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FFT-based solvers are increasingly used by many researcher groups interested in modelling the mechanical

behavior associated to a heterogeneous microstructure. A development is reported here that concerns

the viscoelastic behavior of composite structures generally studied experimentally through Dynamic

Mechanical Analysis (DMA). A parallelized computation code developed with complex-valued quantities

provides virtual DMA experiments directly in the frequency domain on a heterogeneous system described

by a voxel grid of mechanical properties. The achieved precision and computation times are very good. An

effort has been made to illustrate the application of such a virtual DMA tool through two examples from the

literature: the modelling of glassy/amorphous systems at a small scale and the modelling of experimental

data obtained in temperature sweeping mode by DMA on a particulate composite made of glass beads and

a polystyrene matrix, at a larger scale. Both examples show how virtual DMA can contribute to question,

analyze, and understand relaxation phenomena on either theoretical or experimental points of view.

Keywords: Dynamic Mechanical Analysis, FFT solver, viscoelasticity, homogenization, glassy polymers, particle

composites

1 Introduction
Dynamic Mechanical Analysis (DMA) is known to be a privileged tool to study materials

(especially polymers and rubbers) whose rheological behavior is viscoelastic by nature, i.e.

introduces irreversible dissipation of mechanical energy into heat. The technique indeed measures

a conservative (storage) or dissipative (loss) modulus or compliance, which are the real and

imaginary parts of their complex nature𝑀∗(𝜔) = 𝑀 ′(𝜔) + 𝑗𝑀 ′′(𝜔) for instance for the modulus.

It relies on harmonic steady-state excitations in strain, applied at pulsation 𝜔 on a material

specimen and on the recording of the corresponding output stress signal. This latter is analyzed

with respect to the original input both in amplitude decrease (modulus |𝑀∗ |) and phase lag 𝛿

(reflecting the damping phenomenon associated to some viscous component of the behavior).

From that information, complex algebra gives eventually access to 𝑀 ′(𝜔) and 𝑀 ′′(𝜔) with
a sweep in frequency allowing for full dynamical characterization of the material. Such a

spectroscopic probing of the material exists in many different fields of physics like in thermal

science to produce thermal conductivity/diffusivity measurements (Cahill 1990) but the main

corpus of publications probably resorts to dielectric properties measurements (Nielsen and Landel

1994). Experimental data on the susceptibility of physical processes as function of frequency is,

in general, a central tool to develop physical model of relaxation processes (Havriliak Jr. and

Havriliak 1995; Jonscher 1996).

DMA is estimated 100 times more sensitive to glass transition than scanning calorime-

try (Menard and Menard 2015) and this is probably the reason why the sweeping temperature

mode is generally elected by material scientists as the perfect way of investigating subtle
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microstructural transitions like the motions of polymer chains for example (Seidel 2008). However,

for solid-liquid rheological characterization, the forced frequency sweep is more desirable as it

allows behavior’s law modeling assumptions to be checked and associated material parameters

to be identified. The targeted information is obviously the relaxation spectrum which can be

precisely investigated with the frequency scanning. Emri and Tschoegl (1995) synthesize the

spectrum from temporal data in a collocation-like approach but check the consistency with DMA

results in frequency mode. In (Kim and Lee 2009) on the contrary, experimental characterization of

Frequency Response Functions (FRF) are used to identify parameters originating from constitutive

rheological models of damping materials. One key issue of this study precisely results in the

solution offered by virtual DMA to provide quickly these data for any kind of material and to test

theoretical concepts underlying such models.

It should be pointed that this technique is before anything else a perfect tool to investigate

the behavior of a material at the scale of a Representative Volume Element (RVE). Samples are

generally of small (macroscopic) sizes and excitations of low magnitude (small perturbations

theoretical framework). Independently of excitation modes and specimen geometry (torsion,

flexure, compression), this allows retrieving local material parameters directly from rheological

models. These parameters are the exact reflect of statistically averaged microstructural evolutions.

The concern of this paper is classical in scientific calculus: offering a simulation path to

replace experiments and exceed their intrinsic limitations or, in other words, to offer a virtual

DMA simulator capable of analyzing any kind of heterogeneous or composite material. Such

simulation tool has been already striven after in the past through Finite element approach. Brinson

and Knauss (1992) for example have modified a Finite Element code to make the computation of

real and imaginary complex moduli directly possible, solving the boundary value problem with

complex variables.

New computational tools, more efficient, have made recently possible to rejuvenate this idea

thanks to two important advances in computational science:

1. Synthesis of virtual composite microstructure using generators working on various mathematical

basis (Ghazvinian et al. 2014; Quey 2021; Salnikov et al. 2015) or alternatively synthesis of real

microstructure based on tomography imaging followed by appropriate image treatment (Uchic

et al. 2007). Virtual DMA performed with FE codes was initially limited to very simple idealized

microstructures.

2. Development of the spectral approach (Fast-Fourier Transform operator) to handle the resolution

of local equilibrium equations, see (Moulinec and Suquet 1998; Roters et al. 2019) for a wide

review on the topic, especially for works developed using the Damask code. Of course, the

harmonic steady-state regime can be obtained from time domain simulations based for example

on Finite Element approach (Masurel et al. 2015), but such approaches are very much less efficient

than the spectral ones directly operating in frequency domain.

The idea is before anything else to make the confrontation of both approaches (simulation

and experiment) a source of better knowledge arising from their respective drawbacks.

1. Simulation will always be limited by the idealization of the composite organization: for example, if

one can faithfully and easily reproduce particulate composite by considering real size distributions

of particulate, real volume fractions..., continuity assumptions are generally considered between

particles and the matrix. Overcoming this complexity is gaining attention however. An

homogenization problem in thermal science has recently addressed the case of imperfect

interfaces within the FFT spectral approach (Monchiet 2018).

2. Experiments based on DMA can carry a bias inherent to the technique: as an example, one can

cite the drift in measurement signals with the very long-time durations of these experiments to

get low frequency information.

Of course, the second key idea is the homogenization problem of composite materials. It is in

that direction that very recent computations of virtual DMA kind have been performed with FFT

solvers. In a probably landmark article, Figliuzzi et al. (2016) studied the composite material made

of a rubber matrix filled with carbon black fillers. The effective mechanical behavior resulting

from various models considered for the multiscale morphological microstructure description has
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been successfully computed in 3D with an FFT solver in space and harmonic complex treatment

of the dynamic part. The frequency dependence of the effective complex bulk modulus and of

the effective shear modulus was directly achieved and shown as a valuable way to assess the

performance of analytical effective models. A second study of that type was used by Gallican

and Brenner (2019) to investigate the overall properties of composite materials with fractional

viscoelastic constituents. In the case of particulate composites with polydisperse spherical

elastic inclusions, the authors develop FFT based computations of the overall complex moduli in

frequency domain. Such outputs were helpful to assess mean-field approximate models and a

generalized fractional effective model derived from exact mathematical (asymptotic) relations

constraining the adjustment of an effective relaxation spectrum.

It is worthwhile to mention that whatever the virtual DMA computation tool (FEM or

FFT-based solvers), a comfortable aspect is that viscoelastic theories in the linear regime require

only infinitesimal deformation analysis for strains and displacements.

