐷 : Ω ⊂ W → Ω̃ ⊂ W

𝑋 ↦→ 𝑋 + 𝐷 (𝑋 )
(19)

and we denote Ω̃ = 𝜙𝐷 (Ω), where Ω stands for the ROI in the reference state. Finally, we can

express the functional over the reference state Ω, which actually makes sense in the context of

solid mechanics, relying on Lagrangian approaches:

𝐹=
∑
𝑖,𝑐

∫
Ω

[|det(∇𝜙𝐷 ) | ((J
𝑐
𝑖 ◦𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 )◦𝜙𝐷 ] (𝑋 )

(
𝐼𝑐𝑖 ◦𝑃

𝑐
𝑖 ◦𝜙𝐷 (𝑋 )−𝛼

𝑐𝐿𝑒 (𝜙𝐷 (𝑋 ),𝑟
𝑐
𝑖 ◦𝜙𝐷 (𝑋 ))

)2
𝑑𝑋 . (20)

Remark ∇𝜙𝐷 does correspond to the gradient of the mechanical transformation.

Note that with this method, the functional used to identify a shape correction 𝑆 or a

displacement field 𝑈 is exactly the same. This offers a consistent, unified formalism throughout

the entire framework. Usually in Global SDIC, the functional associated to the extrinsics and

shape measurement problem enforces in a weak way that the grey level associated to a physical

point should be the same for all cameras, see Figure 1(b). Thus, it consists of a sum over all

camera pairs of the residual norm squared, while the functional associated to the displacement

measurement is built as a sum of another kind of residual norm squared. This other residual is

based on the conservation over time of the grey level associated to a given point on a camera by

camera basis only (Pierré et al. 2017).

Introducing the Lambertian reflectance and the distant point light source models from

Section 2.1 in Equation (20) allows finally to write a functional 𝐹 taking into account a Lambertian

model:

𝐹 =

∑
𝑖,𝑐

∫
Ω

[|det(∇𝜙𝐷 ) | ((J
𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 ) ◦ 𝜙𝐷 ] (𝑋 )

×
(
𝐼𝑐𝑖 ◦ 𝑃

𝑐
𝑖 ◦ 𝜙𝐷 (𝑋 ) − 𝜌 ◦ 𝜙𝐷 (𝑋 )

𝑁𝑠∑
𝑠=1

𝑙𝑐𝑠,𝑖 ⟨𝑛𝑓 (𝜃𝑠,𝑖 , 𝜑𝑠,𝑖), 𝑛 ◦ 𝜙𝐷 (𝑋 )⟩
)2
𝑑𝑋 . (21)

It also offers the possibility to make explicit an often implicit assumption in DIC. If the pattern

deposited on the ROI is assumed to exactly follow the deformation of the specimen, and does not

depend on the displacement or strain level, we can write

∀𝑋 ∈ Ω, 𝜌 ◦ 𝜙𝐷 (𝑋 ) = 𝜌 (𝑋 ) (22)

where 𝜌 and 𝜌 respectively stand for the albedos in the reference and deformed states. Eventually

the Photometric DIC (PhDIC) functional reads, in the case of a Lambertian BRDF and distant

point light sources:

𝐹 =

∑
𝑖,𝑐

∫
Ω

[|det(∇𝜙𝐷 ) | ((J
𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 ) ◦ 𝜙𝐷 ] (𝑋 )

×
(
𝐼𝑐𝑖 ◦ 𝑃

𝑐
𝑖 ◦ 𝜙𝐷 (𝑋 ) − 𝜌 (𝑋 )

𝑁𝑠∑
𝑠=1

𝑙𝑐𝑠,𝑖 ⟨𝑛𝑓 (𝜃𝑠,𝑖 , 𝜑𝑠,𝑖), 𝑛 ◦ 𝜙𝐷 (𝑋 )⟩
)2
𝑑𝑋 . (23)
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2.3 Discussions

As already evoked, it seems logical to compute the discrepancy between images and the model

in the image domain, as the pixel stands for the elementary unit of information. Besides this

heuristic justification, the weighting term J𝑐
𝑖 , that naturally arises when substituting Ω̃ for 𝑆𝑐𝑖

between Equations (13) and (17), is a key driver for defining 𝐹 with unit weight in the images. It

accounts for the foreshortening of the surface in input views (e.g. a surface is well described in a

picture when viewed straight on). Hence, this term acts as an automatic regularisation of the

variational problem while making the problem intrinsic, i.e. independent of the parameterisation

chosen for the ROI. This is clearly established in CV (Goldlücke et al. 2014; Faugeras and Keriven

1998; Soatto et al. 2003).

Also, the weighting term J𝑐
𝑖 would allow to define a consistent framework with multiple

cameras with different resolutions and distances with respect to the specimen since it accounts

for the spatial sampling of the surface, as shown in Appendix A with the distance 𝑍𝑐
𝑐,𝑖 and the

focal lengths 𝑓 𝑐𝑥 and 𝑓 𝑐𝑦 in the case of a pinhole camera model. No arbitrary relative weights

would be needed for more resolved or near-field cameras as this formulation intrinsically defines

a weighting scheme through J𝑐
𝑖 .

In Equation (23), the weighting term [|det(∇𝜙𝐷 ) | ((J
𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 ) ◦ 𝜙𝐷 ] alone explains why

SDIC is restricted to a certain class of displacements and strains. Indeed, in most SDIC framework,

both terms are assumed to be the same for all pictures and to remain constant over time.

Thus, it means |det(∇𝜙𝐷 ) | ∼ 1 and ((J𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 ) ◦ 𝜙𝐷 ∼ (J

𝑐
𝑖 ◦ 𝑃

𝑐
𝑖 )𝑉

𝑐
𝑖 (i.e. 𝑋 + 𝐷 (𝑋 ) ∼ 𝑋 or

equivalently 𝜙𝐷 ∼ 𝐼 where 𝐼 denotes the identity function).

As stated above, the use of a model enables us to define a functional based on the sum of actual

errors, that is the difference between a model and an observation. Thus the uncertainty associated

to the identified discrepancy map 𝐷 (standing equivalently for a displacement field𝑈 or a shape

correction field 𝑆) in PhDIC would be reduced compared to the usual SDIC framework. This

explains why some authors aimed at forming a substitute reference state image, in applications

where the level of confidence in this reference is low for instance, by taking a mean over all

available pictures (Berny et al. 2018a).

Finally, in the present work, and in contrast to the usual DIC framework, the camera model

encompasses not only a projection model, but also a model to define the grey level value

depending on the amount of energy received by the camera sensor. This requires the definition of

a radiance model for the experimental setup encompassing both a light model and a Digital Twin

of the structure. For a Lambertian surface, the albedo 𝜌 depends only on the position 𝑋 on the

structure and a Textured Digital Twin based on physical quantities can be defined.

3 Intrinsics, extrinsics, shape and albedo measurements

In the following we propose a practical application on real images of the formalism presented in

Section 2. In the present section, we showcase the calibration procedure prior to displacement

measurement, the latter being, in turn, described in Section 4.

Before being able to perform a displacementmeasurement thanks to SDIC, several prerequisites

must first be fulfilled (Pierré et al. 2017, Figure 2). The cameras should be calibrated (intrinsics

and positions relative to one another), and the extrinsics and shape should be measured (position

of the model with respect to the camera rig and corrections between nominal and actual shape).

The difficulty in this prior phase concerns the shape measurement problem which is extremely

ill-posed (see for instance Pierré et al. 2017, Figure 3). Regularisation strategies must therefore be

adopted to circumvent this issue. They usually consist in restricting the subspace in which the

shape is sought (whether it be in a strong or a weak sense) (Colantonio et al. 2020; Etievant et al.

2020; Benning and Burger 2018; Chapelier et al. 2021).

