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We compare different models describing the buckling, post-buckling and vibrations of elastic beams in the

plane. Focus is put on the first buckled equilibrium solution and the first two vibration modes around it. In

the incipient post-buckling regime, the classic Woinowsky-Krieger non-linear model is known to grasp the

behavior of the system. It is based on the von Kármán approximation, a 2nd order expansion in the

rotation and vertical displacement of the buckled beam. But as the rotation and the vertical displacement

in the beam become larger, the Woinowsky-Krieger model starts to show limitations and we introduce a

3rd order model, derived from the geometrically exact Kirchhoff model. We discuss and quantify the

shortcomings of the Woinowsky-Krieger model and the contributions of the 3rd order terms in the new

model, and we compare them both to the Kirchhoff model. Furthermore, we show that the limit in the

validity range of the Woinowsky-Krieger model is only marginally affected by the slenderness ratio of the

beam. Different ways to nondimensionalize the models are compared and we believe that, although this

study is performed for specific boundary conditions, the present results have a general scope and can be

used as abacuses to estimate the validity range of the simplified models.

Keywords: nonlinearities, postbuckling, natural frequencies

1 Introduction
Every model is wrong (George 1976), but a good model is both accurate and easy to handle.

In mechanical engineering, a trade-off is usually made between accuracy and computability.

When looking at the deformation of elastic structures, simplification in the kinematics or

constitutive relations are for example performed to ease calculations. Here, we investigate

the post-buckling and vibration behavior of elastic beams using both geometrically exact and

approximate models. In particular, we question the validity of semi-linearized models and their

efficiency to capture the nonlinear response of elastic beams. The equations of motion for

extensible, geometrically-exact beams have been established by Kirchhoff (1876) and generalized

by Reissner (1972) to include shear effects. There are several recent textbooks devoted to nonlinear

structural models, see e.g. (Nayfeh and Pai 2004; Lacarbonara 2013; Luongo and Zulli 2013; Audoly

and Pomeau 2010; Dill 1992) for a nice historical analysis, and (Meier et al. 2019; Thomas et al.

2016; Cottanceau et al. 2017) for recent reviews on finite elements approaches and continuation

methods for elastic beams. Here, we deal with a nonlinear beam problem and account for

both bending and extensional deformations (while neglecting shear and rotational inertia).

Due to the difficulties to find exact solutions in the nonlinear case, approximate engineering

models have been formulated. These models rely on simplified kinematics, either linearized or

weakly nonlinear, and include a coupling between axial and bending motions. The so-called

Woinowsky-Krieger model (Woinowsky-Krieger 1950; Mettler 1951; Eringen 1952; Burgreen

1951) assumes a linearized curvature calculation and a von Kármán-type axial strain measure,

first introduced for the buckling of elastic plates (von Kármán 1907; Eisley 1964). This model

has been widely used in the literature and has shown its efficiency for computing approximate
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Comparison of the Von Kármán and Kirchhoff models for the post-buckling and vibrations of elastic beams

amplitude-frequency dependence of extensible elastic beams in the weakly nonlinear regime, see

for example (Ray and Bert 1969; Lou and Sikarskie 1975; McDonald 1991; Nayfeh and Mook 1995;

Nayfeh and Emam 2008; Thomas et al. 2016) and references therein. Furthermore, exact solutions

have been derived for the Woinowsky-Krieger model (Nayfeh et al. 1995). However, as mentioned

in (Gao 2000), it is based on a linearization of the transverse displacement equation, so that

computations of the nonlinear behavior of beams are only valid under certain conditions and for

small deflections. For the geometrically exact case, Kirchhoff’s equations for the extensible beam

have been reformulated by Pflüger (1964) who gave the exact buckling load of the extensible

column. Moreover, exact solutions for the equilibrium of extensible columns in term of elliptic

integrals have been derived, see for instance (Goto et al. 1990).

In this paper, we investigate the range of validity of the Woinowsky-Krieger beam model

by comparing it to the geometrically exact Kirchhoff model. We consider clamped-clamped

boundary conditions and analytically and numerically compute the planar equilibrium and

vibrations of a beam in a displacement-controlled loading. We use the Kirchhoff extensible

model in Section 2, and the Woinowsky-Krieger model in Section 3, to compute equilibrium and

vibrations in the post-buckling regime, and we then compare results from the two models in

Section 4. As the Woinowsky-Krieger model is only 2nd order, we derive in Section 5 a new

model, comprising third order terms, and we compare it to the two previous models. We discuss

our findings and conclude in Section 6.

2 The Kirchhoff model
We look at the planar equilibrium and vibrations of a beam in the post-buckling domain, as

illustrated in Figure 1. The beam has length 𝐿, with a homogeneous cross-section of area 𝐴 and

second moment of area 𝐼 , cast from a homogeneous and isotropic material of Young’s modulus 𝐸

and density 𝜌 . An important parameter is the slenderness ratio

𝜂 = 𝐼/(𝐴𝐿2) (1)

that becomes 𝜂 = (ℎ/𝐿)2/12 for a rectangular cross-section of width𝑤 and thickness ℎ. We adopt

the Euler-Bernoulli assumptions, that is we neglect shear deformations and rotational inertia,

which only become important in the high frequency domain (Timoshenko 1921). However, we

keep extensional deformations because in displacement-controlled setups, extension plays a

crucial role to describe the vibrations of the beam (Neukirch et al. 2012; Neukirch et al. 2014). The

beam is naturally flat, the reference configuration being along the horizontal axis. We use the

arc-length 𝑆 of the beam in its reference configuration as a Lagrangian variable, that is 𝑆 ∈ [0, 𝐿]
always. The beam is clamped horizontally at its left end 𝑆 = 0, which lies at the origin. The right

end at 𝑆 = 𝐿 is constrained to lie on the horizontal axis, with a horizontal tangent, see Figure 1.

An axial displacement 𝐷 is imposed and we compute the equilibrium shape and the vibrations
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Figure 1 Clamped-clamped beam with imposed axial displacement 𝐷 . Note that𝑉 = 𝑌 and𝑈 = 𝑋 − 𝑆 . The external
force at the right end has horizontal 𝑃 (𝑇 ) = −𝑁𝑥 (𝐿,𝑇 ) and vertical 𝑄 (𝑇 ) = −𝑁𝑦 (𝐿,𝑇 ) components, with
physical time 𝑇 .

around this shape. We then study how equilibrium and vibrations vary as 𝐷 is changed.

In this section, we present the extensible Kirchhoff model, which we tend to regard as the

reference with respect to which we compare the models of the subsequent sections. Kirchhoff’s
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Comparison of the Von Kármán and Kirchhoff models for the post-buckling and vibrations of elastic beams

framework uses the current position (𝑋,𝑌 ) and inclination angle 𝜃 as kinematic variables, and

the internal bending moment𝑀 and force vector (𝑁𝑥 , 𝑁𝑦) as stress variables. Linear bending
𝑀 = 𝐸𝐼 d𝜃/d𝑆 and stretching 𝑁𝜃 = 𝐸𝐴𝑒 constitutive relations are used, where 𝑒 (𝑆,𝑇 ) is the
extension of the beam and 𝑁𝜃 = 𝑁𝑥 cos𝜃 + 𝑁𝑦 sin𝜃 is the tension in the beam. The motion of

the beam is given by

𝑋 ′
= (1 + 𝑒) cos𝜃 𝑁 ′

𝑥 = 𝜌𝐴 ¥𝑋 (2a,b)

𝑌 ′
= (1 + 𝑒) sin𝜃 𝑁 ′

𝑦 = 𝜌𝐴 ¥𝑌 (2c,d)

𝐸𝐼𝜃 ′ = 𝑀 𝑀 ′
= 𝑁𝑥𝑌

′ − 𝑁𝑦𝑋
′ (2e,f)

𝐸𝐴𝑒 = 𝑁𝑥 cos𝜃 + 𝑁𝑦 sin𝜃 . (2g)

Every variable depends on both the arc-length 𝑆 and the time 𝑇 with the notations () ′ = d()/d𝑆
and ¤() = d()/d𝑇 . Unless otherwise stated, from now on, we work with non-dimensionalized

variables, that is we use 𝐿 as unit length, 𝐸𝐼/𝐿2 as unit force, and 𝜏 = 𝐿2
√

𝜌𝐴/(𝐸𝐼 ) as unit time.

