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Finite element solution of reaction—-convection—diffusion equations are often unstable or inaccurate,

Céllc;{nce particularly in regimes dominated by convection or reaction. This work addresses this challenge by
©The Auth:)lrs developing a micromorphic-based finite element formulation that stabilizes the problem through gradient

enhancement of the primary field via an auxiliary variable. Unlike many existing stabilization techniques
that rely on problem-dependent parameters, the proposed approach offers a systematic and general
framework. Theoretical analysis establishes the well-posedness of the coupled formulation and provides
an error estimate, ensuring a sound mathematical basis. Numerical studies in one and two dimensions
confirm that the method achieves high accuracy and enhanced stability across a wide range of conditions,
including convection- and reaction-dominated cases. These findings suggest that micromorphic gradient
enhancement can serve as a robust stabilization strategy, extending the applicability of finite element
methods to more complex transport problems.

Keywords: Reaction-convection-diffusion problems, Artificial diffusion, Convection-dominated problems, Stability,
Micromorphic approach

1 Introduction

Reaction-convection-diffusion equations play a central role in physical and mathematical modeling
of transport and reaction phenomena across a wide range of disciplines from heat transfer
and fluid flow to mass transport in environmental and chemical/biological systems. Diffusion
commonly represents the spreading of species within the domain due to concentration gradients.
Convection accounts for the transport of species driven by the movement of the fluid medium.
Reaction refers to the chemical, biological or physical interactions through which species are
produced or consumed during the process.

In reaction-convection-diffusion problems, if the diffusive effects are negligible compared to
convective or reactive effects, the problem is referred to as convection-dominated or reaction-
dominated, respectively (Christie et al. 1976; Heinrich et al. 1977; Johnson et al. 1984). A
well-known challenge that arises in such problems is that the solutions develop sharp gradients
and steep internal or boundary layers. In such scenarios, standard Galerkin finite element
methods (FEM) fail to fully resolve the localized features leading to nonphysical, oscillatory
solutions with spurious overshoots and undershoots (Gresho and Lee 1981; Brooks and Hughes
1982).

Over the past few decades, a variety of stabilization techniques have been developed to
address the instabilities associated particularly with convection-diffusion equations. A classical
remedy to eliminate such oscillations is to introduce artificial diffusion in the equations. However,
excessive artificial diffusion can smear the solution which affects the solution accuracy.
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One of the most well-established stabilization techniques to overcome instabilities in
convection-dominated problems is the streamline-upwind Petrov-Galerkin (SUPG) introduced
by Brooks and Hughes (1982); Hughes (1982). The SUPG method adds a perturbation term aligned
with the flow/streamline direction to the test functions which effectively introduces a minimal
targeted diffusion along streamlines. The resulting formulation maintains consistency and greatly
reduces global oscillations for high Peclet number flows. In narrow regions such as sharp internal
layers or boundary layers, the SUPG solution may still exhibit small overshoot/undershoot
profiles because the stabilization is primarily in the flow direction and lacks dissipation in the
crosswind direction (Burman 2010).

Another approach developed to address the numerical instabilities that arise in convection-
dominated and reaction-dominated problems is the Galerkin/Least-Squares (GLS) method (Hughes
et al. 1989; Pironneau et al. 1992). The GLS method enhances the standard Galerkin formulation
via incorporating additional least-squares terms involving the residual of the governing equa-
tions (Franca and Dutra Do Carmo 1989). Unlike upwinding or artificial diffusion methods, the
GLS method retains the variational consistency of the formulation. A critical and nontrivial
aspect of the GLS method is the choice of the stabilization parameter which typically depends on
local mesh size, the magnitude of convection and reaction coefficients, and sometimes solution
features such as local gradients. Moreover, due to its global formulation which is advantageous
for convergence analysis, GLS fails to offer fine local control over the stabilization effects. For
such cases, other methods such as SUPG or the discontinuous Galerkin finite element method
(DGFEM) (Johnson and Pitkaranta 1986; Cockburn 2003) may provide better adaptability and
sharper resolution.

The so-called unusual stabilization method (Franca and Farhat 1995; Franca and Farhat
1994) maintains the original Galerkin framework but augments it with stabilizing terms that are
not necessarily derived from a least-squares or residual-based interpretation. A key feature of
this method is its variational consistency where the added stabilization terms vanish when the
exact solution is substituted into the formulation thereby preserving convergence and error
properties. Many studies have been carried out to improve the stability and accuracy of the
unusual stabilization method, see (Franca and Valentin 2000; Duan et al. 2012; Hsieh and Yang
2016) among others.