Another path that could be followed is an increase of the amount of available data (Passieux

et al. 2015), but as detailed by Goldlücke et al. (2014), obtaining numerical schemes which scale

favourably with the number of cameras is not straightforward (in the case of FE-SDIC, it scales

as 𝑁 2
𝑐 as each picture has to be compared with every other one). This may explain why this

possibility has not been fully investigated in SDIC yet.
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3.1 Setup

In the present work, a single camera (𝑁𝑐 = 1) was used to take multi-view pictures of a rectangular

plate with a circular hole, see Figure 5(a). The specimen was 20 cm long, 2.35 cm wide and 6mm

(a) Example of an input image used for the shape and albedo

scan. Superimposed blue dots stand for the light calibration

points. The world reference frame is shown in orange. neither

of the two were present in the original picture.

(b) Image positions relative to the coupon. The mesh

was enlarged for reasons of visibility and thus sizes

and distances are not to scale.

Figure 5 Calibration, shape and albedo measurement setup.

thick, while the diameter of the bore was 7mm. A classic black and white pattern was created

by spraying paint on the surface of the sample. A Jai GO-5000C-USB 5 Megapixel camera and

a 25mm macro lens were used. The distance between the sample and the camera was about

1m. The spatial sampling provided by the pictures was about 8 pixels per mm. Also, a single

halogen light was placed right behind the camera so that a point visible by the camera was lit as

well. The beam was attached on a custom calibration target composed of 8 points printed on an

A4 sheet. The target was then fixed on a turntable allowing to take 360-degree pictures of the

coupon, as indicated in Figure 5(b). Let us stress that, with such a setup, the direction of the light

with respect to the beam changes for each picture, while remaining the same in the camera

reference frames. Also, the turntable was only a convenient way to take multi-view pictures of

the specimen. It served no metrological purpose. As described below, camera poses were rather

identified thanks to the target.

A classic photogrammetric calibration (Garcia 2001) was performed on the pictures containing

both the coupon and the target thanks to an in-house calibration software. Usually, at the end of

this step, the camera intrinsic parameters are identified and saved but the relative position of the

target with respect to the camera, which is also one of the identified quantities, is discarded. Here,

we use this knowledge to initialise the extrinsic and shape measurement procedure since it allows

to directly estimate the pose of the images with respect to the coupon which is assumed to be

fixed in the target reference frame.

We now place ourselves in a SDIC Finite-Element framework (Passieux 2018). A perfect CAD

model of the specimen is first meshed using T3 elements, see Figure 5(b). The typical size for

elements was 5mm but 2mm-elements were used for mesh refinement care around the hole. The

hole inner surface was not meshed.

Remark Let us underline at this stage that, since our method belongs to the class of global DIC approaches,

the developed formalism is generic enough to incorporate any geometrical and kinematic

description. In particular, a CAD-compatible discretisation made of splines could be used to

perform the SDIC measurements (see, e.g., (Réthoré et al. 2010; Dufour et al. 2015; Dufour et al.

2016)), which would have the interest to establish a full link between the geometrical description

in CAD, measurement, and simulation using IsoGeometric Analysis (IGA) (Hughes et al. 2005). In

addition, this would enable to naturally regularise the underlying measurement problems since it

involves reduced solution search spaces (Colantonio et al. 2020; Chapelier et al. 2021). However,
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we decided to consider a FE mesh as the geometrical input in this work since it remains the

common practice in the field. We actually adopt the point of view of the experimenter who starts

with a FE mesh provided by the analysts and who needs to perform a measurement using this FE

mesh to communicate with standard FE-based simulation. Finally, as for regularisation, let us

stress that our framework increases the number of data with the multi-view setup so it can be

used with a rather fine FE mesh while alleviating the problem ill-posedness.

3.2 Assumptions

Since here we only focus on shape measurement, we assume that the available FE model allows

to consider only slight corrections 𝐷 , see Equation (19), compared to the specimen characteristic

length; in other words, the true shape is expected to be close to the nominal shape of the specimen.

In this case, quantities in Equation (23) can be computed on the reference state geometry:

𝑛(𝑋 + 𝐷 (𝑋 )) ∼ 𝑛(𝑋 ), det(∇𝜙𝐷 ) ∼ 1 and ((J𝑖 ◦ 𝑃𝑖)𝑉𝑖) ◦ 𝜙𝐷 ∼ (J𝑖 ◦ 𝑃𝑖)𝑉𝑖 . (24)

This simplifies the formulation and allows to compute once and for all the normal field and the

weighting term on the reference geometry.

On top of that, we will assume that the only light contribution comes from the light source

mentioned in Section 3.1 (thus we omit the index 𝑠 in the following). We further consider that for

each picture 𝑖 ∈ J1, 𝑁𝑖K, the light can be modelled as an infinitely distant point light source with a

vector 𝑛𝑓 (𝜃𝑖 , 𝜑𝑖) given by the 𝑧-vector of the camera reference frame associated to picture 𝑖 : 𝑍𝑐,𝑖

(in our convention, 𝑍𝑐,𝑖 is the unit vector colinear with the optical axis and pointing from the

scene towards the camera, see Figure 4). Hence, for image 𝑖 , Equation (9) becomes

𝐼𝑖 (𝑥) = 𝜌 (𝑋 )𝑙𝑖 ⟨𝑍𝑐,𝑖 , 𝑛(𝑋 )⟩. (25)

This infinitely distant point light source assumption is valid if the size of the coupon is negligible

with respect to the distance between the coupon and the light, which was the case here (ratio of

approximately one order of magnitude).

We further assume that the camera can be well described by a pinhole camera model, without

distortions. This assumption, which is practically true with the optical system used in this work,

comes with the benefit to have an analytical expression for J𝑖 (see Section 2.2) which can be

computed exactly (see Appendix A) and

J𝑖 =
𝑓𝑥 𝑓𝑦

𝑍 2
𝑐,𝑖

∥𝑂𝑐,𝑖𝑀 ∥2

|𝑍𝑐,𝑖 |
|⟨𝑛, 𝑟 𝑖⟩|. (26)

Remark The interest of the linear model is that it allows to express a closed-form solution for J𝑖 whereas

it would be a challenge with a non-linear model. However, non-linear camera models can be used

straightforwardly for the practical implementation of the method. The above closed-form of J𝑖
(exact for a pinhole model) would then be a correct first order approximation. In the examples,

we used a pinhole model to preserve the homogeneity of the paper. In addition, a pinhole model

was considered łpractically true" since the reprojection errors estimated after calibration with

and without non-linear distortions were approximately the same. A last benefit associated to the

pinhole camera model is the smaller number of parameters and thus the need for a smaller

number of calibration pictures.

As the light and camera are close to each other, the size of the coupon is also negligible with

respect to the distance between the coupon and the camera. We can thus further simplify the

weight J𝑖 . Indeed ∀(𝑋,𝑋 0) ∈ (Ω̃𝑖 vis)
2, ∥𝑂𝑐,𝑖𝑀 (𝑋 )∥2 ∼ |𝑍𝑐,𝑖 (𝑋 ) | ∼ |𝑍𝑐,𝑖 (𝑋 0) | and, since there is

only one camera, we do not need to consider the factor 𝑓𝑥 𝑓𝑦/𝑍
2
𝑐,𝑖 and may take J𝑖 = |⟨𝑛, 𝑟 𝑖⟩|, as

in (Birkbeck et al. 2006).

One of the delicate tasks in our framework is to compute in practice the visibility function,

since its value at a point 𝑋 depends on the camera position and orientation but also on the

model geometry. Here, since the coupon is a convex shape (notwithstanding the hole) we

propose to assess the value of 𝑉𝑖 (𝑋 ) based on the sign of ⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩. In addition, since
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|⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩| is equal to J 𝑖 ◦𝑃𝑖 (𝑋 ), we can simplify the expression of the weighting as follows:

[(J 𝑖 ◦ 𝑃𝑖)𝑉𝑖] (𝑋 ) = (⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩)
+, where (·)+ denotes the positive part function. We recall

at this stage that the visibility function is only introduced to say that we do not integrate the

residual in the parts of the specimen that are not well seen by the camera.