Non-dimensionalized variables are written in lower case, e.g. 𝑥 = 𝑋/𝐿, or 𝑛𝑥 = 𝑁𝑥𝐿
2/(𝐸𝐼 ). Also

note that in the remainder Ω = 𝜔/𝜏 is the physical angular frequency in radians per second. The

non-dimensionalized version of System (2) is simply obtained by setting 𝐸𝐼 = 1, 𝐿 = 1, 𝜌𝐴 = 1,

and 𝐸𝐴 = 1/𝜂:

𝑥 ′
= (1 + 𝑒) cos𝜃 𝑛′

𝑥 = ¥𝑥 (3a,b)

𝑦 ′
= (1 + 𝑒) sin𝜃 𝑛′

𝑦 = ¥𝑦 (3c,d)

𝜃 ′ =𝑚 𝑚′
= 𝑛𝑥𝑦

′ − 𝑛𝑦𝑥
′ (3e,f)

𝑒 = 𝜂 (𝑛𝑥 cos𝜃 + 𝑛𝑦 sin𝜃 ) (3g)

with () ′ = 𝐿 d()/d𝑆 and ¤() = 𝜏 d()/d𝑇 , see (Neukirch et al. 2012; Neukirch et al. 2014) for more

details. We stress that this beam model (3), and thus its solution, solely depends on 𝜂, defined

in Equation (1).

The equilibrium solution (𝑥𝐸, 𝑦𝐸, 𝜃𝐸,𝑚𝐸, 𝑛𝑥𝐸, 𝑛𝑦𝐸, 𝑒𝐸) is found by solving Equation (3) with

¥𝑥 = 0 and ¥𝑦 = 0. Once the equilibrium is known, we compute vibrations by using the ansatz

functions

𝑥 (𝑠, 𝑡) = 𝑥𝐸 (𝑠) + 𝛿𝑥 (𝑠) cos𝜔𝑡,
𝑦 (𝑠, 𝑡) = 𝑦𝐸 (𝑠) + 𝛿𝑦 (𝑠) cos𝜔𝑡,

. . .

(4)

with 𝛿 ≪ 1 and 𝜔 , the non-dimensionalized angular frequency. Injecting Equation (4) into

System (3) and keeping only first order terms in 𝛿 yields the following linear differential system

for the vibration modes 𝑥 , 𝑦, 𝜃 , �̄�, 𝑛𝑥 , 𝑛𝑦 :

𝑛′
𝑦 = −𝜔2𝑦 �̄�′

= 𝑛𝑥𝑦
′
𝐸 − 𝑛𝑦𝑥

′
𝐸 + 𝑛𝑥𝐸𝑦 ′ − 𝑛𝑦𝐸𝑥

′

𝑛′
𝑥 = −𝜔2𝑥 𝑦 ′

= (1 + 𝑒𝐸) cos𝜃𝐸𝜃 + 𝑒 sin𝜃𝐸

𝜃 ′ = �̄� 𝑥 ′
= −(1 + 𝑒𝐸) sin𝜃𝐸𝜃 + 𝑒 cos𝜃𝐸

(5)

with 𝑒 = 𝜂 [𝑛𝑦 sin𝜃𝐸 + 𝑛𝑥 cos𝜃𝐸 + (𝑛𝑦𝐸 cos𝜃𝐸 − 𝑛𝑥𝐸 sin𝜃𝐸)𝜃 ] . The clamped-clamped boundary

conditions read

𝑦𝐸 (0) = 0 = 𝑦𝐸 (1), 𝜃𝐸 (0) = 0 = 𝜃𝐸 (1), 𝑥𝐸 (0) = 0 = 𝑥𝐸 (1) − 1 + 𝑑 (6a)

𝑦 (0) = 0 = 𝑦 (1), 𝜃 (0) = 0 = 𝜃 (1), 𝑥 (0) = 0 = 𝑥 (1) (6b)

where 𝑑 = 𝐷/𝐿 is the non-dimensionalized axial displacement. We note that in this displacement-

controlled setup, the position 𝑥𝐸 (1) is fixed, but the applied axial 𝑝 (𝑡) and shear 𝑞(𝑡) forces vary
with time, and we have 𝑛𝑥 (1, 𝑡) = −𝑝 (𝑡) and 𝑛𝑦 (1, 𝑡) = −𝑞(𝑡), see Figure 1.

We are eventually left with a nonlinear boundary value problem (3), (5) and (6) that we solve

numerically for a beam with 𝜂 = 1/4800 (that is 𝐿 = 20ℎ in the case of a rectangular cross-section).
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We focus on the first buckling mode, which has 𝑛𝑦𝐸 = 0 (Domokos 1994; Neukirch et al. 2014),

and on the first two vibration modes around it. We used the ordinary differential equations

integrator of the Mathematica software, coupled with a shooting technique, to solve the boundary

value problem, and a pseudo arc-length continuation procedure to compute the evolution of the

solution as the parameter 𝐷/𝐿 is varied. Curves in Figures 2, 3, 4 and 5 were generated in few

minutes.
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Figure 2 Post-buckled equilibrium of the clamped-clamped beam for 𝜂 = 1/4800: Kirchhoff model (Ki.), Woinowsky-
Krieger model (WK), order 3 model of Section 5 (Order 3), and fourth order development of 𝑝𝐸 and 𝑑
(Ki.dev 4). Equilibrium shape for 𝑑 = 0.2. Both the order 3 and Woinowsky-Krieger models tend to the
classical Euler value 𝑃𝐸𝐿

2/(𝐸𝐼 ) = 4𝜋2 ≃ 39.5 at 𝐷/𝐿 = 4𝜋2𝜂.
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Figure 3 Post-buckled equilibrium of the clamped-clamped beam: transverse displacement at midspan 𝑦𝐸 (1/2) vs
axial displacement 𝑑 for 𝜂 = 1/4800. Kirchhoff model (Ki.), Woinowsky-Krieger model (WK), order 3
model of Section 5 (Order 3), and 4th-order development of 𝑦𝐸 (1/2) and 𝑑 (Ki.dev 4). Inset: Equilibrium
shape for 𝑑 = 0.8.

In Figure 2, we plot the external axial force 𝑝𝐸 as a function of the axial displacement 𝑑 .

In Figure 3, we plot the transverse displacement at midspan 𝑦𝐸 (1/2) as a function of the axial

displacement 𝑑 . In Figures 4 and 5, we plot the angular frequency 𝜔 of the first two vibration

modes, as a function of the axial displacement 𝑑 . These plots will be analyzed in Section 4. Please

see the supplementary material (Neukirch et al. 2021) for plots with different values of 𝜂.

3 The Woinowsky-Krieger model
We now turn to a simplified model to describe the same equilibrium and vibrations experiment.

This model, which was introduced in (Woinowsky-Krieger 1950) to correct the fully linear

approach, includes the axial/bending coupling that arises when the transverse displacement of

the beam becomes finite. This model was also introduced earlier in the German book by Kirchhoff

(1876, Eq. (16), p. 441).
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Figure 4 Vibration curve for the first vibration mode around the post-buckled equilibrium solution and 𝜂 = 1/4800.
Kirchhoff model (Ki.), Woinowsky-Krieger model (WK), order 3 model of Section 5 (Order 3). Inset:
equilibrium shape and extremal modal shapes of the first vibration mode for 𝑑 = 0.2.
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Figure 5 Vibration curve for the second vibration mode and 𝜂 = 1/4800. Kirchhoff model (Ki.), Woinowsky-Krieger
model (WK), and order 3 model of Section 5 (Order 3). Inset: equilibrium shape and extremal modal shapes
of the second vibration mode and 𝑑 = 0.2.

It is based on the same assumption as the one used by von Kármán for the statics of plates (von

Kármán 1907), which consists in keeping only the first nonlinear term in the expansion of the

axial strain 𝑒 as a function of the cross-section rotation 𝜃 . Namely, the term cos𝜃 in Equation (3a)

is treated up to the second order, leading to

𝑒 = 𝑈 ′ + 1

2
𝜃 2, (7)

with 𝑈 (𝑆,𝑇 ) = 𝑋 (𝑆,𝑇 ) − 𝑆 , the axial displacement of the cross-section. This assumption

is energetically consistent with the approximation which replaces Equation (3f) with 𝑁𝑦 =

−𝑀 ′ + 𝑁𝑥𝑌
′ (see Section C.2 for a variational approach to this model). As a second assumption,

the axial inertia is neglected in this model. From Equation (3b), this omission leads to a uniform

axial force, 𝑁𝑥 (𝑆,𝑇 ) = 𝑁𝑥 (𝑇 ) = −𝑃 (𝑇 ). Consequently, Equation (3c) is treated linearly in 𝜃

and 𝑒 is neglected with respect to 1, yielding 𝑌 ′
= 𝜃 . Finally, Equation (3g) is truncated to the

zero-th order in 𝜃 , that is 𝐸𝐴𝑒 = 𝑁𝑥 . Combining all these equations and keeping only𝑈 (𝑆,𝑇 )
and 𝑌 (𝑆,𝑇 ) as unknowns leads to

𝐸𝐼𝑌 ′′′′(𝑆,𝑇 ) + 𝜌𝐴 ¥𝑌 (𝑆,𝑇 ) + 𝑃 (𝑇 )𝑌 ′′(𝑆,𝑇 ) = 0 (8a)

𝐸𝐴[𝑈 ′(𝑆,𝑇 ) + 1

2
𝑌 ′2(𝑆,𝑇 )] = −𝑃 (𝑇 ). (8b)

From here, we have two ways to write these equations in a dimensionless form. The first way

consists in using the same dimensionless variables as for the Kirchhoff model of Section 2, and

yields

¥𝑦 + 𝑦 ′′′′ + 𝑝𝑦 ′′
= 0 (9a)

𝑢 ′ + 𝜂𝑝 + 1

2
𝑦 ′2

= 0 (9b)
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with 𝑢 = 𝑈 /𝐿. In this case, the behaviour of the beam depends solely on the slenderness ratio 𝜂.