The results presented here enter into this movement and favors an account of the benefits

that can be expected from virtual DMA to explain physical mechanisms or question theoretical

model assumptions as well as experimental data. In Section 2 will be firstly described the

extension to the harmonic steady-state regime of spectral FFT solvers used to solve local

equilibrium equations generally in the steady state or for temporal responses. Validation of the

numerical implementation will consider the academic heterogeneous checkerboard structure with

constituents of Standard Linear Solid (SLS) rheological behavior. Additionally, it will illustrate

how outputs of virtual DMA can be used to identify material transfer functions, a concept which

will allow to compute the response of the material to any kind of solicitation. Section 3 will be

devoted to illustrate what a virtual DMA solver can bring to material engineering science in the

future. Two test cases will be considered, each of them showing a different aspect of the subject.

Example 1, in Section 3.1, will compare the results based on the paper by Masurel et al. (2015) for

a multi-material made of a collection of Maxwell units and obtained by time-domain calculations

using the FE code Zébulon (Armines & ONERA 2021). Finally, example 2, in Section 3.2, will

illustrate the benefit of using virtual DMA when trying to interpret experimental results. It will

rely on data relative to strong experimental works made by Alberola and collaborators (Agbossou

et al. 1993; Alberola and Mele 1996) on a Particulate Composite of glass beads in a polystyrene

matrix. It shows also that harmonic effective behavior can be calculated directly from the

knowledge of either the temperature or frequency-discretized moduli of the constituents. This

option can be very useful for the experimentalist where DMA data are often produced at a given

frequency with a sweep in temperature.

2 A FFT Spectral solver extension to harmonic regime

2.1 Standard mathematical procedure and numerical implementation

We consider a heterogeneous multi-material system, with a Representative Volume Element 𝑉 ,

subject to oscillatory boundary conditions with angular frequency 𝜔 . The heterogeneous

harmonic displacement field ũ(r, 𝑡) in such harmonic regime can be expressed with a complex

form:

ũ(r, 𝑡) = u
∗(r)𝑒 𝑗𝜔𝑡 (1)

where u∗(r) denotes the complex displacement amplitude, whose real part corresponds to the

physical displacement field. Considering the harmonic regime, and in the small perturbation

approximation, the spectral method based on the Lippman-Schwinger equation associated to a

discrete Green operator is straightforward. The complex amplitudes of the strain 𝛆
∗(r) and stress

𝛔
∗(r) are second rank tensors, which depend on the frequency 𝜔 .

Now considering a heterogeneous medium made of linear viscoelastic phases and thanks to

the correspondence principle (Hashin 1970), local constitutive laws expressed below in terms of

relaxation functions can be put directly in the complex form (Laplace-Carson transforms in time

where the Laplace variable 𝑝 is set to 𝑗𝜔), with a linear relation:

𝝈
∗(r, 𝑗𝜔) = H

∗(r, 𝑗𝜔) : 𝜺∗(r, 𝑗𝜔) (2)
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The complex local stiffness tensor H∗(r, 𝑗𝜔) accounts for the storage and loss moduli.

In the frequency (spectral) domain, the local equations expressing the constitutive law in

Equation (2), the mechanical equilibrium, and the overall prescribed strain loading produce the

system





𝛔
∗(r, 𝑗𝜔) = H

∗(r, 𝑗𝜔) : 𝛆∗(r, 𝑗𝜔) ∀r ∈ 𝑉 ,
div𝛔∗(r, 𝑗𝜔) = 0 𝜔 ∈ [0;+∞[,
⟨𝛆∗( 𝑗𝜔)⟩ = 𝛆

∗
.

(3)

It can be solved by making use of a numerical scheme based on the Fourier Transform (Figliuzzi

et al. 2016; Moulinec and Suquet 1998) considering the RVE with periodic boundary conditions.

The elastic classical scheme introduced by Moulinec and Suquet has to be transposed in the

Laplace-Carson domain with complex-valued quantities. The Lippman-Schwinger equation is

transformed in the Fourier domain (•̂ symbol) and depends now on spatial frequencies k and

dynamical testing frequencies 𝜔 :

�̂�
∗(k, 𝑗𝜔) = −Γ̂∗0 (k) : �̂�∗(k, 𝑗𝜔), ∀k ≠ 0, �̂�

∗(0, 𝑗𝜔) = 𝛆
∗
, 𝜔 ∈ [0;+∞[ (4)

The periodic Green’s operator in Fourier domain is denoted Γ̂
∗
0 and is associated to the reference

medium of isotropic stiffness tensor H∗
0, which has to be real (Figliuzzi et al. 2016); �̂�∗(k, 𝑗𝜔) is the

Fourier transform of the polarization field 𝛕
∗(r, 𝑗𝜔) = 𝛔

∗(r, 𝑗𝜔) − H
∗
0
: 𝛆∗(r, 𝑗𝜔); 𝛆∗ denotes the

average over the whole RVE (Fourier frequency k = 0) of the local complex strain field 𝛆∗(r, 𝑗𝜔).
Equation (4) can be solved in Fourier domain (spatial discretization) and for the harmonic regime

described by any angular-frequency set in [0;+∞[ and with fully complex local 𝛆∗(r, 𝑗𝜔) and
𝛔
∗(r, 𝑗𝜔) fields. A numerical scheme is necessary, of fixed-point type, to obtain convergence

along an iterative process over the polarization field variable, where iterate 𝑛 + 1 is updated from

the previous iterate 𝑛. High-performance accelerated numerical schemes are available for this

purpose (Eyre and Milton 1999; Moulinec and Silva 2014).

A convergence test is computed at each iteration. It consists in checking the deviation from

equilibrium 𝑒eq, from compatibility 𝑒comp and from the prescribed loading conditions 𝑒load. The

iterative procedure is stopped when these three criteria are smaller than some prescribed values

(most of the times fixed to 10−4).
The deviation from equilibrium is obtained with the following dimensionless criterion,

calculated in the Fourier space:

𝑒eq =
∥ div𝝈∗ d𝑉 ∥
∥𝝈∗ · n d𝑆𝑛 ∥

=

√∑
k f̂eq · f̂

′
eq

√∑
k{f̂1 · f̂

′
1 + f̂2 · f̂

′
2 + f̂3 · f̂

′
3}

(5)

where the prime symbol refers to a complex conjugate and with the forces

f̂eq(k) = �̂�
∗(k) : 𝑗 k d𝑉 , f̂1(k) = �̂�

∗(k) : n1 d𝑥2 d𝑥3,
f̂2(k) = �̂�

∗(k) : n2 d𝑥1 d𝑥3, f̂3(k) = �̂�
∗(k) : n3 d𝑥2 d𝑥1.

(6)

The deviation from compatibility is obtained with the following expression calculated in the

Fourier space

𝑒comp =
maxk(max𝑖=1,...,6( |𝑒𝑖 (k) |)) ·max(𝐿1, 𝐿2, 𝐿3)2√∑

k ε̂
∗
𝑚𝑛 (k) · ε̂∗

′
𝑚𝑛 (k)

(7)

where 𝐿𝑖 = 𝑁𝑖 d𝑥𝑖 is the size of the box in directions 𝑖 = 1, 2, 3 and with 𝑒𝑖 (k) expressed for the

six compatibility equations in terms of the tensorial components ε̂∗𝑚𝑛 .