Since the camera extrinsics (with respect to the coupon) have already been calibrated, we

know the positions of the images relative to one another. Thus we can consider that we do not

need to estimate each image pose with respect to the coupon but rather the position of the

coupon (only 6 parameters) with respect to the virtual camera rig formed by the pictures (see

Figure 5(b)). Ultimately, the functional to be minimised reads

𝐹 (𝑝ext0, 𝑆, 𝜌, (𝑙𝑖)𝑖) =

𝑁𝑖∑
𝑖=1

∫
Ω

(⟨𝑛, 𝑟 𝑖⟩)
+(𝑋 ) (𝐼𝑖 ◦ 𝑃𝑖 (𝑋 + 𝐷 (𝑋 )) − 𝜌 (𝑋 )𝑙𝑖 ⟨𝑍𝑐,𝑖 , 𝑛(𝑋 )⟩)

2𝑑𝑋, (27)

which is very close to the functional used by Birkbeck et al. (2006). 𝑝ext
0

denotes here the extrinsic

parameters of image 0 with respect to the coupon (all other images are then positioned through

the photogrammetric calibration). Here 𝐷 is the sum of the shape correction field 𝑆 and the

rigid-body displacement𝑈 ext associated to 𝑝ext0 (𝐷 = 𝑆 +𝑈 ext).

Now that all required assumptions have been clearly stated and expressed in mathematical

terms, it is possible to define the process used to minimise this functional.

3.3 Discretisation and interpolation

In order to compute the integrals in Equation (27) for instance, the specimen surface is discretised

via integration points and the integral over the physical domain is rewritten as a sum over all

these integration points. The idea is to define integration points once and for all in the physical

domain following the same strategy as in (Pierré et al. 2017, Figure 5d), where as many integration

points as the number of pixels in a finite-element are used. There is however a slight difference

because of our multi-view setup. Depending on the image used to observe it, the number of

pixels in an element can be very different. For this reason, we decided to define an integration

point density 𝑑 in points/mm. The number of points along each direction of our T3 elements was

then defined as the product of the density with the associated edge length. To choose the value

for the density, we used the pictures where the greatest number of pixels was reached for a given

physical area. That is, we made the opposite choice to Dufour et al. (2015) where the coarsest

mapping is used. In our case, this led us to choose 𝑑 = 8 points/mm.

To avoid undesirable oscillations at the free edges of the specimen (edges that belong to only

one element), we removed integration points closer than 𝜖 to these edges (Baconnais et al. 2020).

In this work the chosen distance was 𝜖 = 0.5mm.

Regarding both picture subpixel interpolation and gradient computation, a regular bi-cubic

spline interpolation was used.

The FE discretisation is performed through the shape functions 𝑁𝑘 associated to each dof 𝑑𝑘
such that

𝑁𝑘 :Ω → R

𝑋 ↦→ 𝑁𝑘 (𝑋 ),
(28)

with the condition ∀𝑋 ∈ Ω, 𝐷 (𝑋 ) =
∑

𝑘 𝑁𝑘 (𝑋 )𝑑𝑘 = 𝑁 (𝑋 )𝑑 .

Remark An important speedup was obtained by computing the integrals only over Ω𝑖vis (making use of

the visibility function to exclude the integration points with zero weight).

3.4 Minimisation strategy

The process that we used to minimise (27) was a fixed-point algorithm consisting in an alternating

optimisation algorithm. The reason for that is the problem ill-posedness. In addition to the usual

sliding modes (Pierré et al. 2017), one should also be aware of the bas-relief ambiguities. We refer

the interested reader to (Belhumeur et al. 1999) explaining (for orthographic projection models

though) that a surface object is indistinguishable from a generalised bas-relief transformation of

the geometry and an appropriate scaling of the albedo.

Journal of Theoretical, Computational and Applied Mechanics
�� August 2022 �� jtcam.episciences.org 15

�� 32

https://jtcam.episciences.org


Raphaël Fouque et al. Photometric DIC: a unified framework for global Stereo Digital Image Correlation

Before describing in detail the way it was implemented, we describe the search directions we

used and how we managed to minimise with respect to each of these directions.

3.4.1 Extrinsics and shape

To minimise 𝐹 with respect to extrinsics and shape, the extrinsic displacement field𝑈 ext and the

correction field 𝑆 were sought in subspaces of lower dimension than the linear span of the shape

functions associated to the FE mesh. A Gauss-Newton iterative minimisation scheme together

with a Ritz-Galerkin reduced order method were used. Both 𝑆 and𝑈 ext were written as a linear

combination of elementary displacement fields, that is a treatment similar to (Colantonio et al.

2020, Eqs. (4) and (5)).

Extrinsics One difficulty with this approach is that it is not straightforward to write the

coupon rigid-body displacement as a linear combination, as rotations involve sine and cosine

functions of rotation angles. To circumvent this issue, we used infinitesimal rotations around the

centre of the coupon (the position is assumed to be well initialised). From an implementation

point of view, we write𝑈 ext = 𝑁 𝑅ext𝑝
ext
0 where 𝑝ext0 collects the extrinsics.

Shape It is common to measure the shape correction along the normal at the nodes of the

mesh (Colantonio et al. 2020; Pierré et al. 2017; Chapelier et al. 2021). Defining the normal at a

node is not straightforward, and it is usually done by computing the mean over the normals

of neighbouring elements. This definition is satisfactory for nodes located in the bulk of the

surface, it is not when considering nodes located on an edge or a corner. In this work, we used a

k-means clustering algorithm (Jiawei et al. 2000) to be able to detect nodes where two (edge) or

even three (corner) different dofs were needed to consistently measure the shape. We defined

a maximum value for the half-angle of the cone circumscribed to all the normals of a cluster.

For each node, a 𝑘-means clustering algorithm was called with only one cluster over the set of

normals of neighbouring elements. Then the number of clusters was increased until either there

were three clusters or in each cluster the angle formed by all normals and the cluster centre was

less than the maximum defined half angle. Finally, the node was affected the cluster centres as

dofs. Recapitulating, we end up, as outputs of the k-means clustering strategy, with three types of

nodes: those that lie within the face and have one dof, those that are on an edge to which we

attribute two dofs in the two perpendicular directions of the edge, and those that are located on a

vertex that have three dofs. With such a parametrisation, we did not encounter instabilities in our

numerical tests. Note finally that, following Section 3.2, the normal will not be updated during

the minimisation algorithm. From a practical point of view, we can write 𝑆 = 𝑁 𝑅shape𝑠 , where

𝑅shape gathers all the required information.

Gauss-Newton algorithm Tominimise 𝐹 with respect to extrinsics and shape, a Gauss-Newton

algorithm was used (Pierré et al. 2017). The Gauss-Newton update at each iteration results from

the linear system

𝐻𝐷𝑑𝐷 = 𝑏PhDIC (29)

with




𝐻𝐷 =

𝑁𝑖∑
𝑖=1

∫
Ω

(⟨𝑛, 𝑟 𝑖⟩)
+𝑁⊤

[
(∇𝑃𝑖 (∇𝐼 𝑖 ◦ 𝑃𝑖)) (∇𝑃𝑖 (∇𝐼 𝑖 ◦ 𝑃𝑖))

⊤
]
◦ 𝜙𝐷𝑁

𝑏PhDIC =

𝑁𝑖∑
𝑖=1

∫
Ω

(⟨𝑛, 𝑟 𝑖⟩)
+𝑁⊤(∇𝑃𝑖 (∇𝐼 𝑖 ◦ 𝑃𝑖)) ◦ 𝜙𝐷 (𝐼𝑖 ◦ 𝑃𝑖 ◦ 𝜙𝐷 − 𝜌𝑙𝑖 ⟨𝑍𝑐,𝑖 , 𝑛⟩)

(30)

where ∇𝐼 𝑖 denotes the image gradient. The Ritz-Galerkin method then reads

(𝑅⊤𝐻𝐷𝑅)𝑑𝑞 = 𝑅⊤𝑏PhDIC. (31)

In the case of extrinsics, 𝑅 = 𝑅ext and 𝑑𝑞 = 𝑑𝑝ext
0
, in the case of shape, 𝑅 = 𝑅shape and 𝑑𝑞 = 𝑑𝑠 .