The second way to introduce dimensionless variables is to scale the transverse displacement

𝑌 with the radius of gyration 𝑟 =

√

𝐼/𝐴 = 𝐿
√
𝜂 and the axial displacement 𝑈 with 𝑟 2/𝐿, one

order of magnitude smaller. The physical meaning of 𝑟 is a characteristic thickness of the

cross-section. In particular, for a rectangular cross section, 𝑟 = ℎ/
√
12. Writing 𝑦 = 𝑌/𝑟 = 𝑦/√𝜂

and 𝑢 = 𝑈𝐿/𝑟 2 = 𝑢/𝜂 recasts Equation (9) as

¥̂𝑦 + 𝑦 ′′′′ + 𝑝𝑦 ′′
= 0 (10a)

𝑢 ′ + 𝑝 + 1

2
𝑦 ′2

= 0 (10b)

which does not depend on any geometrical or material parameter. This shows that any beam

modelled by the Woinowsky-Krieger model exhibits the same mechanical behaviour. However,

this scaling cannot be applied to the Kirchhoff model for which the dependence on the slenderness

ratio 𝜂 cannot be avoided. Consequently, in the following, when comparing models we will use

the set of dimensionless variables of the Kirchhoff model and thus Equation (9).

The equilibrium version of Equation (9) is

𝑦 ′′′′
𝐸 + 𝑝𝐸𝑦

′′
𝐸 = 0 (11a)

𝑥 ′
𝐸 − 1 + 𝜂𝑝𝐸 + 1

2
𝑦 ′2
𝐸 = 0 (11b)

which is completed by

𝑦 ′′′′ + 𝑝𝐸𝑦
′′ + 𝑝𝑦 ′′

𝐸 = 𝜔2𝑦 (12a)

𝑥 ′ + 𝜂𝑝 + 𝑦 ′
𝐸𝑦

′
= 0 (12b)

for the vibrations. The great advantage of this model is that, although nonlinear, it can be solved

analytically (Nayfeh et al. 1995; Mamou-Mani et al. 2009). The equilibrium solution is

𝑦𝐸 (𝑠) = 1

2
𝜖 (1 − cos 2𝜋𝑠) ⇒ 𝑦𝐸 (1/2) = 𝜖 (13a)

𝑥𝐸 (𝑠) = 𝑠 (1 − 𝜂4𝜋2) + 1

16
𝜖2𝜋 (sin 4𝜋𝑠 − 4𝜋𝑠) ⇒ 𝑑 = 𝜂4𝜋2 + 1

4
𝜋2𝜖2 (13b)

𝑝𝐸 = 4𝜋2 (13c)

where the amplitude 𝜖 of the linear solution 𝑦𝐸 (𝑠) is defined in Equation (16). The solution for

the vibrations is

𝑦 (𝑠) = 𝑐1 sin𝑛𝑠 + 𝑐2 cos𝑛𝑠 + 𝑐3 sinh𝑚𝑠 + 𝑐4 cosh𝑚𝑠 + 2𝑝𝜋2𝜖

𝜔2
cos 2𝜋𝑠 (14)

with 𝑛 = (
√
𝜔2 + 4𝜋4 + 2𝜋2)1/2 and𝑚 = (

√
𝜔2 + 4𝜋4 − 2𝜋2)1/2. Boundary conditions (6) yield the

solvability condition

0 = 8(𝑚2 + 𝑛2)𝜋4𝜖2𝑅1(𝑛,𝑚) − 2𝑚𝑛(2𝜋4𝜖2 − 𝜂𝜔2)𝑅2(𝑛,𝑚) (15)

with 𝑅1(𝑛,𝑚) = 𝑛(cosh𝑚 − 1) sin𝑛 +𝑚(cos𝑛 − 1) sinh𝑚 and 𝑅2(𝑛,𝑚) = 𝑚𝑛(cos𝑛 cosh𝑚 −
1) + 2𝜋2 sin𝑛 sinh𝑚, which is in fact an equation for the frequency 𝜔 . We plot 𝑝𝐸 , 𝑦𝐸 (1/2),
and 𝜔 in Figures 2, 3, and 4 to compare with the results from Kirchhoff’s model.

As reported in (Nayfeh et al. 1995; Mamou-Mani et al. 2009), we remark in Figure 5 that the

second vibration mode in this model has an angular frequency that does not depend on 𝑑 : it

is constant throughout the whole post-buckling regime. All the even vibration modes share

this property. For these modes, Equation (15) is in fact fulfilled through a common zero of the

functions 𝑅1(𝜔) and 𝑅2(𝜔). These common zeros do not depend on 𝜖 , hence do not depend on 𝑑 .

See Section B for a study of the common zeros of 𝑅1(𝜔) and 𝑅2(𝜔).
Finally, in Section E, we re-plot Figures 2, 3, 4, and 5 with the load 𝑝𝐸 (instead of 𝐷/𝐿) on the

horizontal axis.
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4 Models comparison and validity range of the Woinowsky-Krieger

model

4.1 Limit in term of axial displacement

We first remind that, as explained in Section 2 and Section 3, with suitable choices of dimensionless

variables, the Woinowsky-Krieger model does not depend on any parameter, but the Kirchhoff

(reference) model depends on the slenderness ratio 𝜂. This is illustrated in Figure 6 which shows

the plots of Figures 2, 3, 4, and 5 with rescaled axes. As expected, on each of the four plots the

WK

Ki.
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2

𝐸𝐼

𝐿 = 80ℎ

𝐿 = 40ℎ

𝐿 = 20ℎ
𝐿 = 10ℎ 𝐷/𝐿

𝜂

𝑌𝐸 (𝐿/2)
𝐿
√
𝜂

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100
𝐿 = 80ℎ𝐿 = 40ℎ𝐿 = 20ℎ

𝐿 = 10ℎ

𝐷/𝐿
𝜂

𝜔

0.2 0.4 0.6 0.8 1

20

40

0
0 𝐷/𝐿

𝜔

0.2 0.4 0.6 0.8 1

20

40

60

80

0
0

10
2

10
3

10
4

10
5

0

50

100

150

10
1

Figure 6 Comparison of the Woinowsky-Krieger and Kirchhoff models for various values of the parameter
𝜂 ∈ {1/1200, 1/4800, 1/19200, 1/76800}, respectively corresponding to 𝐿/ℎ ∈ {10, 20, 40, 80} for a
rectangular cross-section.

curves for the Woinowsky-Krieger model fall into a single master curve, while the curves for the

Kirchhoff model are seen to depend on 𝜂. For the transverse displacement at midspan 𝑌𝐸 (𝐿/2)
and the natural frequency 𝜔 of the first mode, the Woinowsky-Krieger curves agree with the

Kirchhoff curves until limiting values, that depend on 𝜂. In Figure 7, we plot the curves for

𝑌𝐸 (𝐿/2) and 𝜔 as functions of 𝑑 = 𝐷/𝐿, and the relative error of Woinowsky-Krieger model (as

compared to the Kirchhoff model) for several values of the slenderness ratio 𝜂. It is observed that

all relative error curves are almost superimposed, meaning that the error as a function of 𝑑 = 𝐷/𝐿
is almost independent of 𝜂, see also Section F. This result is interesting since most of the literature

about geometrical nonlinearities traditionally gives the validity limit of the Woinowsky-Krieger

model in term of 𝑦𝐸 (1/2) = 𝑌𝐸 (𝐿/2)/𝑟 = 𝑌𝐸 (𝐿/2)/(𝐿
√
𝜂), usually around 𝑦𝐸 (1/2) ≈ 2 or 3.