In the case of a prescribed macroscopic strain ε
∗
𝑚𝑛 , the deviation from the prescribed loading

is given by

𝑒load =
∥⟨𝜀∗⟩ − 𝜀∗∥

∥𝜀∗∥ =

√
(⟨𝜀∗𝑚𝑛⟩ − 𝜀∗𝑚𝑛) : (⟨𝜀∗𝑚𝑛⟩ − 𝜀∗𝑚𝑛) ′√

𝜀∗𝑚𝑛𝜀
∗′
𝑚𝑛

(8)

Journal of Theoretical, Computational and Applied Mechanics
�� April 2021

�� jtcam.episciences.org 4
�� 19

https://jtcam.episciences.org


André and Boisse FFT solver for virtual Dynamic Mechanical Analysis experiments

Other loading conditions, like prescribed stress or multi-directional loadings, can be treated in a

similar way. In the Eyre and Milton scheme, and considering a multi-material system with𝑀

linear viscoelastic phases the optimal choice for bulk 𝐾 and shear 𝜇 moduli for the isotropic

reference medium is

𝜇0 =

√
max𝑖,𝜔 (ℜ[𝜇𝑖 ( 𝑗𝜔)]) ·min𝑘,𝜔 (ℜ[𝜇𝑘 ( 𝑗𝜔)])

𝐾0 =

√
max𝑖,𝜔 (ℜ[𝐾𝑖 ( 𝑗𝜔)]) ·min𝑘,𝜔 (ℜ[𝐾𝑘 ( 𝑗𝜔)])

(9)

for 𝑖 ≠ 𝑘 , 𝑖, 𝑘 ∈ 1, . . . , 𝑀 , 𝜔 > 0 and 𝜔 ∈ [𝜔min;𝜔max]. This mathematical procedure has been

implemented as a new option in a spectral solver software named CraFT (Moulinec et al. 2004)

for Composite response and Fourier Transform developed at LMA laboratory by several scientists

since the initial version raised by Moulinec and Suquet. This option takes advantage of all recent

developments of the solver in terms of accelerated convergence schemes and is available in

parallelized configuration for enhanced computation times. The harmonic version is simply

available by selecting an appropriate compiling option which proceeds with a set of functions that

have been modified to handle the complex nature of the variables (65 functions over a total of 263

including the behavior law implementation and solver operations). The main change with respect

to the temporal version lies in the specification of frequency vectors in the Fourier domain due

to the two-sided character of the Discrete Fourier Transform. The code modifications render

it even more regular in terms of tuplet management. Indeed, for a real function, say a stress

tensor component, the 3D double array of dimension 𝑛0 × 𝑛1 × 𝑛2 (indices in the three directions

determining which voxel is considered) produces a DFT output of (𝑛0/2 + 1) × 𝑛1 × 𝑛2 complex

numbers1. In the harmonic version, we have to handle 3D data arrays of complex numbers which

restore a simpler approach of the code. Additionally, the Fourier domain equilibrium criterion in

Equation (5) has been implemented, which is formulated in terms of a true normalized force

balance (volumetric over surface for each voxel). In comparison with the original CraFT criterion

based on the stress tensor divergence presenting a dimensional dependence, this results in a

unique criterion specification.

Spectral solvers imposed themselves as an alternative approach for computing mechanical

problems on heterogeneous structures with the following recognized advantages: precision and

very fast computational times. Note that for stochastic materials, the latter is a crucial one as

multiple simulations are required for identical statistical figures to obtain an averaged meaningful

response of the heterogeneous RVE. Among the drawbacks, one can cite two of them, being

already subjected to a common proposal for reducing their nuisance: (i) spectral solvers can

produce high frequency oscillations on the mechanical fields close to interfaces; (ii) because the

voxel distribution is fixed once (no remeshing), the precision of the method can deteriorate

rapidly in the case of complicated interfaces and/or multiple length scales. For both drawbacks,

the composite voxel approach offers substantial improvements: a filtering effect for the first

drawback (Gélébart and Ouaki 2015) and more accurate predictions in the latter case (Charière

et al. 2020; Mareau and Robert 2017).

2.2 Numerical Validation: the checkerboard case

We consider the academic case of the checkerboard composite, classically used for validating the

FFT simulations (Lebensohn et al. 2005). The microstructure is made of a periodic 2D, two-phase

composite whose unit cell consists of four tiles with the crystallographic orientations of the two

pairs of opposite grains being at +90° and 0°. Each material has a rheological behavior described

by the three-parameters SLS solid

𝜎 (𝑝)
𝜀 (𝑝)

���
𝑝=𝑗𝜔

= 𝐺 (𝑘) ( 𝑗𝜔) =
𝐺

(𝑘)
𝑟 +𝐺 (𝑘)

𝑔 𝑗𝜔𝜏 (𝑘)

1 + 𝑗𝜔𝜏 (𝑘)
, 𝑘 = 1, 2 (10)

where 𝐺𝑔, 𝐺𝑟 , and 𝜏 denote the glass (instantaneous) modulus, the relaxed modulus and a

relaxation time, respectively. The effective behavior of this checkerboard structure with two

1 See the link [DFT-Array].
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constituents and two orientations submitted to an overall shear excitation has an analytical

solution. The Hashin principle states that

�̃� ( 𝑗𝜔) =
√
𝐺 (1) ( 𝑗𝜔)𝐺 (2) ( 𝑗𝜔) (11)

which implies

�̃� ( 𝑗𝜔) = �̃�𝑔

√
( 𝑗𝜔 + 1/𝜏 (1)𝑧 ) ( 𝑗𝜔 + 1/𝜏 (2)𝑧 )
( 𝑗𝜔 + 1/𝜏 (1) ) ( 𝑗𝜔 + 1/𝜏 (2) )

(12)

with

�̃�𝑔 =

√
𝐺

(1)
𝑔 𝐺

(2)
𝑔 , �̃�𝑟 =

√
𝐺

(1)
𝑟 𝐺

(2)
𝑟 and 1/𝜏 (𝑘)𝑧 = 𝐺

(𝑘)
𝑟 /(𝐺 (𝑘)

𝑔 𝜏 (𝑘) )

where 𝜏
(𝑘)
𝑧 is the relaxation timewhich appears in the zeros of the rational function in Equation (12).

Real and imaginary parts of the effective complex modulus �̃� can be calculated exactly from

Equation (12) and directly compared to the numerical FFT solver outputs in virtual DMA mode.

Figure 1 plots the results in the case of a strong contrast in mechanical propertiesÐsame values as

those reported by Suquet (2012). Table 1 synthesizes the input and output data.

10−3 10−2 10−1 100 101 102
20

25

30

(a)

ω (rad/s)

G̃
′ (
M
P
a)

Virtual DMA

Effective identified Y (jω)
Effective exact G̃(jω)

10−3 10−2 10−1 100 101 102
0

2

4

(b)

ω (rad/s)

G̃
′′
(M

P
a)

Figure 1 Validation of the CraFT virtual DMA implementation. Comparison to the (a) exact effective real (storage)
and (b) imaginary (loss) moduli: �̃� ( 𝑗𝜔) defined in Equation (12) and 𝑌 ( 𝑗𝜔), in Equation (13).

Instantaneous (glassy) modulus Relaxed modulus Relaxation times

Constituent 1 10 9 5

Constituent 2 100 50 0.05

Effective exact �̃� �̃�𝑔 =

√
1000 �̃�𝑟 =

√
450 𝜏 (1) = 5 𝜏 (2) = 0.05 𝜏

(1)
𝑧 = 50/9 𝜏

(2)
𝑧 = 0.1

Effective identified model �̃�𝑔 = 31.62 �̃�𝑟 = 21.21 𝜏𝑝1 = 4.97 𝜏𝑝2 = 0.059 𝜏𝑧0 = 4.42

Table 1 Inputs/Outputs of the checkerboard test case. Units: relaxation times in second and moduli in MPa.