Remark Compared to the usual framework (Pierré et al. 2017), considering only 𝑝ext
0

as parameter and

not every single 𝑝ext
𝑖

allows to use the exact same algorithm as for the shape measurement to

calibrate the extrinsics.
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Remark Practically, we used a slightly different visibility function 𝑉 ′𝑖 , as in (Birkbeck et al. 2006). We

considered that a point was visible not only when ⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩ > 0 but when ⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩ >

VisionThre > 0. Because, we found that results tend to be more accurate when increasing

VisionThre, the value VisionThre = 0.4 was determined as the greatest possible value

leading to a non-singular matrix 𝐻𝐷 (the top face of the beam was not ‘seen’ for higher values of

VisionThre). In other words, we remove some points that are seen with an angle larger than

66°, which is consistent with well-known developments in experimental mechanics (required

angles between the cameras for appropriate SDIC measurements, see, e.g. (Balcaen et al. 2017a)).

Thus, in the following, (⟨𝑛(𝑋 ), 𝑟 𝑖 (𝑋 )⟩)
+ will rather stand for the product of (J 𝑖 ◦ 𝑃𝑖) and 𝑉

′
𝑖 .

3.4.2 Light intensity

We chose to calibrate the light once and for all. To do so, we arbitrarily set the value for the

albedo of the white sheet standing for the target to 1. We then considered four points located

on the sheet indicated as blue dots in Figure 5(a). These points are denoted by (𝑋
light
𝑝 )𝑝 . An

overdetermined system was solved in the least-squares sense for each picture 𝑖 to retrieve 𝑙𝑖
through Equation (25) by taking 𝑛(𝑋

light
𝑝 ) = −𝑍𝑤 :

∀𝑝 ∈ J1, 4K, 𝐼𝑖 ◦ 𝑃𝑖 (𝑋
light
𝑝 ) = −𝑙𝑖 ⟨𝑍𝑐,𝑖 , 𝑍𝑤⟩. (32)

Remark We attempted to use the framework of (Birkbeck et al. 2006) where spheres are used to calibrate

both the light intensity and light direction. This has the benefit to allow the identification of an

ambient term, which is not the case here because the normals 𝑛(𝑋
light
𝑝 ) are all the same (the

matrix associated to the overdetermined system would not have full rank). The specular reflection

can easily be detected and allows to obtain the direction of the source while the Lambertian part

of the surface allows to get the other parameters. However, in our case this yielded poorer results

than the method described above. We believe that this is because the infinitely distant point light

source assumption is not completely valid. There is only one sphere and thus the light intensity

information is only valid around the sphere. The four points used above allow to obtain a less

accurate but more general value for 𝑙𝑖 .

3.4.3 Albedo estimation

This part is probably the easiest one since a closed-form solution for the albedo 𝜌 minimising (27)

can be derived (standard linear least-squares problem):

∀𝑋 ∈ Ω, 𝜌 (𝑋 ) =

∑𝑁𝑖

𝑖=1 [(⟨𝑛, 𝑟 𝑖⟩)
+𝑙𝑖 ⟨𝑍𝑐,𝑖 , 𝑛⟩] (𝑋 )𝐼𝑖 ◦ 𝑃𝑖 (𝑋 + 𝐷 (𝑋 ))∑𝑁𝑖

𝑗=1 [(⟨𝑛, 𝑟 𝑗 ⟩)
+𝑙2𝑗 ⟨𝑍𝑐,𝑗 , 𝑛⟩2] (𝑋 )

. (33)

Remark This definition for 𝜌 (𝑋 ) is in some sort a weighted average of all available observations of the

physical point 𝑋 . In this sense, it makes it similar to the definition of 𝑓 in (Dufour et al. 2015).

However, considering both foreshortening and lighting effects shows the benefit to obtain a much

sharper albedo, see Figure 6.

Remark In order to obtain a speedup in computation time, no interpolation scheme was used to evaluate

the numerator in Equation (33), that is the nearest neighbour pixel was used to evaluate

𝐼𝑖 ◦ 𝑃𝑖 (𝑋 + 𝐷 (𝑋 )). No significant changes in the identified shape nor albedo were observed

regardless of the interpolation scheme.

3.4.4 Alternating optimisations

The structure of the iterative algorithm used herein to minimise the functional is presented in

Figure 7.

On top of the procedure detailed above consisting in minimising with respect to different

variables, we also made use of a multiscale (or coarse-graining) initialisation process (Pierré et al.

2017; Colantonio et al. 2020). At the beginning, the discrepancy map 𝐷 was initialised to 0 and

pictures were considered at a scale scale = scalemax = 3. At the scale scale, pixels in the
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(a) Texture identified at initialisation without accounting

for lighting effects, similar to 𝑓 in (Dufour et al. 2015).

Results are presented in grey levels.

(b) Albedo (dimensionless) identified at initialisation ac-

counting for lighting effects.

Figure 6 Texture and albedo identified at the initialisation step. Note that the units are different: we make a
distinction between the texture (in grey levels) and the albedo (dimensionless). To avoid bias, the scale
chosen is the amplitude of each data set. Accounting for lighting effects clearly results in a much sharper
gradient for the albedo.

𝐷0 ← 0

scale← scalemax

Rescale pictures

Res𝐹 ←
LoopRes𝐹

4scale

𝐹scale0 ← 𝐹 (𝐷)

𝐹
loop

0 ← 𝐹 (𝐷)scale← scale − 1

Compute 𝜌

𝐷 ← 𝐷 + 𝑑𝑈 ext

∥𝑑𝑈 ext ∥

∥𝐷 ∥
>Res𝐷 ∧

𝑑𝐹

𝐹
loop

0

>Res𝐹

Compute 𝜌

𝐷 ← 𝐷 + 𝑑𝑆

∥𝑑𝑆 ∥

∥𝐷 ∥
>Res𝐷 ∧

𝑑𝐹

𝐹
loop

0

>Res𝐹

𝐹 (𝐷) − 𝐹scale0

𝐹scale0

> Res𝐹

scale = 0 𝐷, 𝜌

false

false

false

false

Extrinsics Shape

Figure 7 Structure of the algorithm used for the functional alternating optimisations.

initial pictures were aggregated by groups of 2scale × 2scale resulting in coarser images. The

density of points 𝑑 introduced in Section 3.3 was set accordingly (𝑑/2scale). This has two main

benefits. First, it drastically reduces computational time associated to the evaluation of the image

and its gradient, since much less integration points are considered (4scale times less). Second,

it allows to obtain less accurate but much greater corrections 𝑑𝐷 at each iteration, leading in

another way to a faster convergence. A Tikhonov regularisation term (Pierré et al. 2017) was

added to the functional. As scale increases, the amount of available data shrinks while keeping

the exact same number of unknown, making the problem more and more ill-posed, which is

counterbalanced by the Tikhonov regularisation term. This term had a decreasing amplitude with

Journal of Theoretical, Computational and Applied Mechanics
�� August 2022 �� jtcam.episciences.org 18

�� 32

https://jtcam.episciences.org


Raphaël Fouque et al. Photometric DIC: a unified framework for global Stereo Digital Image Correlation

the scale, until no regularisation was used for scale = 0.