Here, we prove that a correct validity limit should be given in terms of 𝑦𝐸 (𝐿/2) = 𝑌𝐸 (𝐿/2)/𝐿
(or in terms of 𝑑 = 𝐷/𝐿) and thus that the correct scaling of 𝑌 for the validity limit is not

the radius of gyration 𝑟 but the length 𝐿 of the beam. In particular, an axial displacement of

𝐷/𝐿 = 0.1 (or equivalently a transverse displacement 𝑌𝐸 (𝐿/2)/𝐿 ≈ 0.2), gives errors of less than

4% on 𝑌 and less than 3% on 𝜔 . We then conclude that the Woinowsky-Krieger model tends

to depart from the reference Kirchhoff model as soon as 10% of axial displacement or 20% of

transverse displacement, and this for any slenderness ratio. Equivalently, in terms of 𝑦𝐸 (1/2), for
𝜂 ∈ {1/1200, 1/4800, 1/19200, 1/76800} (that is 𝐿/ℎ ∈ {10, 20, 40, 80} in the case of a rectangular

cross-section), the limit of the Woinowsky-Krieger model is then 𝑦𝐸 (1/2) ≈ {7, 14, 28, 55}, which
is larger than 𝑦𝐸 (1/2) ≈ 2 or 3, as often claimed.

Another interesting result is that these errors are roughly linear functions of 𝐷/𝐿, as long as

𝐷/𝐿 < 0.5. Finally, we note that, for each of the plots in Figure 7, one of the curves lies slightly

apart from the others. This curve is associated with the largest 𝜂 = 1/1200, corresponding to a

beam with a thickness only ten times smaller than the length (𝐿/ℎ = 10). Such a case has to be

considered with caution since the validity of the Euler-Bernoulli kinematics is then questionable.
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Figure 7 Comparison of the Woinowsky-Krieger and Kirchhoff models for various values of the parameter
𝜂 ∈ {1/1200, 1/4800, 1/19200, 1/76800} corresponding to 𝐿/ℎ ∈ {10, 20, 40, 80}, respectively, for a
rectangular cross section. Top: transverse displacement and frequency of the first mode. Bottom: relative
error of the Woinowsky-Krieger model (compared to the Kirchhoff model), for the transverse displacement
and the frequency of the first mode. Relative errors defined as Err𝑦 = (𝑦WK (1/2) − 𝑦Ki (1/2))/𝑦Ki (1/2)
and Err𝜔 = (𝜔Ki (1/2) − 𝜔WK (1/2))/𝜔Ki (1/2).

4.2 Offset in the critical load

Moreover, looking at the results for small 𝑑 , we detect an offset between Woinowsky-Krieger and

Kirchhoff curves, see insets in Figures 2, 3, 4 and 5. This offset exists right from buckling and

to disclose it analytically we proceed to construct a series expansion in powers of 𝜖 , a small

parameter measuring the mean transverse displacement of the buckled solution (Arbocz et al.

1985). We find it convenient to use

𝜖 = −4
∫

1

0

𝑦𝐸 (𝑠) cos 2𝜋𝑠 d𝑠 . (16)

For the Woinowsky-Krieger model, 𝜖 is exactly equal to 𝑦𝐸 (𝐿/2) = 𝑌𝐸 (𝐿/2)/𝐿, see Equation (13a).

We inject the following expansions

𝑥𝐸 (𝑠) = 𝑥𝐸0(𝑠) + 𝜖𝑥𝐸1(𝑠) + 𝜖2𝑥𝐸2(𝑠) + 𝜖3𝑥𝐸3(𝑠) +𝑂 (𝜖4) (17a)

𝑦𝐸 (𝑠) = 𝜖𝑦𝐸1(𝑠) + 𝜖2𝑦𝐸2(𝑠) + 𝜖3𝑦𝐸3(𝑠) +𝑂 (𝜖4) (17b)

𝜃𝐸 (𝑠) = 𝜖𝜃𝐸1(𝑠) + 𝜖2𝜃𝐸2(𝑠) + 𝜖3𝜃𝐸3(𝑠) +𝑂 (𝜖4) (17c)

−𝑛𝑥𝐸 = 𝑝𝐸 = 𝑝𝐸0 + 𝜖𝑝𝐸1 + 𝜖2𝑝𝐸2 + 𝜖3𝑝𝐸3 +𝑂 (𝜖4) (17d)

𝑑 = 𝑑0 + 𝜖𝑑1 + 𝜖2𝑑2 + 𝜖3𝑑3 +𝑂 (𝜖4) (17e)

into the Kirchhoff equilibrium system, and solve the equations at each order of 𝜖 . At order 𝜖0, we

find 𝑥𝐸0(𝑠) = 𝑠 (1 − 𝜂𝑝𝐸0), with 𝑝𝐸0 still unknown. At order 𝜖
1, we solve

𝑥 ′
𝐸1 = −𝜂𝑝𝐸1 with 𝑥𝐸1(0) = 0 (18a)

𝑦 ′
𝐸1 = (1 − 𝜂𝑝𝐸0)𝜃𝐸1 with 𝑦1(0) = 0 = 𝑦1(1) (18b)

𝜃 ′′𝐸1 = −𝑝𝐸0(1 − 𝜂𝑝𝐸0)𝜃𝐸1 with 𝜃1(0) = 0 = 𝜃1(1) (18c)

and find that the solution is

𝑥𝐸1 = −𝜂𝑝𝐸1𝑠 (19a)

𝑦𝐸1 =
1

2
(1 − cos 2𝜋𝑠) ⇒ 𝜃𝐸1 =

𝜋 sin 2𝜋𝑠

1 − 𝜂𝑝𝐸0
(19b)

𝑝𝐸0 =
1 −

√

1 − 16𝜋2𝜂

2𝜂
(19c)
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where we see that 𝑝𝐸1 is not defined at order 𝜖1 and will only be selected when solving order 𝜖2.

In the same manner, finding 𝑝𝐸2 requires to solve order 𝜖3. We shall come back to this remark

when discussing the Woinowsky-Krieger model. We note that the same shift occurs for 𝑥𝐸 (𝑠)
(hence 𝑑) and 𝜔 . Conducting the expansion up to order 𝜖3 (included) yields

𝑝𝐸 = 𝑝𝐸0 + 𝜖2
𝑝3
𝐸0
(16𝜋2 − 3𝑝𝐸0)

128𝜋2(8𝜋2 − 𝑝𝐸0)
+ 𝑝𝐸3𝜖

3 +𝑂 (𝜖4) (20a)

= 4𝜋2 + 16𝜋4𝜂 +𝑂 (𝜂2) + [ 1
2
𝜋4 + 2𝜋6𝜂 +𝑂 (𝜂2)]𝜖2 + 𝑝𝐸3𝜖

3 +𝑂 (𝜖4) (20b)

𝑦𝐸 (1/2) = 𝜖 + 𝑝2𝐸0
16𝜋2 − 3𝑝𝐸0

4096𝜋4
𝜖3 +𝑂 (𝜖4) (20c)

= 𝜖 + 1

64
𝜋2 [1 − 4𝜋2𝜂 +𝑂 (𝜂2)]𝜖3 +𝑂 (𝜖4) (20d)

𝑑 = 𝜂𝑝𝐸0 + 𝜖2𝑝𝐸0
2𝜋 (𝑝2

𝐸0
+ 4𝑝𝐸0𝜋

2 − 64𝜋4)
256𝜋3(8𝜋2 − 𝑝𝐸0)

+ 𝑑3𝜖3 +𝑂 (𝜖4) (20e)

= 4𝜋2𝜂 +𝑂 (𝜂2) + 1

4
𝜋2 [1 + 2𝜋2𝜂 +𝑂 (𝜂2)]𝜖2 + 𝑑3𝜖3 +𝑂 (𝜖4). (20f)

The solutions 𝑥𝐸 (𝑠), 𝑦𝐸 (𝑠), and 𝜃𝐸 (𝑠) are listed in Section A. Please note that, as explained in

Section A, further calculations lead to 𝑝𝐸3 = 0 and 𝑑3 = 0. A similar expansion for the first mode

of vibration (with 𝜔0 = 0) leads to

𝜔 = 𝜖
𝑝0

8𝜋2

√

64𝜋4 − 𝑝2
0
− 4𝜋2𝑝0

12𝜂
+ 𝜔3𝜖

3 +𝑂 (𝜖4) (21a)

= 𝜖𝜋2

√

2

3𝜂
[1 +𝑂 (𝜂)] + 𝜔3𝜖

3 +𝑂 (𝜖4) . (21b)

Note that the results noted ‘Ki.dev 4’ in the figures involve expansions of the solutions up to

order 𝜖4 included. These expansions are given in the supplementary materials (Neukirch et al.

2021).

Comparing Woinowsky-Krieger and Kirchhoff solutions for 𝑝𝐸 , 𝑦𝐸 (1/2), and 𝑑 , listed in

Equation (13) and Equation (20), reveals the nature of the offset mentioned earlier: as soon as

order 𝜖0, 𝑝𝐸 is not computed exactly in the Woinowsky-Krieger model which, strictly speaking, is

then not a rigorous expansion of Kirchhoff’s model. In this matter, the Woinowsky-Krieger

model is equivalent to the traditional linear beam model Ð see e.g. (Bažant and Cedolin 1991) Ð

and predicts the critical buckling load to be the classical Euler value 𝑝𝐸 = 4𝜋2, see Equation (13c).