It is clear from Figure 1 that the virtual DMA computations are in perfect agreement with

the exact solution. One of the virtual DMA advantages can already be illustrated here: inverse

parameter identification (i.e. metrology of material parameters) can be applied to virtual DMA

outputs, providing an effective model has been selected. From theoretical considerations (Gallican

et al. 2017), it is known that the effective material built from two SLS-type constituents does not

follow this rheological behavior itself. This is clearly evidenced in Figure 1. The two-order-

of-magnitude ratio between 𝜏 (1) and 𝜏 (2) implies a marked spectrum of the dissipative (loss)

modulus. An effective model could be proposed through the collocation method applied with a

two-term Prony series. In Laplace domain, this leads to a rational admittance 𝑌 ( 𝑗𝜔) having two

poles (the relaxation times) and one zero:

𝑌 ( 𝑗𝜔) = 𝐺𝑔 + (𝐺𝑟 −𝐺𝑔)
(1 + 𝑗𝜔𝜏𝑧0)

(1 + 𝑗𝜔𝜏𝑝1) (1 + 𝑗𝜔𝜏𝑝2)
. (13)
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Table 1 gives the virtual measurements of the material parameters of this model as resulting

from a least-square minimization of the residuals between a (here virtual) DMA experiment and

the candidate effective model, see Equation (13). The agreement is perfect which means that the

mathematical structure of the collocation model (Biot model) catches all the physical content of

the signal and would be able to predict the response of the composite material to any input

excitation. The moduli �̃�𝑔 and �̃�𝑟 are perfectly recovered and the relaxation times (the two poles

of the admittance fraction in this case) are shown to be very close to those of the constitutive

materials.

3 Virtual DMA Applications and Interest

3.1 Application 1: Heterogeneous dynamics in glass/amorphous polymers

3.1.1 The heterogeneous problem

The composite material of interest in this section was investigated by Masurel et al. (2015) as an

academic approach to understand dynamical heterogeneities which take place in amorphous

polymers in the glass transition. We named it a multi-material composite as it is built from a grid

of elements with individual behavior being of Standard three-parameter Maxwell rheological type,

see Figure 2(a). It can be considered as a kind of construction of an averaged object representing

the entire system at all sub-scales. Observed relaxation processes in disordered systems reveal a

kind of universal nature, with now well identified features and/or explicative ideas (cooperative

dynamics, cluster formations, energyścriterion arguments...). This multi-material composite aims

at catching some of these general features from basic ingredients that are used in a composite

view. This is fully motivated by experimental evidences that non-exponential responses of a

macroscopic sample results for example from a relaxation-rate distribution of independently

randomly sized mesoscopic regions (Jurlewicz and Weron 2002). Here the domains are of identical

10−5
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(b)
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Gд −Gr
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16 voxels has one
relaxation time τi

Figure 2 Heterogeneous multi-material definition with a total virtual DMA simulation over 25600 voxels. (a)
Heterogeneous multi-material of 40 × 40 domains. Each domain 𝑖 has a Standard Linear Solid Maxwell
rheological behavior with uniform glassy and rubber moduli over the RVE. Randomly distributed relaxation
times 𝜏𝑖 . (b) Zoom over the multi-material: each domain is made of 16 voxels.

sizes but dynamics on each domain are randomly distributed. A few identical elements can be

associated to form a domain 𝑖 having a constant relaxation time 𝜏𝑖 (same mechanical response)

and domains are associated randomly to build the polymer coarse-grained model. The spectrum

of relaxation times has been chosen according to a normal distribution of width𝑤 (in s) with

maximum centered on 𝜏max = 1 s and in logarithmic scale. The glassy and rubber elastic constants

(𝐺𝑔 and𝐺𝑟 respectively), being identical for all domain, they applied then to the homogenized

composite. This is a strong assumption of the approach which has the advantage to isolate the

only contribution of heterodynamics to the homogenized relaxation spectrum (if any).

The objective of the study was to observe the effective behavior of such model in terms of

effective relaxation spectrum as well as the local mechanical fields interplay. To this aim, FE

simulations were performed using Zébulon code in 2D plane strain condition (frame axis 1, 2),
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assuming incompressibility with a bulk modulus set to 𝐾 = 105𝐺𝑔, periodic boundary conditions,

and a pure shearing test (imposed macroscopic shear step strain 𝜀12 = 0.01).

We must point here that the study produces time domain simulation and therefore does not

give a direct way of computing the complex, frequency dependent, modulus 𝐺∗(𝜔). Masurel et al.

(2015) had to post-process the simulated data in order to identify the frequency complex modulus

from the time response of the macroscopic ⟨𝜎12(𝑡)⟩.

3.1.2 Spectral solver direct solution compared to other theoretical published results

Craft solver in harmonic and parallelized version was used to perform calculations directly in

frequency domain (virtual DMA). The exact same inputs have been used as those given by Masurel

et al. (2015) and Figure 2(a) shows an example of the random relaxation times assignment over

the voxels used in the FFT solver. In Figure 3 are presented the real and imaginary parts of

the complex modulus for various cases of the ratio 𝐺𝑔/𝐺𝑟 as published by Masurel et al. (2015)

(dotted curves) and the present results obtained with a 3D spectral solver (solid lines). The results

−6 −4 −2 0 2 4 6

−6

−4

−2

0

∝ ω
2

(a)

log(ωτmax)

lo
g
(G

′ /G
д
) Gд/Gr = 107

Gд/Gr = 106

Gд/Gr = 105

Gд/Gr = 104

Gд/Gr = 103

Gд/Gr = 102

Gд/Gr = 10

Spectral solver

−6 −4 −2 0 2 4 6

−6

−4

−2

0

∝ ω Asymptotic behavior
for vanishing relaxed state

(b)

log(ωτmax)

lo
g
(G

′′
/G

д
)

Figure 3 CraFT virtual DMA simulations of heterogeneous dynamics. (a) Storage and (b) dissipative moduli versus
frequency for various contrasts 𝐺𝑔/𝐺𝑟 in the glassy and relaxed moduli. Data from (Masurel et al. 2015).

are very close also some differences can be observed for large 𝐺𝑔/𝐺𝑟 ratio which constitutes the

most severe case to simulate. It is not useful here to discuss the origin of such discrepancies

because they can be numerous. It can just be underlined that:

1. The spectral solver is much more adapted to the multi-material case presented here than FE

simulations as the spectral solver directly proceeds on the cubic (or squared) voxels. There is no

error introduced here through some meshing of FE type (edge effects, location of quadrature

nodes...) as the geometry of the problem is perfectly respected into the FFT scheme. This means

that no errors can be made due to the spatial resolution considered. In the FE approach, on the

contrary, the authors had to perform a preliminary sensitivity analysis to obtain a representative

multi-material which preserves accessible computation times. No such insurance is required in

the FFT approach.

2. As already said, the procedure to obtain the complex modulus is direct with the FFT solver and

indirect in the FE approach, which must be coupled to the identification of a discretized weighted

function.