Two different values were used as stopping criteria, namely stagnation with respect to the

discrepancy map and with respect to the functional, defined respectively by Res𝐷 = 10−5 and

Res𝐹 = LoopRes𝐹 /4
scale with LoopRes𝐹 = 10−3 in Figure 7. Dividing LoopRes𝐹 by 4scale

for each scale allows to demand a better precision at the fast-to-compute coarsest scales which, as

explained earlier, are known to be less accurate.

3.5 Results

In Figure 8 are shown the initialisation and convergence states with the mesh superimposed on

pictures. We can see that our method allows to recover the specimen shape even though the

(a) Initialisation state at one end of the beam (b) Convergence state at one end of the beam

(c) Initialisation state around the hole (d) Convergence state around the hole

Figure 8 Comparison between initialisation and convergence states of the specimen shape. Themesh is superimposed
on pictures.

object size was overestimated. Note that, in this framework, there is neither a need for selecting

points ‘by hand’ or automatically (Passieux et al. 2015; Pierré et al. 2017) nor for fiducial marks in

the pattern on the object. The regularisation of the extrinsics and shape measurement problem

was rather obtained via more images than usual and the multi-view setup associated to the 3D

mesh which allow to measure the specimen edges.

The total number of available pictures of the specimen was 72 (approximately 5° between

each pose). To evaluate the methodology described herein, we decided to form two different

disjoint sets of pictures. Each of them contained 36 pictures with approximately 10° between each

pose, see Figure 5(b). This allowed us to apply independently our method on these two sets to

compare the identified shapes and albedos. The results presented in Figure 8 were obtained using

one of these two sets.
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3.5.1 Camera calibration

In Figure 9 is shown the reprojection error standard deviation associated to the calibration step

described in Section 3.1, for one of the 36-picture sets. These results are satisfactory since the

total reprojection error standard deviation is equal to 0.18 pixel.

Figure 9 Target point reprojection error standard deviation
for each picture of one of the considered image
sets. The total reprojection error standard
deviation across all pictures is equal to 0.18 pixel.

0 10 20 30
0

0.1

0.2

0.3

Picture number

E
rr
o
r
ST

D
(p
ix
el
)

3.5.2 Albedo

In order to compare the retrieved albedos between the two different 36-picture image sets, we

decided to compute the normalised albedo difference, defined as 2(𝜌1 − 𝜌2)/(𝜌1 + 𝜌2) where 𝜌1
and 𝜌2 stand for the albedo associated to each image set, and 𝜌1 and 𝜌2 denote their mean values.

The distribution of this quantity is plotted in Figure 10.

Figure 10 Distribution of the normalised albedo difference
(defined at integration points) for the two different
sets of pictures at convergence state. The mean
value is small compared to the standard deviation.
It should be noted that camera noise is of the same
order of magnitude as the albedo difference
standard deviation.
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The difference mean value (0.004) is small compared to the difference standard deviation

(2.7 %). We chose to compare this last quantity to the normalised camera noise level, since we

believe it is the relevant quantity to compare the normalised albedo to, in the same way as we

will compare the shape measurement error to the calibration reprojection error, see Section 3.5.3.

We estimated the camera noise through nine pictures taken for six different poses (a total of 54

pictures) and obtained a normalised camera noise mean and a normalised camera noise standard

deviation respectively equal to 1.9 × 10−16 and 1.3 %. We can see that the standard deviations

of the normalised camera noise and normalised albedo differences are of the same order of

magnitude. However, we will see later on, that the camera noise is not the only error source that

we identified.

3.5.3 Shape

In Figure 12 are shown the projections of the integration points coordinates difference along each

direction of the world reference frame, see Figure 5(a). For the 𝑋 and 𝑍 direction, the mean value

is small compared to the standard deviation associated to the projected coordinates difference.

Distinguishing the three directions allow to see a particularity in the 𝑌 direction since in this case

the mean is much greater than the standard deviation. We interpreted these results based on the
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Figure 11 From the same mesh (black one), one can obtain two different parameterisations of the surface. We can
interpret that by the coupling between shape and extrinsics measurement. The black mesh, corresponding
to the initialisation step, is slightly larger than the real object. During the extrinsics calibration step, the
mesh can slide indifferently in one direction or another, which is represented respectively by the yellow
and purple mesh. Finally, the same shape is measured, but integration points lie at different positions. It is
due to the problem ill-posedness (solution non-uniqueness). The crosses stand for the integration points.

solution non-uniqueness and an illustration is shown in Figure 11. The basic idea is that the

framework described herein does not prevent from converging to different parameterisations of a

same geometry. Thus, integration points can describe the same geometry and lie at different

places on the surface of the object, even though they were defined at the exact same place on the

initialisation mesh. This can also partly explain the slightly larger standard deviation associated

to normalised albedo difference than the one associated to the normalised camera noise. Each

integration point stands for an albedo at a slightly different place in each one of the considered

image set. The reason we do not end up with odd results in Figure 10 is thanks to the pattern

which smoothly varies in space.

4 Displacement measurement

In this application-oriented section, we aim to show, through an easy-to-setup test case, the

potential of the developed PhDIC methodology to measure displacement fields that would be

extremely delicate, if not impossible, to capture with the usual SDIC framework. Before really

entering into the details of the specific test case, let us present the general way to use this

framework to perform arbitrary displacement measurements.
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Figure 12 Distribution of the coordinates difference (defined at the integration points) for the two different sets of
pictures at convergence state. The reference frame chosen to define 𝑋 , 𝑌 and 𝑍 is the beam (or world)
reference frame. The unit chosen for measuring a distance is the pixel in order to compare it to the
calibration reprojection error. One should keep in mind that it makes only little sense to measure distances
in pixels, as in a general multi-view setup it is not straightforward to convert a distance from mm to pixels.
Here, because the camera stood always about the same distance from the beam, an 8-pixel/mm constant of
proportionality was used to convert the measures. For 𝑋 and 𝑍 directions, the mean value is smaller than
the standard deviation. This last quantity is of the same order of magnitude as the calibration reprojection
error (0.18 pixel). Regarding the 𝑌 direction, we can clearly see a bias (∼ −0.15 pixel), much larger than
the standard deviation, corresponding to a shift along the 𝑌 direction. We suggest an interpretation of this
bias in the measurements in Figure 11 based on the solution non-uniqueness.

4.1 Ground-breaking methodology for displacement measurement

To underline the novelty of the approach, we will denote the deformed state images by (𝐽 𝑗 )𝑗 .

Note that since we are able to generate virtual images (with the digital twin) to compare our

observations to, they do not need to be associated to so-called reference state images 𝐼𝑖 (see

Figure 2 as a reminder). Among others, this implies that the number of deformed state images 𝑁 𝑗

does not have to be equal to the number of reference state images 𝑁𝑖 and can be greater or

smaller, and also can correspond to different camera poses. For the displacement measurement,

the functional writes (substituting𝑈 to 𝐷 in Equation (23)):

𝐹 =

𝑁 𝑗∑
𝑗=1

∫
Ω

[|det(∇𝜙𝑈 ) | ((J
′
𝑗 ◦ 𝑃

′
𝑗 )𝑉
′
𝑗 ) ◦ 𝜙𝑈 ] (𝑋 )

×
(
𝐽 𝑗 ◦ 𝑃

′
𝑗 (𝑋 +𝑈 (𝑋 )) − 𝜌 (𝑋 )

𝑁𝑠∑
𝑠=1

𝑙 ′𝑠 ⟨𝑛𝑓 (𝜃𝑠 , 𝜑𝑠), 𝑛(𝑋 +𝑈 (𝑋 ))⟩
)2
𝑑𝑋 . (34)

Remark We chose to update all variables identified in previous section. More precisely, in the equation

above, Ω stands for an update of Ω by 𝜙𝐷 , and 𝜌 together with 𝑛 for the associated albedo and

normal vector field.