On the contrary, Kirchhoff’s model predicts this buckling load to be 𝑝𝐸 = 4𝜋2(1 + 4𝜋2𝜂 +𝑂 (𝜂2)),
see Equation (20b) with 𝜖 = 0. The offset, though non-zero, is in most practical cases negligible as

𝜂 ≪ 1 for slender beams. The physical explanation of this offset is that the Woinowsky-Krieger

model neglects the small shortening of the beam before the critical load. Following Equation (3a),

this shortening is (1 + 𝑒) for an infinitesimal axial element when 𝜃 ≪ 1 (that is d𝑥 = (1 + 𝑒) d𝑠).
This axial shortening is neglected in the Woinowsky-Krieger model which writes Equation (3c) as

𝑦 ′
= 𝜃 . To (artificially) correct the Woinowsky-Krieger model, one could use 𝑦 ′

= (1 + 𝑒)𝜃 and

keep all other approximations. In doing this, Equation (3e) would become𝑚 = 𝑦 ′′/(1 + 𝑒) and
since 𝑒 = −𝜂𝑝 , this would lead to replace 𝑝 by 𝑝 (1 − 𝜂𝑝) in Equation (11a). Solving this equation

would yield 𝑝𝐸 (1 − 𝜂𝑝𝐸) = 4𝜋2, which is the exact buckling load, Equation (19c). Please note

nevertheless that it would not cure all Woinowsky-Krieger shortcomings.

Finally, we can also compare the two models in their prediction of the curvature of the curve

𝑦𝐸 (𝐿/2) = 𝑓 (𝑑) just after the buckling point. For the Kirchhoff model, combining Equation (20d)

and Equation (20f), we have

𝑑 ≃ 4𝜋2𝜂 + 𝑦2𝐸 (1/2) 14𝜋
2 [1 + 2𝜋2𝜂] for small 𝜂 and 𝑦𝐸 (22)

while for the Woinowsky-Krieger model, combining Equation (13a) and Equation (13b), we have

𝑑 = 4𝜋2𝜂 + 1

4
𝜋2𝑦2𝐸 (1/2) . (23)

Here also, the Woinowsky-Krieger model is wrong by a small term, proportional to 𝜂.
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4.3 Second order in the axial load

There is yet another, more important, flaw in Woinowsky-Krieger approach: there is no order

𝜖2 in the solution for 𝑝𝐸 . Indeed, computing 𝑝𝐸2 would require an order 3 in its equation for

transverse displacement (11a). In this sense, the Woinowsky-Krieger model does not yield a

proper order 2 expansion of Kirchhoff’s solutions. This implies that the Woinowsky-Krieger

model predicts a constant load 𝑝𝐸 along the post-buckling path, see Figure 2, and is therefore

unable to deal with load-controlled experiments. Nevertheless, in Equation (11b) the load 𝑝𝐸 is

multiplied by the small parameter 𝜂, which tends to weaken the absence of the 𝑝𝐸2 term.

Another way to test for the order 2 conformity of the Woinowsky-Krieger equation is to take

Kirchhoff’s solutions 𝑥𝐸 (𝑠), 𝑦𝐸 (𝑠), and 𝑝𝐸 (see Section A) and inject them in Equation (11). We

obtain

𝑦 ′′′′
𝐸 + 𝑝𝐸𝑦

′′
𝐸 = 2𝜋2𝑝2𝐸0𝜂𝜖 cos 2𝜋𝑠 + 0 𝜖2 +𝑂 (𝜖3) (24a)

𝑥 ′
𝐸 − 1 + 𝜂𝑝𝐸 + 1

2
𝑦 ′2
𝐸 =

𝜂2𝑝4
𝐸0

32𝜋2
𝜖2 sin2 2𝜋𝑠 + 0 𝜖3 +𝑂 (𝜖4) (24b)

where we see that, strictly speaking, the transverse displacement equation is not fulfilled at

order 𝜖1 and the axial displacement equation is not fulfilled at order 𝜖2.

For the vibrations, the picture is very much the same: if we make an expansion of the solution

of Equation (15) in powers of 𝜖 , we find

𝜔 = 𝜖𝜋2

√

2

3𝜂
+ 0 𝜖2 +𝑂 (𝜖3) (25)

which misses an 𝑂 (𝜂) term, but is the leading 𝜂 order of Kirchhoff’s result, see Equation (21b).

5 An order 3 model
The motivation for a third order model is theoretical: following up on the remark of the previous

section about the necessity of having an order 3 in the transverse displacement equation (8a), we

set on investigating what precisely third order terms are bringing to the solution. Doing this, we

keep in mind the elastic plates application: the (second order) Von Kármán assumption (7) is

widely used in plate models and one is tempted to know what would third order terms bring

to such plate models, and how they would compare to geometrically-exact approaches, as for

example Naghdi’s model (Naghdi 1963; Naghdi 1964).

We start from Kirchhoff’s system (3) and proceed to derive an order 3 model. Owing to

the remark that the parameter 𝜂 is small and that the Woinowsky-Krieger model is only exact

in the limit 𝜂 → 0, we settle on removing 𝜂 as much as possible since this makes derivation

much easier. Nevertheless, it has been shown (Neukirch et al. 2012; Neukirch et al. 2014) that

in displacement-controlled experiments, 𝜂 should at least remain in the axial displacement of

Equation (3a). This equation is then simplified to

𝑥 ′
= 1 + 𝜂𝑛𝑥 − 1

2
𝜃 2. (26)

This resembles Woinowsky-Krieger in Equation (9b), with the difference that we keep the 𝑠

dependence in the load 𝑛𝑥 (𝑠, 𝑡). For the transverse displacement, we know extension is only

playing a minor role and we readily set 𝜂 = 0. We then start with 𝑦 ′
= sin𝜃 and proceed to

develop the sinus up to order 3, 𝑦 ′
= 𝜃 − 1

6
𝜃 3. Inverting this relation yields

𝜃 = 𝑦 ′ + 1

6
𝑦 ′3 ⇒ 𝜃 ′′ = 𝑦 ′′′ + 𝑦 ′𝑦 ′′2 + 1

2
𝑦 ′2𝑦 ′′′ (27)

which is injected into Equation (3f). We end up with a system for the axial and transverse

displacement (𝑥,𝑦) and forces (𝑛𝑥 , 𝑛𝑦):

𝑥 ′(𝑠, 𝑡) = 1 + 𝜂𝑛𝑥 (𝑠, 𝑡) − 1

2
𝑦 ′2(𝑠, 𝑡) (28a)

𝑛′
𝑥 (𝑠, 𝑡) = ¥𝑥 (𝑠, 𝑡) (28b)

𝑦 (𝑠, 𝑡) ′′′ + 𝑓3 = 𝑛𝑥 (𝑠, 𝑡)𝑦 ′(𝑠, 𝑡) − 𝑛𝑦 (𝑠, 𝑡)𝑥 ′(𝑠, 𝑡) (28c)

𝑛′
𝑦 (𝑠, 𝑡) = ¥𝑦 (𝑠, 𝑡) (28d)
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with 𝑓3 = 𝑦 ′(𝑠, 𝑡)𝑦 ′′(𝑠, 𝑡)2 + 1

2
𝑦 ′(𝑠, 𝑡)2𝑦 ′′′(𝑠, 𝑡). To readily compare this new system with the

Woinowsky-Krieger model, one has to differentiate Equation (28c) and find

𝑦 ′′′′ − 𝑛𝑥𝑦
′′ + ¥𝑦 = −𝑦 ′′3 − 3𝑦 ′𝑦 ′′𝑦 ′′′ − 1

2
𝑦 ′2𝑦 ′′′′ + ¥𝑥𝑦 ′ − 𝑛𝑦𝑥

′′ − ¥𝑦 (𝜂𝑛𝑥 − 1

2
𝑦 ′2) (29)

which, in contrast to Equation (8a), has order 3 terms in the right-hand side.

Equilibrium equations for 𝑥𝐸 , 𝑦𝐸 , 𝑛𝑥𝐸 , 𝑛𝑦𝐸 are obtained by setting ¥𝑥 = 0 = ¥𝑦 in Equation (28)

and vibration equations are then derived by injecting Equation (4) into Equation (28). We obtain

𝑥 ′
= 𝜂𝑛𝑥 − 𝑦 ′

𝐸𝑦
′ (30a)

𝑛′
𝑥 = −𝜔2𝑥 (30b)

𝑦 ′′′ + 𝑓3 = 𝑛𝑥𝑦
′ + 𝑛𝑥𝐸𝑦 ′ − 𝑛𝑦𝑥

′ − 𝑛𝑦𝐸𝑥
′ (30c)

𝑛′
𝑦 = −𝜔2𝑦 (30d)

with 𝑓3 = 𝑦 ′𝑦 ′′2
𝐸

+ 2𝑦 ′
𝐸𝑦

′′𝑦 ′′
𝐸 + 𝑦 ′𝑦 ′

𝐸𝑦
′′′
𝐸 + 1

2
𝑦 ′2
𝐸
𝑦 ′′′. We solve this system numerically and compare

the results to the two previous models in Figures 2, 3, 4, and 5. A first remark is that this new

model suffers from the same offset as the Woinowsky-Krieger model: right from buckling a small

shift exists in the curves. As explained earlier it arises from the setting of 𝜂 = 0 in the transverse

displacement equation. Next we see that the load curve is no longer flat (Figure 2), nor is the

frequency of the 2nd vibration mode (Figure 4).