Some errors are introduced in each of this feature specific to the FE approach and precludes

any further investigation at this stage. Note that 3D simulations were probably beyond reach

with FE approach whereas they can be done in very reasonable CPU times with the FFT solver.

For the same test case, a comparison is also given in Appendix A regarding simulations in time

domain (stress relaxations).

3.1.3 Convenience of virtual DMA

The direct results of the virtual DMA spectral solver can be very useful in such kind of applications

to gain insight about physical theories of disordered structures. The multi-material proposed

by Masurel et al. (2015) aimed at offering some alternative modeling of disordered microstructures

in order to understand complex cooperative phenomena during a relaxation test (of any kind). The
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DMA observables virtually obtained here can now be confronted to physical models established

mainly from microscopic and statistical considerations in order to see if some consistency can be

achieved from both approaches. Such types of physical models are plethora in the literature and

for a pure pedagogical objective, we will here focus on two of them: the HN model (Havriliak Jr.

and Havriliak 1995) and the JPC model established by Cavaille et al. (1989).

HN model Initially proposed on empirical basis as a fitting model for DMA outputs (real and

imaginary components of the material relaxation function in frequency domain) obtained on

complex systems, this model further receives physical significance from probabilistic approaches

to relaxation phenomenon (Jurlewicz and Weron 2002).

The HN relaxation function has the analytical expression

𝐺∗
HN(𝜔) =

1

(1 + ( 𝑗𝜔/𝜔𝑀 )𝜈 )𝛾 (14)

where 𝛾 and 𝜈 are non-integer coefficients.

JPC model This model comes from a molecular kinetic theory for the rheology of glass, which

is considered valid in its extension to amorphous polymers and is twofold.

1. Physical mechanisms associated to uncorrelated rotational-transitional motions of molecules

within a frozen bath of randomly distributed high energy sites. Assumed of a fast character, they

generate an anelastic deformation which characterizes the so-called 𝛽 relaxation.

2. Physical mechanisms associated to cooperative, but hierarchically constrained, motions of cluster

of molecules (referred to as shear microdomains in the paper for additional reasons). Assumed of

slow character, they generate an irrecoverable deformation which characterizes the so-called 𝛼

relaxation.

These mechanisms are fairly well recognized in the glass material scientific community, and

have obviously been considered by Masurel et al. (2015) to propose such kind of heterodynamics

modelling. It is then naturally considered here as capable to treat relaxation correctly regardless

of the precise nature and scale of local interactions. As it offers a direct formulation of real

and imaginary moduli as function of frequency, we can illustrate the interest of virtual DMA

computations to confirm or validate assumptions introduced in physical approaches. The

rheological equations read

𝐺 ′
JPC(𝜔) =

𝐽 ′(𝜔)
𝐽 ′(𝜔)2 + 𝐽 ′′(𝜔)2

+𝐺𝑅 and 𝐺 ′′
JPC(𝜔) =

𝐽 ′′(𝜔)
𝐽 ′(𝜔)2 + 𝐽 ′′(𝜔)2

(15)

where the terms 𝐽 ′(𝜔) and 𝐽 ′′(𝜔) are the sums of two contributions (𝛽 and 𝛼 relaxations)

𝐽 ′(𝜔) = 𝐽 ′𝛽 +
1

𝐺𝑔

[
1 + (𝜔𝜏𝑚)−𝜅 cos

𝜅𝜋

2
+𝐶 (𝜔𝜏𝑚)−𝜉 cos

𝜉𝜋

2

]
(16a)

𝐽 ”(𝜔) = 𝐽 ′′𝛽 + 1

𝐺𝑔

[
(𝜔𝜏𝑚)−𝜅 sin

𝜅𝜋

2
+𝐶 (𝜔𝜏𝑚)−𝜉 sin

𝜉𝜋

2

]
(16b)

where 𝐽 ′
𝛽
and 𝐽 ′′

𝛽
are provided by Cavaille et al. (1989, Equation (27)) along with all additional

necessary information. Formally, this model reaches an amount of ten parameters which would

necessitate a very detailed sensitivity analysis study if any strong and metrological application to

real data is required. Here we will perform an inverse parameter estimation without any prior

sensitivity analysis considering that

1. some of them are known (𝐺𝑔,𝐺𝑟 which can be identified from low and high frequency asymptotes

of the real and imaginarymoduli but are known here as the inputs of the virtual DMA computations,

𝑇𝑔 the glass transition temperature of the polymer),

2. the others respect realistic physical numerical values,

3. no noise was added to virtual DMA data.

Figure 4 compares both HN and JPC models in their adjustment performance to the virtual

DMA results obtained on the multidomain material and for the case 𝐺𝑔/𝐺𝑟
= 103. Adjustment of
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Figure 4 Virtual DMA outputs on the
heterogeneous dynamics system:
(a) Cole-Cole plot
(b) storage modulus
(c) dissipative modulus
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the models to the virtual DMA data is obtained through a Least-Square minimization of the

residuals norm, considering either a simplex or Levenberg-Marquardt algorithm in order to check

the good behavior of the parameter estimation process (sensitivity to initial values, stability

of the results). Input parameters for virtual DMA simulations of the elastic unrelaxed 𝐺𝑔 and

relaxed 𝐺𝑅 moduli (row (1) in Table 2) are considered as known parameters in the Parameter

Estimation Problem (PEP) for both the HN and JPC models. As a result, all supplementary

identified parameters are involved in the sole modeling approach of the relaxation(s) kinetics

(rows (2) and (3)). Note that in the JPC model, the parameter 𝜏max refers to the kinetics of the 𝛽

relaxation, the characteristic time associated to the 𝛼 relaxation being explicitly absent from the

parameters of the model but implicitly present and related to it through an assumption that

parameter 𝜏𝛼 = 𝜏max𝛽 (𝐴𝛼𝐺𝑔/𝜅)−1/𝜅Ðsee (Cavaille et al. 1989, Equation (48)).

Figure 4(b) and Figure 4(c) plot the real and imaginary components, respectively, of the

complex equivalent modulus at convergence of the PEP as a function of frequency. Figure 4(a)

shows the corresponding Cole-Cole representation. It is clear that the HN model is unable to

describe the outputs of virtual DMA simulations. The Cole-Cole plot especially brings out this

deficiency. On the contrary, the JPC model captures the heterodynamics approach much more

precisely. Parameters identified for the JPC model (row (3) in Table 2) can be seen to be very close

or at least in the same order of magnitude as those considered for the simulation of the generic

amorphous polymer in (Cavaille et al. 1989). This finally confirms that the ingredients used to

simulate virtual DMA on a glassy system model are in phase with the ideas of physicists on the

underlying mechanisms and demonstrate from our point of view all the benefits that can be

drawn from spectral solvers used in virtual DMA mode.

3.2 Application 2: Virtual versus experimental DMA on polystyrene/glass beads
composites

This second example concerns now a material which is a particulate composite made of glass

beads (GB) considered to be elastic and embedded in a viscoelastic matrix of Polystyrene (PS).

Experimental DMA results have been obtained with a temperature sweep at a given frequency.