With the same assumptions as in Section 3 regarding the weights J𝑖 and the light model, we

can simplify Functional (34). We also make explicit the variables with respect to which 𝐹 will be

minimised:

𝐹 (𝑈 , (𝑙 ′𝑗 )𝑗 ) =

𝑁 𝑗∑
𝑗=1

∫
Ω

[|det(∇𝜙𝑈 ) | (⟨𝑛, 𝑟
′
𝑗 ⟩)
+ ◦ 𝜙𝑈 ] (𝐽 𝑗 ◦ 𝑃

′
𝑗 ◦ 𝜙𝑈 − 𝜌𝑙

′
𝑗 ⟨𝑍
′
𝑐,𝑗 , 𝑛 ◦ 𝜙𝑈 ⟩)

2. (35)

Remark 𝜌 is no longer an unknown since it was identified in Section 3.

At this point, we suggest two ways to proceed. Either the integral is rewritten on an initial Ω̂,

which is very close to the actual deformed geometry, and the same assumptions as in Section 3

apply, that is

𝑛(𝑋 +𝑈 (𝑋 )) ∼ 𝑛(𝑋 ), det(∇𝜙𝑈 ) ∼ 1 and (⟨𝑛, 𝑟 ′𝑗 ⟩)
+ ◦ 𝜙𝑈 ∼ (⟨𝑛, 𝑟

′
𝑗 ⟩)
+, (36)
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or we keep integrating on the reference geometry Ω as in Equation (23). Choosing the first

approach may lead to two main benefits. First, the very same Gauss-Newton minimisation

scheme as in Section 3.4.1 can be employed because a satisfactory initialisation does require to

be built as it is a prerequisite for any gradient-based iterative minimisation scheme. Second,

choosing the second approach is extremely costly computationally speaking, since, for instance,

the normals and the visibility function should be constantly updated.

Remark Note that in both cases, the functional is unchanged. What changes is the integration domain.

Remark The two proposed resolution procedures can be viewed as the counterparts of the two main

variants in computational solid mechanics to perform geometrically non-linear analysis, i.e. the

updated Lagrangian (first method) and the total Lagrangian (second method) strategies (Bouclier

et al. 2015; ten Thije et al. 2007; Oliver and Oñate 1984).

However, for the sake of pedagogy, we chose to follow the second approach, that is integrating

over the reference domain Ω, as it allows to showcase a slightly different minimisation algorithm.

4.2 Example of a large rigid-body displacement measurement

The simple but illustrative test case that we considered was a large rotation (90°). In a usual SDIC

framework, this would yield to two whole faces from the reference image replaced by two others

as shown in Figures 13(a) and 13(b), and thus would certainly make the usual SDIC framework

fail. We can further simplify Equation (35). As we want to measure a rigid-body rotation, we have

Displacement
 
measurement

Calibration
Shape and albedo measurement Displacement

 
measurement

Calibration
Shape and albedo measurement

(a) One of the multi-view pictures used for the

extrinsics, shape and albedo calibration. Above

is shown the position of all these multi-view

pictures with respect to the beam. In a usual

SDIC framework, this picture would stand for

the reference state image 𝐼0𝑖 for displacement

measurement.

Displacement
 
measurement

Calibration
Shape and albedo measurement

(b) One of the multi-view pictures taken for

the displacement measurement of a 90° rotation.

We chose this picture (instead of the actual pic-

ture used) for illustration purposes: it is really

close to Figure 13(a). The actual position of the

only picture used to perform the displacement

measurement is shown above. The mesh super-

imposed on the picture is the initialisation used

(94° rotation). In a usual SDIC framework, this

picture would stand for the deformed state image

𝐼𝑖 corresponding to 𝐼0𝑖 in Figure 13(a).

Displacement
 
measurement

Calibration
Shape and albedo measurement

(c) Position of the mesh superimposed on a de-

formed state image at convergence state.

Figure 13 Explanation of the proposed approach and how difficult it would be to measure this 90° rotation in a
usual SDIC framework. As the displacement measurement step in classical SDIC would be based on the
comparison between reference state images 𝐼 0𝑖 , Figure 13(a), and deformed state ones 𝐼𝑖 , Figure 13(b), that
observe different faces of the specimen.
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|det(∇𝜙𝑈 ) | = 1. Also, the light intensity 𝑙 ′𝑗 is obtained in the same way as in Section 3.4.2. Finally,

we used only one picture, since we theoretically have only six degrees of freedom, a single image

should yield enough information. Once again, a Gauss-Newton minimisation algorithm is used:

𝐻𝑈𝑑𝑈 = 𝑏 ′PhDIC, (37)

with




𝐻𝑈 =

𝑁 𝑗∑
𝑗=1

∫
Ω

𝑁⊤ [(⟨𝑛, 𝑟 ′𝑗 ⟩)
+(∇𝑃 ′𝑗 (∇𝐽 𝑗 ◦ 𝑃

′
𝑗 )) (∇𝑃

′
𝑗 (∇𝐽 𝑗 ◦ 𝑃

′
𝑗 ))
⊤] ◦ 𝜙𝑈𝑁,

𝑏 ′PhDIC =

𝑁 𝑗∑
𝑗=1

∫
Ω

𝑁⊤ [(⟨𝑛, 𝑟 ′𝑗 ⟩)
+(∇𝑃 ′𝑗 (∇𝐽 𝑗 ◦ 𝑃

′
𝑗 ))] ◦ 𝜙𝑈 (𝐽 𝑗 ◦ 𝑃

′
𝑗 ◦ 𝜙𝑈 − 𝜌𝑙

′
𝑗 ⟨𝑍
′
𝑐,𝑗 , 𝑛 ◦ 𝜙𝑈 ⟩).

(38)

Since an acceptable initialisation is needed for the Gauss-Newton minimisation algorithm to work,

we kept on using the same linearisation for the extrinsics measurement (𝑅ext) as in Section 3.4.1.

For initialisation purposes, we computed the position of the camera relatively to the target thanks

to the same kind of algorithm as the calibration one. At each step (each time a new 𝑑𝑈 was

computed), both 𝑛 and 𝑟 𝑖 were updated. The algorithm successfully converged with a single

picture as long as we initialised with a displacement field𝑈 0 corresponding to a position of the

mesh not further away than 4° from the actual specimen, see Figure 13(c).

Remark This rigid-body rotation measurement can also be seen as a repositioning of the camera with

respect to the object. Thus, it opens the possibility of experimental setups where (some) cameras

move around the object during tests.

5 Conclusion and outlooks

In this work, we propose a novel approach to SDIC inspired by CV research. The key idea

is to model the grey level value by relying on physical quantities (radiance). This allows to

build a photometric functional for DIC to measure indifferently extrinsics, shape and albedo or

displacement fields. Unlike previous approaches to Global SDIC, where different functionals are

used for these two objectives, the above-mentioned PhDIC provides a consistent and unified

framework for DIC. This framework can be seen as an extension of Global DIC (as FEDIC for

instance), where a geometric model of the structure exists. This model is enriched in PhDIC by

the identification of the BRDF, which in a Lambertian model relies on one single parameter:

the albedo. It allows to define a textured digital twin of the structure. In addition, the effects

of light can be taken into account and modelled. The photometric functional is thus based on

the comparison between a prediction (or a model) and an observation, instead of arbitrarily

correcting observations to make them match, as done in classic (FE or Subset) DIC for instance.

In addition, grey scale residuals are considered the most objective way to probe the ability of a

model to reproduce an experiment from images in DIC (Neggers et al. 2017) or to determine

areas where the geometry should be refined (Kleinendorst et al. 2015). It is therefore extremely

important to analyse and model finely the different sources of grey level variation during an

experiment. These variations cannot always be related to displacement alone, especially in stereo

where light-geometry interaction effects can be substantial.