In order to make sure we indeed came up with a model exhibiting the correct terms up to

order 3, we perform the expansion (17) and compute

𝑦𝐸 (𝑠) = 1

2
𝜖 (1 − cos 2𝜋𝑠) + 𝜖3 1

64
𝜋2 sin2 3𝜋𝑠 +𝑂 (𝜖4) (31a)

𝑥𝐸 (𝑠) = 𝑠 (1 − 4𝜋2𝜂) − 1

16
𝜋 (4𝜋𝑠 + 8𝜋3𝜂𝑠 − sin 4𝜋𝑠)𝜖2 +𝑂 (𝜖4) (31b)

𝑝𝐸 = 4𝜋2 + 1

2
𝜋4𝜖2 +𝑂 (𝜖4) (31c)

𝑑 = 1 − 𝑥𝐸 (1) = 4𝜋2𝜂 + 1

4
𝜋2(1 + 2𝜋2𝜂)𝜖2 +𝑂 (𝜖4) (31d)

𝑦𝐸 (1/2) = 𝜖 + 1

64
𝜋2𝜖3 +𝑂 (𝜖4) (31e)

which, indeed, is correct up to order 3 when compared to Kirchhoff’s results, see Equation (20)

and Section A. For the first mode of vibration (with 𝜔0 = 0) we find

𝜔 = 𝜖𝜋2

√

2

3𝜂

1 + 2𝜋2𝜂

1 − 4𝜋2𝜂
+𝑂 (𝜖3) (32)

which corresponds to the first 𝜂 order of Equation (21). See the supplementary material (Neukirch

et al. 2021) for detailed calculations.

The interest of the present order 3 model lies in the fact that it efficiently corrects the

Woinowsky-Krieger model for the axial load and the second natural frequency, in the small 𝜂

limit. Moreover, it is the extension of a well known order 3 model, commonly used for nonlinear

vibrations of inextensible cantilever beams and first introduced by Crespo da Silva and Glynn

(1978)Ðsee (Thomas et al. 2016) for a list of other references: as shown in Section D, the present

order 3 model reduces to the Crespo da Silva model in the case of clamped-free boundary

conditions and inextensible beams. However, contrary to the Crespo da Silva model, which

elegantly involves a single equation for the unique variable 𝑦 (𝑠, 𝑡), the present order 3 model

consists of a system of four equations in four variables, system (28), which might be complex to

use in practice.

6 Conclusion
We have studied the range of validity of the Woinowsky-Krieger equations for the planar

equilibrium and vibrations of post-buckled beams. The Woinowsky-Krieger equations are useful

and widely used, especially when dealing with nonlinear vibrations, but are only valid in the

weakly nonlinear regime and under displacement-controlled setups. We have shown that these

equations are not a rigorous second order development of Kirchhoff’s equations, but that they
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nevertheless capture faithfully the post-buckling behavior of the beam up to 10 % (𝐷 = 0.1𝐿)

of axial displacement and/or 20 % of transverse displacement (𝑌 (𝐿/2) = 0.2𝐿), and that these

limits only weakly depend on the slenderness ratio of the beam. If the transverse displacement

𝑌 (𝐿/2) is written in units of the beam thickness ℎ, we have shown that the validity limit of the

Woinowsky-Krieger model then depends on the slenderness ratio of the beam and that it can

be large: 𝑌 (𝐿/2)/ℎ < 4 for a thickness to length ratio of ℎ/𝐿 = 1/20 and 𝑌 (𝐿/2)/ℎ < 16 for

ℎ/𝐿 = 1/80. Incidentally, we have also rigorously proved that every other vibration frequency in

the Woinowsky-Krieger model is load-independent in the entire post-buckling regime. Finally,

we have introduced a third order model capable of coping with load-controlled setups and more

accurately predicting vibration modes in the moderate post-buckling regime.

A Expansions for the solution of the Kirchhoff model
In the clamped-clamped case, buckling happens in a symmetrical pitchfork bifurcation. Conse-

quently, with the chosen definition of 𝜖 in Equation (16), the developments of the axial variables

𝑥𝐸 , 𝑝𝐸 = −𝑛𝑥𝐸 , and 𝑒𝐸 only comprise even terms in 𝜖 , while the developments of the transverse

variables 𝑦𝐸 , 𝜃𝐸 , 𝑚𝐸 , and 𝑛𝑦𝐸 only comprise odd terms in 𝜖 . Please see the supplementary

material (Neukirch et al. 2021) for detailed calculations leading to

𝜃𝐸 (𝑠) = 𝜖
𝑝0

4𝜋
sin 2𝜋𝑠 + 𝜖3

𝑝3
0
(16𝜋2 − 3𝑝0) (96𝜋2 sin 2𝜋𝑠 − (8𝜋2 − 𝑝0) sin 6𝜋𝑠)

48(4𝜋)5(8𝜋2 − 𝑝0)
+𝑂 (𝜖5)

= 𝜖𝜋 sin 2𝜋𝑠 [1 + 4𝜋2𝜂 +𝑂 (𝜂2)]+𝜖3𝜋3
25 + 2 cos 4𝜋𝑠 + 96𝜋2𝜂 +𝑂 (𝜂2)

192
sin 2𝜋𝑠+𝑂 (𝜖5)

𝑦𝐸 (𝑠) =
𝜖

2
(1 − cos 2𝜋𝑠) + 𝜖3𝑝2

0

16𝜋2 − 3𝑝0

4096𝜋4
sin2(3𝜋𝑠) +𝑂 (𝜖5)

=
𝜖

2
(1 − cos 2𝜋𝑠) + 𝜖3

𝜋2

64
[1 − 4𝜋2𝜂 +𝑂 (𝜂2)] sin2(3𝜋𝑠) +𝑂 (𝜖5)

𝑥𝐸 (𝑠) = 𝑠 (1 − 𝜂𝑝0) − 𝜖2𝑝0
2𝜋 (𝑝2

0
+ 4𝑝0𝜋

2 − 64𝜋4)𝑠 + (8𝜋2 − 𝑝0)2 sin 4𝜋𝑠
256𝜋3(8𝜋2 − 𝑝0)

+𝑂 (𝜖4)

= [𝑠 − 4𝜋2𝜂𝑠 +𝑂 (𝜂2)] + [ 𝜋
16
(sin 4𝜋𝑠 − 4𝜋𝑠) − 𝜋4

2
𝑠𝜂 +𝑂 (𝜂2)]𝜖2 +𝑂 (𝜖4) .

B Common zeros of 𝑅1 and 𝑅2

We replace 𝑛 = 2𝜋𝛽 ,𝑚 = 2𝜋𝛼 , 𝑅1 = 4𝜋𝑅1, and 𝑅2 = 4𝜋2𝑅2 to obtain

𝑅1(𝛼, 𝛽) = 𝛽 sin 2𝜋𝛽 sinh2 𝜋𝛼 − 𝛼 sin2 𝜋𝛽 sinh 2𝜋𝛼 (B.1a)

𝑅2(𝛼, 𝛽) = 2𝛼𝛽 (cos 2𝜋𝛽 cosh 2𝜋𝛼 − 1) + sin 2𝜋𝛽 sinh 2𝜋𝛼 (B.1b)

𝛽2 = 1 + 𝛼2 (B.1c)

with 𝛽 =
1

2𝜋
(
√
𝜔2 + 4𝜋4 + 2𝜋2)1/2 and 𝛼 =

1

2𝜋
(
√
𝜔2 + 4𝜋4 − 2𝜋2)1/2. We work with 𝑛 > 2𝜋 and

𝑚 > 0, that is

𝛽 > 1 and 𝛼 > 0. (B.2)

In this section, we show that

1. 𝑅1(𝜔) and 𝑅2(𝜔) have common zeros,

2. but also have separate zeros, with

2(a) 𝑅1(𝜔) = 0 and 𝑅2(𝜔) ≠ 0 when 𝛽 = 2, 3, 4, . . .,

2(b) 𝑅2(𝜔) = 0 and 𝑅1(𝜔) ≠ 0 when 𝐴 − 1/𝐴 = �̂� − 1/�̂� with 𝐴 ≠ �̂�,

where 𝐴 and �̂� are defined in Section B.3.