A temperature variation directly affects the relaxation time spectrum of the matrix and the

overall composite behavior. Around the glass transition, microstructural configuration changes
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Virtual DMA data

Input data 𝐺𝑔 𝐺𝑟 𝜏max 𝑤

(1) 1 10−3 1 2

HN model

Known parameters 𝐺𝑔 𝐺𝑟

1 10−3

Identified parameters 𝜏max 𝜈 𝛾

(2) 0.244 0.532 0.678

JPC model

Known parameters 𝐺𝑔 𝐺𝑟 𝑇𝑔

1 10−3 355

Identified parameters 𝜏max 𝜅 𝜒 𝐴−1
𝛼 𝐴−1

𝛽
𝑈 Δ𝑈

(3) 0.156 0.37 0.75 0.29 0.21 55 25

(4) (Cavaille et al. 1989) 8 0.3 0.95 0.3 0.1 60 5

Table 2 Input parameters for the virtual DMA heterodynamics approach and the parameter estimated for the HN
and JPC models. (4) Values considered in (Cavaille et al. 1989) for a generic amorphous polymer. Units: 𝐺𝑔

and𝐺𝑟 in GPa, 𝐴−1
𝛼 and 𝐴−1

𝛽
in GPa−1,𝑈 and Δ𝑈 in kJ/mol;𝑤 : width of the normal distribution of times 𝜏𝑖 .

occur and probing kinetic response times makes DMA a very sensitive and adapted tool. All

experimental data collected for this part were published in a series of three papers by Alberola

and collaborators (Agbossou et al. 1993; Alberola and Bergeret 1994; Alberola and Mele 1996) and

reported in terms of storage modulus and loss tangent variables. As a consequence, this example

will first show how the virtual DMA code can work with tabulated pairs (real and imaginary

parts) informing about the material behavior at each temperature. Secondly it will again illustrate

the efficiency of a spectral code to produce either 2D or 3D DMA simulations for any type of

composites from the knowledge of the individual constitutive materials. Finally, it will show that

virtual DMA, as a computational tool applying on composite microstructures which mimic the

topological reality in the best way, can either lead to refute previous theories or effective models

or to cast doubt on the experimental data (which can advantageously lead to reconsider the

metrology associated to its apparatus or the possible source of bias).

3.2.1 Data brought by experimental DMA

The DMA experiments on PS/GB particulate composites were conducted on a Metravib equipment.

The aim was to check the modeling abilities of homogenization approaches of Generalized

Self-Consistent (GSC) type. These later were based on available approaches in the elastic

framework and extended to viscoelastic behavior through the correspondence principle.

In (Agbossou et al. 1993, Figures 1 and 7), DMA data are given for neat PS in terms of storage

modulus, tan𝛿 and complex Poisson coefficient respectively. These data have been digitized

to provide (𝐸∗, 𝜈∗) or, after conversion, (𝐾∗, 𝜇∗) for implementation in CraFT solver within a

tabulated format. Errors have certainly been introduced in this process. The main outputs of

virtual DMA reported here will show that they have no impact on the results, those being rather

fully determined by the extrapolation made by Agbossou et al. (1993) to produce experimental

Poisson coefficient values.

These data are available in the 25-185 °C temperature range, 5-100Hz frequency range, for

composites with 𝑓𝑣 = 6 %, 15 %, 21 %, 35 %, 50 % volume fraction of glass beads, in two different

size distributions: 𝑑1 = 1-45 µm and 𝑑2 = 70-110 µm. Unfortunately, no precise information is

known regarding the real topology of the microstructures obtained from these distributions. At

large volume fractions, aggregates or clusters of particles can have been formed, with unknown

packing arrangement, in possible anisotropic configurations, etc. (Alberola and Mele 1996). The

authors also mentioned an existing porosity of about 8 vol % in the specimen. This of course

precludes perfectly realistic simulations, yet easily achieved with spectral solvers. Virtual DMA

simulations will then be performed assuming a given topology and as a result some discrepancies

can be expected. Regarding the constituent mechanical properties, ultrasonic measurements have
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provided elastic constants of the polymer matrix with assumed high accuracy (𝐸 = 3.69GPa,

𝐺 = 1.38GPa, 𝜈 = 0.33) and at room temperature the DMA results are in accordance with them.

Note that DMA technique provides only indirectly the intrinsic moduli through overall rigidity

measurements, which depend on the type of mechanical configuration (tension, flexion) and on

length dimensions. In the absence of any details about that point, we observe that the authors

report a good consistency between DMA data and US measurements. The glass transition

temperature of PS is about 100 °C. Regarding GB, elastic constants are given as 𝐸 = 73GPa and

𝜈 = 0.2.

Virtual DMA isochronal scan simulations are performed directly from the knowledge of the

pair (𝐸 ′, tan𝛿) versus temperature at 5Hz for the PS matrix, as measured via DMA by Agbossou

et al. (1993, Figures 1(a) and 1(b)), and the knowledge of a given distribution size (𝑑1 or 𝑑2) and

given volume fraction of glass beads 𝑓𝑣 . Note that the log(𝐸 ′′) curve was not made available by

the authors for pure PS but available for all types of composites. As a result, and because tan𝛿

tends asymptotically to 0 at low temperatures (At 5Hz and far from the transition region, a

pure elastic behavior is expected.), the data collected from the figures are obviously affected by

artifacts which will impact the calculated imaginary moduli of the composites.

3.2.2 Conclusions drawn from Alberola and collaborators

In the above-mentioned papers, experimental data deliver the following observations.

· As the volume fraction of particles increases (from 0 to 50 % in their study),

(i) the magnitude of mechanical relaxation characterized by the maximum value of the tan𝛿 peak

decreases;

(ii) a shift of the tan𝛿 peak towards higher temperatures is reported. This effect is not obvious from

the data (Agbossou et al. 1993, Figure 3(c)) and could result from a small experimental bias (with

regard to the temperature sweep and the thermalization of the specimen for example);

(iii) both glassy and relaxed moduli at low and high temperatures respectively show an increase.

· At constant volume fraction,

(iv) the increase in average size of the particles (𝑑1 → 𝑑2) results in an increase in the tan𝛿 peak

maximum (dissipation), or the reinforcement effect increases with decreasing the size of the

particles. We have (𝐸𝜈𝑇 )𝑑1 > (𝐸𝜈𝑇 )𝑑2 and (tan𝛿)𝑑1 < (tan𝛿)𝑑2 . Size effects depend obviously on

the nature of the matrix/fillers couple and the review paper by Fu et al. (2008) reports for example

that the modulus of a composite with high volume fraction of GB in an epoxy resin is nearly

insensitive to size effects.

A GSC mean field theoretical approach (Kerner’s and Christensen and Lo’s models for the

bulk and shear moduli respectively) was used in complex variables to explain these data. Only

the observed fact (iii) was reproduced by the model, based on a constant and real valued Poisson

ratio (whatever its value between the low temperature 𝜈 = 0.33 and high temperature 𝜈 → 0.5).

Especially, behaviors (i) and (ii) were not captured by the models: drop in maximum and shift in

temperature of tan𝛿 with an increase in volume fraction of GB (Agbossou et al. 1993, Figures 5

and 6). This led the authors to invoke a complex-valued Poisson coefficient and a strategy to

determine it on the considered temperature range. This point will deserve a large discussion in

the next section.

3.2.3 Virtual DMA results and implications regarding a comprehensive analysis of the role

played by the Poisson ratio of the matrix

DMA simulations of the particulate composite are based on a synthetic material created with the

Random Sequential Algorithm. For large volume fractions (up to 50 %), this latter is combined

with a metropolis algorithm to reduce computation times. Note that without additional reported

information, the two size distributions of the particles are considered as Gaussian. The chosen

𝑅max/𝑅min ratio and volume fraction 𝑉𝑓 allow distributing a number of spheres 𝑁 of mean radius

𝑟mean in a square box of unit dimensions.