Several other techniques have been developed to deal with instabilities associated with
convection-dominated and reaction-dominated problems such as the variational multiscale (VMS)
method (Hughes et al. 1998; John et al. 2006; Z.-J. Chen et al. 2018; Du et al. 2015), local projection
stabilization (LPS) method (Knobloch and Lube 2009; Cibik and Kaya 2011), the symmetric
stabilization method (Burman and Fernandez 2009; Guermond 1999; Codina 2000b), the residual
bubble free (RFB) method (Franca et al. 1998; Brezzi et al. 1999), high-resolution Petrov-Galerkin
(HRPG) method (Nadukandi et al. 2010; Nadukandi et al. 2012), weak Galerkin FEM (G. Chen et al.
2017), and variational subgrid scale method (Hauke and Garcia-Olivares 2001). See (Codina
1998; Codina 2000a; John and Schmeyer 2008) for comparative studies on some stabilizing finite
element methods. Despite these advances, challenges still remain in achieving stability without
compromising accuracy. Some methods require tuning of problem-dependent parameters such as
the SUPG weighting parameter or shock-capturing coefficients. Such limitations motivate the
development of improved stabilization strategies that selectively target oscillations and internal
layers without smearing the sharp gradients.

In a recent contribution (Firooz et al. 2025), a micromorphic-based artificial diffusion (MMAD)
method has been proposed for stable and accurate finite element approximation of convection-
diffusion problems. The method is, in principle, a gradient-enhanced extension of the mean-zero
artificial diffusion method presented in (Firooz et al. 2024), and which is equivalent to a projected
artificial diffusion approach. Motivated by the micromorphic approach (Forest 2009; Forest 2016;
Forest and Sab 2020), the modification entails the introduction of a micromorphic-type variable
and enhancement in terms of the variable and its gradient. A number of numerical examples
demonstrate the excellent performance of the approach, in the convection-dominated range and
for pure advection problems.

In this work the formulation in (Firooz et al. 2025) is extended to treat reaction-convection-
diffusion problems. Of particular interest are situations in which reaction or convection dominate.
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The formulation is shown to be well-posed and convergent for equal-order (linear) approximation
of the original variable and that introduced for the enhancement. A number of numerical
examples are presented, for situations of reaction- or advection- dominated flows. These illustrate
the accurate and stable performance of the method, with oscillations or wiggles largely suppressed
in regions of steep gradients or localized layers.

The structure of the rest of this work is as follows. Section 2 introduces the problem and
presents the governing equations for reaction-convection-diffusion problems. The micromorphic-
based artificial diffusion method together with details of the well-posedness and convergence of
the method are the subject of Section 3. Section 4 illustrates the performance of the MMAD
method through a set of numerical examples. Section 5 summarizes the the key contributions of
the work.

2 Reaction-convection-diffusion problems

Let B be a bounded domain with the boundary 98 and n be the outward unit normal to 98. For a
scalar quantity ¢, the general dimensionless form of the steady-state reaction-convection-diffusion
equation reads

Dap+u-Vo—Ap=F in B, (1a)

®=¢p on d8Bp, (1b)
7]

Vo -n= % _ tp on By, (1¢)
on

where Pe = UL/D is the Peclet number, Da = BL/U, the Damkohler number, u = U/U, the
dimensionless velocity vector, U the divergence-free velocity, D the diffusion coefficient, B the
reaction coefficient, L a characteristic length of the spatial domain, U a characteristic velocity, n
the unit vector normal to the boundary 98, ¢, the prescribed value of ¢ and t, the prescribed
flux. 98p and 0By denote the Dirichlet and Neumann parts of the boundary 98, respectively
with 08p N 90BN = 0 and 0Bp U 90BN = 9B. The first term in Equation (1) accounts for reaction,
the second term accounts for convection, the third term accounts for diffusion and the term on
the right is a source term. For consistency with the dimensionless formulation employed in our
finite element method analysis—which proves convenient in the subsequent development—we
define the dimensionless mesh size as h = h/L, where h denotes the physical element size and L
the characteristic length of the domain. Note that the methodology presented in this paper is not
restricted to steady-state problems. There are no inherent obstacles to applying the method
to transient problems (see (Firooz et al. 2025) for the application of our approach to transient
problems).