B.1 Individual zeros of 𝑅1
To prove 2(a), we factorize 𝑅1 as 𝑅1 = 2 sinh𝜋𝛼 sin𝜋𝛽 (𝑦 cos𝜋𝛽 sinh𝜋𝛼 − 𝛼 sin𝜋𝛽 cosh𝜋𝛼) and
see, from Equation (B.2), that𝑅1(𝜔) = 0 for 𝛽 = 2, 3, 4, . . . In such cases, 𝑅2=2𝛼𝛽 (cosh 2𝜋𝛼−1)> 0,

hence we have zeros of 𝑅1 which are not zeros of 𝑅2.
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B.2 Common zeros of 𝑅1 and 𝑅2

We first remark that the zeros of 𝑅1 or 𝑅2 are such that cos𝜋𝛽 ≠ 0: If 𝛽 = 3/2, 5/2, 7/2, . . . then
𝑅1 = −𝛼 sinh 2𝜋𝛼 ≠ 0 and 𝑅2 = −2𝛼𝛽 (cosh 2𝜋𝛼 + 1) ≠ 0. We may then divide by 𝛼 , 𝛽 , cos𝜋𝛽 ,

and cosh𝜋𝛼 without any trouble and rewrite

𝑅1(𝛼, 𝛽) = 2 sin𝜋𝛽 cos𝜋𝛽 sinh𝜋𝛼 cosh𝜋𝛼 (𝛽 tanh𝜋𝛼 − 𝛼 tan𝜋𝛽) (B.3a)

𝑅2(𝑛,𝑚) = 4 cos2 𝜋𝛽 cosh2 𝜋𝛼 (𝛼𝛽 tanh2 𝜋𝛼 − 𝛼𝛽 tan2 𝜋𝛽 + tanh𝜋𝛼 tan𝜋𝛽). (B.3b)

We then see that if 𝛽 ≠ 2, 3, 4, . . . and 𝑅1 = 0, we have 𝛽 tanh𝜋𝛼 = 𝛼 tan𝜋𝛽 and 𝛼𝛽 tanh2 𝜋𝛼 −
𝛼𝛽 tan2 𝜋𝛽 + tanh𝜋𝛼 tan𝜋𝛽 = 0, i.e. 𝑅2 = 0. This proves 1.

B.3 Individual zeros of 𝑅2
If we have 𝑅2 = 0 and 𝛽 ≠ 2, 3, 4, . . ., then, using Equation (B.1c)

tan𝜋𝛽

tanh𝜋𝛼
− tanh𝜋𝛼

tan𝜋𝛽
=

𝛽

𝛼
− 𝛼

𝛽
(B.4)

which is 𝐴 − 1/𝐴 = �̂� − 1/�̂� with 𝐴 = tan𝜋𝛽/tanh𝜋𝛼 and �̂� = 𝛽/𝛼 . Solutions are either 𝐴 = �̂�

is which case we have a common zero of 𝑅1 and 𝑅2, or solutions with 𝐴 < 0 and �̂� > 0 in which

case we have a zero of 𝑅2 such that 𝑅1 ≠ 0. This proves 2(b).

B.4 Summary

In Table B.1, we see that each common zero is followed by an individual zero of 𝑅2, then by an

individual zero of 𝑅1.

𝜔 𝛼 𝛽 𝑅1 𝑅2 𝐴 �̂� 𝐴 − 1/𝐴 �̂� − 1/�̂�
44.4 0.85 1.31 0 0 1.54 1.54 0.89 0.89

103.5 1.47 1.78 −7.6 · 103 0 −0.83 1.21 0.38 0.38

136.8 1.73 2 0 9.2 · 104 0 1.15 ∞ 0.29

182.1 2.03 2.27 0 0 1.11 1.11 0.22 0.22

280.6 2.57 2.76 −1.4 · 107 0 −0.93 1.07 0.14 0.14

334.9 2.83 3 0 2.2 · 108 0 1.06 ∞ 0.12

Table B.1 Lowest six zeros of 𝑅1 and 𝑅2. Please note that 𝜔 = 4𝜋2𝛼𝛽 , but that only common roots correspond to the
actual vibration frequencies of the beam.

C Energies for the various models
We present a variational approach for the three different models used in this paper. We list the

kinetic T and potential V energies and compute the first variation of the Action S =

∫ 𝑡2

𝑡1
L d𝑇

where the Lagrangian L = T −V .

C.1 The Kirchhoff model

In this model the kinetic energy is computed as if the mass of each section were concentrated on

the centerline, that is no rotational inertia is involved. We have

T =
1

2
𝜌𝐴

∫ 𝐿

0

( ¤𝑋 2 + ¤𝑌 2) d𝑆. (C.1)

The potential energy comprises bending and extension deformations

V =
1

2

∫ 𝐿

0

(𝐸𝐼𝜃 ′2 + 𝐸𝐴𝑒2) d𝑆 (C.2)

with boundary conditions (6) valid at all time 𝑇 ,

𝑋 (0,𝑇 ) = 0 = 𝑋 (𝐿,𝑇 ) − 𝐿 + 𝐷 (C.3a)

𝑌 (0,𝑇 ) = 0 = 𝑌 (𝐿,𝑇 ) (C.3b)

𝜃 (0,𝑇 ) = 0 = 𝜃 (𝐿,𝑇 ) . (C.3c)
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The Action S is then a functional of 𝑞 = (𝑋,𝑌, 𝜃, 𝑒) and the principle of least Action then selects

the dynamical evolution 𝑞(𝑆,𝑇 ) of the system. This principle reads

S(𝑞 + 𝜖𝑞) ⩾ S(𝑞) for all small 𝜖 and for all admissible 𝑞 (C.4)

under the pointwise kinematic constraints

𝜙𝑥 = 𝑋 ′ − (1 + 𝑒) cos𝜃 = 0 and 𝜙𝑦 = 𝑌 ′ − (1 + 𝑒) sin𝜃 = 0. (C.5)

We introduce Lagrange multipliers to deal with constraints (C.5). We anticipate the multipliers to

be the components 𝑁𝑥 and 𝑁𝑦 of the force vector and use L = T −V − 𝑁𝑥𝜙𝑥 − 𝑁𝑦𝜙𝑦 as the

Lagrangian. The first order necessary condition for Equation (C.4) to hold is then

S̄(𝑞, 𝑞) = lim
𝜖→0

S(𝑞 + 𝜖𝑞) − S(𝑞)
𝜖

= 0 for all admissible 𝑞 (C.6)

with

−S̄ =

∫ 𝑡2

𝑡1

∫ 𝐿

0

{

−𝜌𝐴( ¤𝑋 ¤̄𝑋 + ¤𝑌 ¤̄𝑌 ) + 𝐸𝐼𝜃 ′𝜃 ′ + 𝐸𝐴𝑒𝑒 + 𝑁𝑥 (𝑋 ′ − 𝑒 cos𝜃 + (1 + 𝑒)𝜃 sin𝜃 )

+ 𝑁𝑦 (𝑌 ′ − 𝑒 sin𝜃 − (1 + 𝑒)𝜃 cos𝜃 )
}

d𝑆 d𝑇 . (C.7)

Using Equation (C.3), boundary conditions for the test functions 𝑞 read

𝑋 (0,𝑇 ) = 0 = 𝑋 (𝐿,𝑇 ) (C.8a)

𝑌 (0,𝑇 ) = 0 = 𝑌 (𝐿,𝑇 ) (C.8b)

𝜃 (0,𝑇 ) = 0 = 𝜃 (𝐿,𝑇 ) . (C.8c)

Using Equation (C.8) and 𝑋 (𝑆, 𝑡1) = 0 = 𝑋 (𝑆, 𝑡2), 𝑌 (𝑆, 𝑡1) = 0 = 𝑌 (𝑆, 𝑡2) for all 𝑆 , we perform
integration by parts on 𝑆 and 𝑇 to find

−S̄ =

∫ 𝑡2

𝑡1

∫ 𝐿

0

{

𝜌𝐴( ¥𝑋𝑋 + ¥𝑌𝑌 ) − 𝐸𝐼𝜃 ′′𝜃 + 𝐸𝐴𝑒𝑒 − 𝑁 ′
𝑥𝑋 − 𝑁𝑥𝑒 cos𝜃 + 𝑁𝑥 (1 + 𝑒)𝜃 sin𝜃

− 𝑁 ′
𝑦𝑌 − 𝑁𝑦𝑒 sin𝜃 − 𝑁𝑦 (1 + 𝑒)𝜃 cos𝜃

}

d𝑆 d𝑇 . (C.9)

Finally, imposing that S̄ = 0 for all test functions 𝑋 (𝑆,𝑇 ), 𝑌 (𝑆,𝑇 ), 𝜃 (𝑆,𝑇 ), and 𝑒 (𝑆,𝑇 ) yields
System (3).