Influence of the volume fraction of the particles Because this point was the major fact

discussed by Agbossou et al. (1993), we first present some results obtained with the virtual
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DMA solver along with the available experimental data. Virtual DMA simulations have been

performed for three temperature-independent matrix Poisson coefficients: 𝜈1 = 0.33, 𝜈2 = 0.49

and 𝜈3 = 0.4999. Note that the values 0.49 and 0.4999 are selected to represent the incompressible

behavior expected in rubbery state (at high temperature) but without any possible precise

experimental confirmation. Figure 5(a) and Figure 5(b) compare experimental and simulated data

for the storage modulus and the loss angle tangent in the case of a size distribution 𝑑1. The
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Figure 5 Comparison of virtual DAM simulations and DMA experiments for two volume fractions. (a) Storage
modulus and (b) loss tangent versus temperature. Distribution 𝑑1.

following observations can be made (same as for distribution 𝑑2).

1. For a volume fraction of 6 % of particles, virtual DMA solutions are very close to the experimental

data for the pure PS matrix. The latter data are used as input for the matrix properties so that

this result is expected. Any mean-field approach would lead to the same results, as a matter

of fact for small concentrations. Note that experimental data (full circles) nevertheless depart

substantially from the matrix data. This naturally results from a mismatch between the intrinsic

ideal character of theoretical models (whatever they are) and the experimental conditions actually

followed. On one hand, the deficiencies in the model could be relative to a lack of knowledge on

the specimen (porosity, aggregates, interphases, statistical distribution of sizes unknown...).

On the other hand, one could incriminate biases in the experimentation. Regarding DMA one

has to keep in mind that intrinsic measurements, like the real and imaginary moduli provided

here, are obtained through an overall stiffness measurement. They do already depend from an

identification model and its assumptions (stability in size, loading conditions through grips...).

Because this discrepancy arises only in the transition range between 110 °C-130 °C, a bias due to

the temperature regime could also be suspected, especially in the temperature sweep mode.

2. For a volume fraction of 50 % of particles, virtual DMA solutions produce a tan𝛿 curve very close

to the experimental ones with a strong peak drop at the transition temperatureÐcompare with

(Agbossou et al. 1993, Figures 5 and 6). The computations show also a very high sensitivity to

the value of the Poisson ratio: considering 𝜈2 or 𝜈3 values for the incompressible state highly

affects the solution. The same sensitivity was shown previously when computing bounds of the

homogenized bulk modulus, see (Gibiansky and Lakes 1993, Figure 4). These two results clearly

escape to the mean-field approach (‘GSC model’ curve reported in Figure 5(b), quasi-insensitive

to the Poisson ratio). In virtual DMA solutions with constant real Poisson ratio, experimental

data are well described by the value 𝜈2 = 0.49 for both the storage modulus and loss angle. It is

worthwhile to note that this sensitivity logically begins only as the material enters into the

vitreous transition i.e. above temperatures of 110 °C, when the mechanical properties of the PS

matrix drastically decreases towards the rubber state. Thus, the value of 0.49 is very sounded.

The temperature dependence of the Poisson ratio is taken into account in the next subsection and

confirms that point.

3. The increase in volume fraction of glass beads makes both glassy and rubber moduli greater at low

and high temperature respectively. This fact was the only one observed similarly with mean-field

GSC approaches (‘GSC model’ curve in Figure 5(a)). However, DMA simulations produce a
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slightly higher reinforcement at low temperature compared to the experiment. The porosity of

8 % considered by the authors as a result of the composite elaboration process can explain this

fact. Note that according to theoretical simulations by Remillat (2007, Figure 2), our ratio of

elastic moduli particle/matrix is 20 and we would expect at this volume fraction of particles a

2.5 factor gain in stiffness. Virtual DMA gives an homogenized elasticity of about 9.8GPa at

60 °C for a 50 % volume fraction which falls exactly as 2.5 × 3.7GPa. This again could confirm a

pretty good consistency of the virtual DMA predictions and consequently that the discrepancies

with experimental data may primarily be due to a specimen microstructure mismatch between

idealized and real composites. Regarding the behavior of the storage modulus at high temperature,

it can be clearly seen in Figure 5(a) that the GSC model underestimates its value when compared

to virtual DMA.

Virtual DMA thus directly confirms observations (i) and (iii), without any requirement of a

Poisson coefficient being a complex quantity, the central argument of the paper by Agbossou

et al. (1993), to correct the model-experiment inconsistency at high volume fraction of particles.

However, their two-phase model (Christensen and Lo 1979) clearly overestimates the maximum

of tan𝛿 peakÐAgbossou et al. 1993, Figure 8(c) and GSC model in Figure 5(b). Later in (Alberola

and Mele 1996), observation (i) was reproduced theoretically using a four-phase model (Hervé

and Zaoui 1993), invoking possible aggregation of particles at high volume fractions (50 %) but

considering a Poisson coefficient as a real quantity. Again, it is clear that virtual DMA strongly

questions this assumption as it is not required here in our simulations. The better agreement

obtained by the authors between experimental data and their model probably just results from

an increase in the degrees-of-freedom of the model, going from the two-phase to four-phase

self-consistent approach. Note also that the complex-valued Poisson coefficient extrapolated

by Agbossou et al. (1993) for the whole considered temperature range, when converted into

bulk and shear moduli (for introduction in the constitutive law of the Craft solver), produces a

negative real bulk modulus which is not physical.

Observation (ii) is not confirmed by the virtual simulations. The peak location of the

composite is totally determined by the tan𝛿 peak of the matrix (input data). It is an obvious

manifestation of the temperature determined physical transition of the matrix only and to

the known fact that a high damping of the compliant phase gives rise to high damping in the

composite although the moduli of this phase are much smaller in absolute value than the moduli

of the stiff elastic phase (Gibiansky and Lakes 1997). The loss factor curve of the mixture is ruled

by that of the matrix, regardless of the volume fraction, if the inclusion is either very stiff or very

soft. In that view, it extends the result established by Hashin (1970), according to which the

effective and matrix loss tangents are the same, but only very far from the transition temperature,

that is far from the tan𝛿 peak, and for very low tan𝛿 (weak viscoelastic effect). Our conclusion is

that the experimental-theoretical mismatch stems from the sole thermal aspects of the problem:

DMA experiments in temperature sweep mode assumes a quasi-stationary state; mechanical

simulations assume perfect thermalization of both phases.

Influence of the size distribution of the particles Simulations shown in Figure 6 were

performed for the two size distributions of the particles 𝑑1 and 𝑑2. Regarding experimental

observation (iv), virtual DMA simulations contradict this point. In the case of constant Poisson ratio

for the matrix equal to 0.49, we observe from the simulations that an increase in average size of the

particles at the same constant volume fraction (𝑓𝑣 = 50 %) increases the reinforcement: (𝐸𝜈𝑇 )𝑑1 <
(𝐸𝜈𝑇 )𝑑2 and (tan𝛿)𝑑1 > (tan𝛿)𝑑2 . This is the exact contrary of what is reported experimentally.