One of the main features of this work, clearly established in CV, is that when defining

functionals, unit weight should be assigned to residuals in the images, not in the physical space. It

results in an automatic problem regularisation. By following this path towards displacement

measurement on the reference geometry, and changing variables in the integrals step by step, we

were able to naturally reveal a consistent weighting scheme. This weighting scheme exhibits

interesting properties, particularly in a multiscale context (Passieux et al. 2015), since it allows to

define a functional for DIC encompassing viewpoints with different resolutions and distances to

the ROI. Some implicit assumptions in DIC (for instance that the pattern is assumed to exactly

follow the deformation of the surface on which it is deposited) needed to be made explicit to

establish the final expression of the functional that we considered.
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The PhDIC framework, in the case of a Lambertian model for the BRDF and a single distant

point light source, was described and applied to a parallelepiped beam with an open hole. For the

calibration phase, a turn table was used to scan the object thanks to 360° multi-view pictures. This

allowed to recover both the shape and albedo of the beam. The results between two completely

different sets of input images were compared, demonstrating the accuracy and robustness of the

approach.

Of course, building a textured digital twin comes at a price, but this price is related to the

increase in the amount of available data. In return, associated data assimilation allows a strong

regularisation of the shape measurement step. This step, which may be very delicate in usual

Global SDIC frameworks, is critical for performing accurate displacement measurements.

Then the PhDIC functional was applied to measure a large 3D rigid-body displacement of the

specimen using one single image from a different viewpoint than those of the calibration phase.

The displacement was such that the sample was completely flipped, making it impossible for

other SDIC algorithms to measure the kinematic field.

There are many outlooks to this work, and we will focus only on a few of them. Investigating

other parameterisations for BRDF’s and light models seems to be an interesting and challenging

task. It would make it possible to consider specular reflections, for instance. These phenomena are

usually avoided but we believe that this is a compulsory step in order to extend SDIC application

domain to large-deformation (and possibly large-strain) contexts and/or to large-scale applications

with multiscale setups.

In this work, we used a turn table and a fixed light and camera in the calibration phase. Two

other approaches may be considered in future works, especially adapted to address large-scale

applications, where moving the considered structure may not be done easily. First, keeping the

cameras and object at the same place while taking images for different positions of the light

(Shape-from-Shading) (Mélou et al. 2018) could be investigated. Second, moving around cameras

and light thanks to drones to scan the structure stands for another interesting outlook (Kalaitzakis

et al. 2021; Jovancevic et al. 2015). Relying on the PhDIC framework together with the latter

approaches and a relevant pattern, see for instance (Fouque et al. 2020), would be particularly

suitable to tackle multiscale structural tests. Hence, another topic that should be tackled

beforehand is the camera pose estimation in a more general setup where the whole target cannot

be seen in each scan picture.

The application of this formalism to the measurement of a complex displacement field is

a direct perspective of this work. The calibration and displacement measurement phases in

completely different configurations will require a step 𝑡1 to calibrate the camera setup of the

displacement measurement phase using the digital twin texture. The method that we proposed

should allow us to consider tests that conventional stereo methods can hardly or simply not

instrument. We think for example of folded tape springs (Kwok and Pellegrino 2012), slender

elastic rods (Lazarus et al. 2013; Miller et al. 2014), flapping wings (Wu et al. 2011), large torsional

deformation of flexible parts (Sicard and Sirohi 2014) or elastic ribbons (Charrondière et al. 2020)

to name a few. We could also be able to track large rigid or elastic body translations and rotations

of projectiles (Passieux et al. 2014). This finally would allow us to consider experiments in which

the cameras can move, which could definitely offer new opportunities such as Stereo-DIC with

camera mounted on drones (Kalaitzakis et al. 2021) or on robotic arms (Khrenov et al. 2018).

Finally, the work described herein allows to predict the grey level value associated to an

integration point (located in the physical space) in order to compare it to the actual observation.

Strictly speaking, it does not allow to generate virtual images from the scene (that could be

compared pixelwise to actual pictures). Together with the work (Balcaen et al. 2017b), it may

stand for an interesting outlook to envisage.

A Functional weighting term: analytical expression and physical

interpretation

We have the identity J = ∥𝜕𝑢𝛽 × 𝜕𝑣𝛽 ∥
−1
2 . However, the backprojection operator is very costly to

evaluate for a camera model accounting for distortions, and its gradient even more. Instead, we
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propose an approximation of J assuming a pinhole camera model. In this case we can write

𝑢 = −𝑓𝑥
𝑋𝑐

𝑍𝑐
+ 𝑢0 and 𝑣 = −𝑓𝑦

𝑌𝑐

𝑍𝑐
+ 𝑣0 (A.1)

where 𝑢0 and 𝑣0 denote the optical centre pixel coordinates, 𝑓𝑥 and 𝑓𝑦 the product of the focal

length and the camera sampling parameter along each direction, (𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐) the coordinates of a

point𝑀 in the camera reference frame (denoted R𝑐 ), and 𝑢 and 𝑣 the pixel coordinates of𝑀 in

the image.

We also introduce a world reference frame (denoted R𝑤). A rigid-body transformation makes

the link between the coordinates of𝑀 in the different reference frames:



𝑋𝑐 = 𝑅11𝑋𝑤 + 𝑅12𝑌𝑤 + 𝑅13𝑍𝑤 + 𝑡𝑥

𝑌𝑐 = 𝑅21𝑋𝑤 + 𝑅22𝑌𝑤 + 𝑅23𝑍𝑤 + 𝑡𝑦

𝑍𝑐 = 𝑅31𝑋𝑤 + 𝑅32𝑌𝑤 + 𝑅33𝑍𝑤 + 𝑡𝑧

(A.2)

which will alternatively be written:

𝑀𝑐 = (𝑂𝑐𝑀)𝑐 = 𝑅 (𝑂𝑤𝑀)𝑤 + (𝑂𝑐𝑂𝑤)𝑐 = 𝑅𝑀𝑤 + (𝑂𝑐𝑂𝑤)𝑐 , (A.3)

with 𝑂𝑐 and 𝑂𝑤 the origin of R𝑐 and R𝑤 respectively; 𝑅 is a rotation matrix. We also consider

that the surface to which𝑀 belongs can be parameterised as

𝑔(𝑋𝑤, 𝑌𝑤, 𝑍𝑤) = 0. (A.4)

To evaluate J , we first compute both 𝜕𝑢𝑀𝑐 = 𝑀𝑐 ,𝑢 and 𝜕𝑣𝑀𝑐 = 𝑀𝑐 ,𝑣 . For that, we can derive

Equation (A.1) with respect to 𝑢 and 𝑣 . Since the algebra is very similar, we will present only the

detailed steps for𝑀𝑐 ,𝑢 :

𝑋𝑐,𝑢 = −
𝑍𝑐 + 𝑍𝑐,𝑢 (𝑢 − 𝑢0)

𝑓𝑥
= −

𝑍𝑐

𝑓𝑥
+ 𝑍𝑐,𝑢

𝑋𝑐

𝑍𝑐

𝑌𝑐,𝑢 = −
𝑍𝑐,𝑢 (𝑣 − 𝑣0)

𝑓𝑦
= 𝑍𝑐,𝑢

𝑌𝑐

𝑍𝑐
.