C.2 The Woinowsky-Krieger model

See also (Younis and Nayfeh 2003) for an energy approach of the Woinowsky-Krieger equations.

In this model, the kinetic energy only comprises the transverse displacement term

T =
1

2
𝜌𝐴

∫ 𝐿

0

¤𝑌 2 d𝑆. (C.10)

Moreover, a linear formula is used for the curvature in the potential energy

V =
1

2

∫ 𝐿

0

(𝐸𝐼𝑌 ′′2 + 𝐸𝐴𝑒2) d𝑆 (C.11)

and the kinematic constraint (C.5) reads

𝜙𝑥 = 𝑈 ′ + 1

2
𝑌 ′2 − 𝑒 = 0 (C.12)

to which is associated a continuous Lagrange multiplier which we call 𝑁𝑥 (𝑆,𝑇 ). The Action S is

then a functional of 𝑞 = (𝑌,𝑈 , 𝑒) and the first variation reads, after several integrations by parts,

−S̄ =

∫ 𝑡2

𝑡1

∫ 𝐿

0

{

𝜌𝐴 ¥𝑌𝑌 + 𝐸𝐼𝑌 ′′′′𝑌 + 𝐸𝐴𝑒𝑒 − 𝑁 ′
𝑥𝑈 − 𝑁𝑥𝑒 − 𝑁 ′

𝑥𝑌
′𝑌 − 𝑁𝑥𝑌

′′𝑌
}

d𝑆 d𝑇 . (C.13)

Imposing S̄ = 0 for all test functions 𝑈 (𝑆,𝑇 ), 𝑌 (𝑆,𝑇 ), and 𝑒 (𝑆,𝑇 ) yields System (8) with

𝑃 (𝑇 ) = −𝑁𝑥 (𝑇 ).
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C.3 The order 3 model

The kinetic and potential energies take the same form as in the Kirchhoff model, see Equation (C.1)

and Equation (C.2). As we aim at an order 3 model, we need to use expansions at order 4 for the

kinematic constraints (C.5)

𝑋 ′
= 1 + 𝑒 − 1

2
𝜃 2 + 1

24
𝜃 4 (C.14a)

𝑌 ′
= 𝜃 − 1

6
𝜃 3 (C.14b)

where, as explained in Section 5, we only kept the lowest order in the small extension 𝑒 limit in

Equation (C.14a) and completely removed it from Equation (C.14b). The Action S is then a

functional of 𝑞 = (𝑋,𝑌, 𝜃, 𝑒) and the first variation reads, after integration by parts,

−S̄ =

∫ 𝑡2

𝑡1

∫ 𝐿

0

{

𝜌𝐴( ¥𝑋𝑋 + ¥𝑌𝑌 ) − 𝐸𝐼𝜃 ′′𝜃 + 𝐸𝐴𝑒𝑒 − 𝑁 ′
𝑥𝑋 − 𝑁𝑥𝑒 + 𝑁𝑥𝜃𝜃 − 1

6
𝑁𝑥𝜃

3𝜃

− 𝑁 ′
𝑦𝑌 − 𝑁𝑦𝜃 + 1

2
𝑁𝑦𝜃

2𝜃
}

d𝑆 d𝑇 . (C.15)

Imposing that S̄ = 0 for all test functions 𝑋 , 𝑌 , 𝑒 , and 𝜃 respectively yields

𝑁 ′
𝑥 = 𝜌𝐴 ¥𝑋 (C.16a)

𝑁 ′
𝑦 = 𝜌𝐴 ¥𝑌 (C.16b)

𝑁𝑥 = 𝐸𝐴𝑒 (C.16c)

𝐸𝐼𝜃 ′′ = 𝑁𝑥 (𝜃 − 1

6
𝜃 3) − 𝑁𝑦 (1 − 1

2
𝜃 2) . (C.16d)

Injecting Equation (C.16c) into Equation (C.14a), we obtain Equation (26). Using Equation (C.14)

and Equation (27), we rewrite Equation (C.16d) as

𝐸𝐼 (𝑦 ′′′ + 𝑦 ′𝑦 ′′2 + 1

2
𝑦 ′2𝑦 ′′′) = 𝑁𝑥𝑌

′ − 𝑁𝑦 (𝑋 ′ − 𝑒 − 1

24
𝜃 4) (C.17)

which is Equation (28c) in the small 𝑒 limit and up to order 3.

D The order 3 model for a cantilever beam
System (30) is an order 3 approximation of the planar dynamics of an extensible beam with

general boundary conditions. In the special case where one end is free and where the beam is

considered inextensible (𝜂 = 0), we show here that System (30) reduces to the Crespo da Silva

equation (Crespo da Silva and Glynn 1978). We start from Equation (28a) and express 𝑥 (𝑠, 𝑡) with
𝑦 (𝑠, 𝑡)

𝑥 (𝑠, 𝑡) =
∫ 𝑠

0

(1 − 1

2
𝑦 ′2) d𝑠 ⇒ ¥𝑥 (𝑠, 𝑡) = −

∫ 𝑠

0

1

2
¥(𝑦 ′2) d𝑠 . (D.1)

Next we use the free-end condition at 𝑠 = 1 to integrate Equation (28b) and write

𝑛𝑥 (𝑠, 𝑡) = −
∫

1

𝑠

¥𝑥 d𝑠 . (D.2)

We then inject Equation (D.1) and Equation (D.2) into Equation (28c) and isolate 𝑛𝑦 (𝑠, 𝑡):

𝑛𝑦 (𝑠, 𝑡) = −𝑦 ′′′ + 𝑓3

1 − 1

2
𝑦 ′2 − 𝑦 ′

1 − 1

2
𝑦 ′2

∫

1

𝑠

¥𝑥 d𝑠 . (D.3)

Differentiating once more with respect to 𝑠 , using Equation (28d), and restricting to order 3

finally yields

¥𝑦 (𝑠, 𝑡) + (𝑦 ′′′ + 𝑦 ′𝑦 ′′2 + 𝑦 ′2𝑦 ′′′) ′ + 1

2

{

𝑦 ′
∫ 𝑠

1

∫ 𝑠

0

¥(𝑦 ′2) d𝑠 d𝑠
} ′

= 0 (D.4)

which is Equation (61) in (Thomas et al. 2016).

Journal of Theoretical, Computational and Applied Mechanics
�

� May 2021
�

� jtcam.episciences.org 15
�

� 18

https://jtcam.episciences.org


Comparison of the Von Kármán and Kirchhoff models for the post-buckling and vibrations of elastic beams

E Bifurcation curves plotted with axial load
In Figure E.1, we plot the graphs of Figures 2, 3, 4, and 5 with the axial load 𝑝𝐸 on the horizontal

axis. This re-plotting sheds light on the shortcomings of the Woinowsky-Krieger model, which

fails to predict how the axial load 𝑝𝐸 is evolving is the post-bucking regime. One must keep in

mind that the frequencies of the first and second modes shown here are not the ones obtained in

a load-controlled experiment, since frequencies depend on the axial boundary conditions. For the

case considered in this text, the axial distance between the ends of the beam is constant during

vibrations, whereas in a load-controlled experiment, this distance varies (i.e. vibrates) since the

axial load is prescribed constant. This case is well documented in (Neukirch et al. 2014).
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Figure E.1 Upper graphs show post-buckled equilibrium curves. Lower graphs show the frequency curves of the first
and second vibration modes around the buckled equilibrium. Kirchhoff model (Ki.), Woinowsky-Krieger
model (WK), order 3 model of Section 5 (order 3), and 4th-order development of Kirchhoff model (Ki.dev 4).
Curve ‘Ki.dev 4’ not plotted for the second vibration mode. 𝜂 = 1/4800.

F Error of Woinowsky-Krieger model as function of 𝜂
In Figure F.2, we plot curves of constant relative error between the Woinowsky-Krieger and

Kirchhoff models, in the plane (1/√𝜂, 𝐷/𝐿). It is observed that the relative errors Err𝑦 and Err𝜔
only weakly depend on the slenderness ratio 𝜂 and grow steadily with the axial displacement 𝐷/𝐿.
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Figure F.2 Comparison between the Woinowsky-Krieger and Kirchhoff models. Relative errors Err𝑦 = (𝑦WK (1/2) −
𝑦Ki (1/2))/𝑦Ki (1/2) for the transverse displacement (left) and Err𝜔 = (𝜔Ki (1/2) − 𝜔WK (1/2))/𝜔Ki (1/2)
for the frequency of the first vibration mode (right). Curves of constant error for Err𝑦 = 2%, 5%, 10%, and
20% (left), and Err𝜔 = 1%, 5%, and 10% (right).
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