Note that this question could not have been addressed by Alberola and collaborators within

the Self-Consistent models they used (taking into account a volume fraction parameter but

no parameter relative to any particle size). For the two specimen at 50 % volume fraction and

distributions 𝑑1 or 𝑑2, the conclusion is then that the model can not explain the data when an

equal matrix Poisson ratio behavior is considered.

With some reasons given previously, an experimental bias could be invoked to explain this

conflict. But because it is clear from Figure 6 that the sensitivity to the Poisson ratio is of crucial

concern, the Poisson ratio of the matrix is now considered to vary with temperature (noted 𝜈𝑇 in

that case) according to a S-shape function, starting at 𝜈𝑇 = 𝜈1 at room temperature, and with an
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Figure 6 Storage modulus versus temperature.
Distributions 𝑑1 and 𝑑2 for volume
fraction 𝑓𝑣 = 50 %.
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asymptotic value 𝜈𝑇 at high temperature (180 °C) that is supposed to tend towards 1/2 because
the matrix tends to an incompressible behavior. This fact was demonstrated experimentally long

times ago in the works of Kono (1960) and Waterman (1963) with 𝜈𝑇 of PolyStyrene considered to

vary from 0.35 → 0.5 or 0.3 → 0.45 respectively for the two authors. If we apply the procedure

reported in (Agbossou et al. 1993) to reconstruct 𝜈𝑇 from experimental DMA data, with the

constraint 𝜈𝑇 → 𝜈2 = 0.49 and 𝜈𝑇 always considered as a real-valued quantity, it can be seen in

the plots of Figure 6 that the extreme sensitivity to the Poisson ratio could explain such conflict:

for a same volume fraction of GB, a Poisson ratio considered as varying with temperature and

𝜈𝑇 → 𝜈2 = 0.49 for distribution 𝑑1 leads to an overall curve of rigidity now surpassing the curve

obtained for distribution 𝑑2 with a Poisson ratio considered as constant and equal to 𝜈2 = 0.49.

DMA experimental data have been obtained up to 190 °C, a temperature still very far from the

fusion temperature where a drastic drop in modulus occurs. Hence the rubbery state can be

more or less established. Additionally, DMA experiments conducted under temperature sweep

condition impose a given temperature rate. Specimen with different size distribution for the

glass beads can easily produce slightly different thermal conductivity, a parameter which can

change substantially the thermal regime in sweeping mode and hence change the behavior

with respect to the incompressibility limit. The presence of voids in the highly concentrate

case (already discussed) can also affect this parameter. Anyway, if the reasons explaining this

possible conflict cannot be firmly established, on the other hand, this issue shows how virtual

DMA simulation can contribute to open avenues for reflection. In the present case, it suggests

strong investigations relative to the precise measurement of Poisson ratio of the matrix with

temperature, especially when it tends to a rubbery state.

Finally, as shown in the first example, outputs of virtual DMA in terms of mechanical

fields can be valuable to get deeper analysis of phase transition. We select in Figure 7 the

volumetric strain fields of the matrix, calculated for the same parameters as for Figure 6. Two

maps are shown, obtained for a temperature below (60 °C) and above (160 °C) the glass transition

temperature 𝑇𝑔 and for an input average stress of 1 Mpa. These fields are normalized with respect

to the longitudinal modulus as it changes drastically when crossing the transition zone. When

compared to the map at 60 °C, it can be seen that the volumetric strain obtained above 𝑇𝑔 tends

to a more homogeneous zero-value everywhere in the matrix, except in the very limited area

confined between two beads. Note that in this simulation, the Poisson ratio tends only to 0.49.

Figure 7(a) shows the temperature-dependent overall volumetric strain averaged over a selection

of ten different configurations along with the volumetric strains in both the GB and PS matrix

phases. The transition regime marks the decrease of both volumetric strains. In the GB, it tends to

zero within numerical precision when raising the temperature. In the matrix, it decreases strongly

of nearly one order of magnitude at the transition. It slightly increases beyond probably because

the matrix sustains the full imposed mechanical excitation and, as shown in the strain maps,

strong volume expansion may exist locally because Poisson’s ratio is not exactly equal to 0.5.
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Figure 7 Volumetric strain.
Same input data as Figure 6:
(a) Evolution with temperature
averaged over ten configurations
(b) Map at 𝑇 = 60 °C
(c) Map at 𝑇 = 160 °C
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4 Conclusion
The study presented here was intentionally based upon data provided in previously published

papers, either theoretical or purely experimental, to show the potentialities of virtual DMA. As a

simulation tool based on an FFT solver, it turns out to be a very competitive alternative path to

classical FEM in terms of computation times. For experimentalists, it offers a direct access to the

frequency-dependent observables of this widely used technique: storage and dissipative moduli,

loss tangent. For a given heterogeneous RVE, it provides at the same time the full-field strain or

stress maps, in either 2D or 3D, which can be valued to push forward our understanding of

its mechanical behavior. Due to a favorable precision/computation times ratio, it is expected

that in a near future, such codes will be able to perform inverse parameter identification on

the collected experimental data. Hence it will help to question the validity of homogenized

models or the experimental technique itself with regards to the way data are produced. But one

of the most interesting perspective that virtual DMA offers is maybe the possibility to check the

consistency of an idealized microstructure with respect to viscoelasticity. Based on MEB, X-ray

tomography, AFM or any other imaging technique of the microstructural organization of some

material, the complementary observation of the macroscopic behavior of this microstructure in a

DMA experiment, both real and virtual, will allow fixing this microstructure idealization as

consistent either in terms of morphological parameters (volume fraction of constituents, aspect

ratio of the phase...) and mechanical parameters (moduli, Poisson ratio, relaxation time spectra...).

Considering such a way to firmly assess the microstructure model, routes will then be open to

consider the variety of expected behaviors at a larger deformation range (plasticity, hardening,

damage...).
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A Simulation of local fields in the transient state case of stress relax-

ations. Comparison between CraFT spectral solver and FEM
The test case of Section 3.1 is considered (Masurel et al. 2015). The local behavior of the spectral

solver approach can also be compared to the FEM ones by comparing maps of the microdomain’s
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stress relaxations (simulations performed now in time domain for both numerical approaches).

The exact same behavior is obtained in terms of the various stages leading to the establishment of

a network of paths supporting the global stress, as illustrated in Figure A.1.
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Figure A.1 Calculated reduced shear modulus 𝜎𝑖
12
(𝑡)/⟨𝜎𝑖

12
(𝑡)⟩ of the macroscopic relaxation at different times: CraFT

[left] and (Masurel et al. 2015, Fig. 11) [right] (Reprinted (adapted) with permission. Copyright (2015)
American Chemical Society). Calculations performed with 𝐺𝑔/𝐺𝑟 = 103, 𝜇 = log(𝜏max) = 0,𝑤 = 2. 𝑡∗ = (a)
3 × 10−4, (b) 10−2, (c) 10−1, (d) 1, (e) 10, (f) 40, (g) 400, (h) 104, (i) 106.

CraFT (and FFT solvers more generally) appears then as a numerical way of obtaining

both harmonic (complex) and temporal simulations in the same tool and in a single simulation

run. DMA apparatus offer generally the additional possibility to perform creep or relaxation

tests. Based on such a set of composite experimental data, it is then possible to chain both

computations in complex and time variables in order to perform inverse identification of material

parameters. For such purpose, reduced computational times is of utmost importance. The

well-known performance of FFT solvers in this domain is increased in this perspective, and would

be undoubtedly a nice option for material scientists.
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