(A.5)

We have two equations but three unknowns (𝑋𝑐,𝑢 , 𝑌𝑐,𝑢 and 𝑍𝑐,𝑢 ). To obtain a third equation, we

can differentiate Equation (A.4) with respect to 𝑢:

𝑋𝑤,𝑢
𝜕𝑔

𝜕𝑋𝑤
+ 𝑌𝑤,𝑢

𝜕𝑔

𝜕𝑌𝑤
+ 𝑍𝑤,𝑢

𝜕𝑔

𝜕𝑍𝑤
= 0 (A.6)

This equation can be rewritten ⟨𝑛,𝑂𝑤𝑀 ,𝑢⟩ = 0 with 𝑛 = ∇𝑔/∥∇𝑔∥2. Also we know that

𝑂𝑤𝑀 = 𝑂𝑤𝑂𝑐 +𝑂𝑐𝑀 . Making use of both yields ⟨𝑛,𝑂𝑐𝑀 ,𝑢⟩ = 0 which is the third equation. By

decomposing𝑂𝑐𝑀 ,𝑢 as 𝑋𝑐,𝑢𝑒
𝑐
𝑥 +𝑌𝑐,𝑢𝑒

𝑐
𝑦 + 𝑍𝑐,𝑢𝑒

𝑐
𝑧 with (𝑒

𝑐
𝑥 , 𝑒

𝑐
𝑦, 𝑒

𝑐
𝑧) the orthonormal basis associated

with the camera reference frame, we obtain

⟨𝑛,𝑂𝑐𝑀 ,𝑢⟩ = ⟨𝑛, 𝑒
𝑐
𝑥 ⟩𝑋𝑐,𝑢 + ⟨𝑛, 𝑒

𝑐
𝑦⟩𝑌𝑐,𝑢 + ⟨𝑛, 𝑒

𝑐
𝑧⟩𝑍𝑐,𝑢 = 0. (A.7)

By using Equation (A.5) in Equation (A.7), we can get an expression of 𝑍𝑐,𝑢 and then retrieve 𝑋𝑐,𝑢

and 𝑌𝑐,𝑢 through Equation (A.5):




𝑋𝑐,𝑢 =

𝑍𝑐

𝑓𝑥

( ⟨𝑛, 𝑒𝑐𝑥 ⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑋𝑐 − 1
)

𝑌𝑐,𝑢 =

𝑍𝑐

𝑓𝑥

⟨𝑛, 𝑒𝑐𝑥 ⟩

⟨𝑛,𝑂𝑐𝑀⟩
𝑌𝑐

𝑍𝑐,𝑢 =

𝑍𝑐

𝑓𝑥

⟨𝑛, 𝑒𝑐𝑥 ⟩

⟨𝑛,𝑂𝑐𝑀⟩
𝑍𝑐

or 𝑂𝑐𝑀 ,𝑢 =

𝑍𝑐

𝑓𝑥

( ⟨𝑛, 𝑒𝑐𝑥 ⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑂𝑐𝑀 − 𝑒
𝑐
𝑥

)
. (A.8)
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Following the exact same steps for the derivatives along the 𝑣-direction, we obtain




𝑋𝑐,𝑣 =
𝑍𝑐

𝑓𝑦

⟨𝑛, 𝑒𝑐𝑦⟩

⟨𝑛,𝑂𝑐𝑀⟩
𝑋𝑐

𝑌𝑐,𝑣 =
𝑍𝑐

𝑓𝑦

( ⟨𝑛, 𝑒𝑐𝑦⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑌𝑐 − 1
)

𝑍𝑐,𝑣 =
𝑍𝑐

𝑓𝑦

⟨𝑛, 𝑒𝑐𝑦⟩

⟨𝑛,𝑂𝑐𝑀⟩
𝑍𝑐

or 𝑂𝑐𝑀 ,𝑣 =
𝑍𝑐

𝑓𝑦

( ⟨𝑛, 𝑒𝑐𝑦⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑂𝑐𝑀 − 𝑒
𝑐
𝑦

)
. (A.9)

At this point, we can compute:

𝜕𝑢𝛽 × 𝜕𝑣𝛽 = 𝑂𝑤𝑀 ,𝑢 ×𝑂𝑤𝑀 ,𝑣 = 𝑂𝑐𝑀 ,𝑢 ×𝑂𝑐𝑀 ,𝑣

=

𝑍 2
𝑐

𝑓𝑥 𝑓𝑦

( ⟨𝑛, 𝑒𝑐𝑥 ⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑂𝑐𝑀 − 𝑒
𝑐
𝑥

)
×
( ⟨𝑛, 𝑒𝑐𝑦⟩
⟨𝑛,𝑂𝑐𝑀⟩

𝑂𝑐𝑀 − 𝑒
𝑐
𝑦

)

=

𝑍 2
𝑐

𝑓𝑥 𝑓𝑦 ⟨𝑛,𝑂𝑐𝑀⟩
(−⟨𝑛, 𝑒𝑐𝑥 ⟩𝑂𝑐𝑀 × 𝑒

𝑐
𝑦 − ⟨𝑛, 𝑒

𝑐
𝑦⟩𝑒

𝑐
𝑥 ×𝑂𝑐𝑀 + ⟨𝑛,𝑂𝑐𝑀⟩𝑒

𝑐
𝑧)

=

𝑍 2
𝑐

𝑓𝑥 𝑓𝑦 ⟨𝑛,𝑂𝑐𝑀⟩

©­­­«
𝑍𝑐 ⟨𝑛, 𝑒

𝑐
𝑥 ⟩

𝑍𝑐 ⟨𝑛, 𝑒
𝑐
𝑦⟩

⟨𝑛,𝑂𝑐𝑀⟩ − 𝑋𝑐 ⟨𝑛, 𝑒
𝑐
𝑥 ⟩ − 𝑌𝑐 ⟨𝑛, 𝑒

𝑐
𝑦⟩

ª®®®¬𝑐
=

𝑍 3
𝑐

𝑓𝑥 𝑓𝑦 ⟨𝑛,𝑂𝑐𝑀⟩

©­­­«
⟨𝑛, 𝑒𝑐𝑥 ⟩

⟨𝑛, 𝑒𝑐𝑦⟩

⟨𝑛, 𝑒𝑐𝑧⟩

ª®®®¬𝑐
=

𝑍 3
𝑐

𝑓𝑥 𝑓𝑦 ⟨𝑛,𝑂𝑐𝑀⟩
𝑛.

(A.10)

Since, by construction, ∥𝑛∥2 = 1, we finally obtain

J = ∥𝛽,𝑢 × 𝛽,𝑣 ∥
−1
2 =

𝑓𝑥 𝑓𝑦

𝑍 2
𝑐

∥𝑂𝑐𝑀 ∥2

|𝑍𝑐 |
|⟨𝑛, 𝑟 ⟩| where 𝑟 = −

𝑂𝑐𝑀

∥𝑂𝑐𝑀 ∥2
. (A.11)

Each identified contribution of the weighting term J (𝑓 /𝑍𝑐 , |⟨𝑛, 𝑟 ⟩| and ∥𝑂𝑐𝑀 ∥2/𝑍𝑐 ) is illustrated

in Figure A.1. In each subfigure, the dependency of the physical length corresponding to a given

Image plane

(a) 𝑓 /𝑍𝑐 (b) |⟨𝑛, 𝑟 ⟩| (c) ∥𝑂𝑐𝑀 ∥2/𝑍𝑐

Figure A.1 Identified contributions in the weighting term J .

pixel length in the image plane on one of the contributions is illustrated. For this, the orange

dash-dotted line and the green dashed line have the exact same values for all parameters except

those from the considered contribution, also both correspond to the same length in pixel in the

image plane. The orange dash-dotted line stands for a unit contribution. Thus, the ratio of the

orange dash-dotted line to the green dashed line lengths allows to retrieve the contribution. In

Figure A.1(a), we have similar triangles and thus the ratio of the orange dash-dotted line to the

green dashed line lengths is 𝑓 /𝑍𝑐 . In Figures A.1(b) and A.1(c), one must recall that J is defined

locally. Hence, both the orange dash-dotted line and the green dashed line should be considered

as infinitesimal and the solid blue rays going from the optical centre to the edges of these lines

can be considered parallel, although it is obviously not the case in the illustrations. For this

reason, the ratio of the orange dash-dotted line to the green dashed line lengths is |⟨𝑛, 𝑟 ⟩| in

Figure A.1(b). Similarly, in Figure A.1(c) this ratio equals (sin𝛼)−1 = ∥𝑂𝑐𝑀 ∥2/𝑍𝑐 .
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