The Peclet number quantifies the relative influence of convection to diffusion whereas the
Damkéhler number quantifies the relative influence of reaction to convection. If Pe > 1 and
Da « 1, convection dominates over diffusion and reaction; sharp gradients or boundary layers
are likely to emerge in the solution. This is common in high-speed flows or large-scale systems. If
Da > 1 and Pe < 1, reaction dominates over convection and diffusion; reaction kinetics are fast
compared to transport processes and the species may be consumed near boundaries or in localized
regions before being transported further, which also leads to sharp concentration gradients
and boundary layers. This is common in catalytic reactors, biological systems or porous media
transport systems. If Da > 1 and Pe > 1, the system is advection- and reaction-dominated;
the solution often exhibits steep concentration gradients along streamlines and thin reactive
boundary layers. This regime is commonly encountered in high-speed combustion processes,
industrial chemical reactors or chemical vapor deposition systems. If Da <« 1 and Pe < 1, the
system is diffusion dominated; the solution exhibits uniform concentration distributions and
smooth profiles where sharp gradients or boundary layers are generally absent. This regime is
typical in microfluidic devices, low-speed flows or dilute biological systems.

To calculate the weak form of Equation (1), we multiply Equation (1a) with a test function §¢
and integrate it over 8 which, using the divergence theorem and Neumann boundary condition,
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reads

/ Daqo5<pdv+/ u-V(p5qodv+ﬁ/ Vo -Vépdo = / F5q)dv+/ tpde da, (2)
B B B B 0By

for ¢ = ¢p on dBp where the test function ¢ satisfies ¢ = 0 on dBp. Here t,, is the prescribed
boundary flux; see Equation (1c).

3 The micromorphic-based artificial diffusion method

The MicroMorphic-based Artificial Diffusion method (MMAD) formulation for reaction-convection-
diffusion problems follows closely that for convection-diffusion problems, as set out in (Firooz
et al. 2025), but for convenience is presented in self-contained fashion. We assume in this
development a homogeneous Dirichlet boundary condition on all of 98. The extension to more
general boundary conditions is straightforward.

We start by defining the micromorphic-type variable g and the generalized strain-like variable
e = V¢ — g. Then for the special case of a reaction-diffusion problem, for which a minimization
problem exists, the total potential is given by

¥ =% + ¥Yvm (3)
where

1 Da
Yo = - IVol + —lo* + Fo,
e 2
; . . (4)
\IIMM:E[V(p—g]-H-[V(p—g]+§g-K-g+§Vg:lA1Vg

with H, the micromorphic-type (second-order) coupling tensor, K, the micromorphic-type
(second-order) tensor and A, the micromorphic-type (fourth-order) “stiffness” tensor. We define
H, K and A such that they are symmetric and positive-definite; that is, for any vector a and
second-order tensor A we have

[H-a]-a> Hlal’, [K-a]-a>Klal’, [A:A]:A> AAP (5)

where Hy, Ky and Ay are positive constants. The micromorphic-type coupling tensor H enforces
compatibility between the primary field and the micromorphic variable. In the discrete formulation,
H is selected such that it incorporates the effects of upwinding and reaction terms, ensuring
appropriate stabilization. On the other hand, the micromorphic-type “stiffness” tensor A governs
the spatial scale of micromorphic effects. Moreover, through appearing in the gradient terms, it
also controls the degree to which the micromorphic effects influence the solution. A key feature
of our proposed MMAD method is that the micromorphic effects can be easily controlled by
choosing appropriate values for H, K and A thereby ensuring stable and accurate solutions
suited to the problem at hand.

Remark 1 The choice A = O, K = 0 and H = pI reduces the MMAD formulation to the MZAD approach
for pure advection coupled-problems introduced in (Firooz et al. 2024).

The first variation of the total energy

(g.g) = /B [o(p) + ¥y, (0. 9)] do, ©)

leads to a weak formulation. With the addition of the convective term this gives the full MMAD
weak formulation

/Darpéqodv+/u-qu5tpdv+/I%eV(p-V(S(pdv+/[H-[V(p—g]]-V(Sqodo
B B B B

:‘/F&pdv, (72)
B

/[—H-[Vq)—g]+K-g]-5gdv+/[A:Vg]:V5gdv=0. (7b)
B B
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We define the spaces & = H}(B) = {¢ € L*(B) | dx,0 € LX(B), p =0on 9B} and G = {g | g; €
H'(B)} as well as the norms |[¢lle = [Vellz = ([ |Vel* do)'/%, |igll?, = [,1g/* do, and
||g||é = ||g||i2 + ||Vg||i2. Our objective is to seek ¢ € ® and g € G that satisfy Equation (7) for
all ¢ € ® and dg € G.

3.1 Discrete MMAD formulation

We denote the discrete conforming approximations of ¢ and g as ¢j and g,,, respectively, together
with their corresponding test functions d¢j and 8g,,. For the discretized MMAD formulation, the
objective is: for all ¢, € ®" and 8g,, € G, find ¢;, € " c ® and g, € G" c G such that

/Da(ph5(ph do +/ u - Vopdey do +/ PleV(ph - Véop, do +/[H “[Von —g,1] - Végp do
B B B B
= / Féop do, (8a)
B

‘/B[—H- [Vonh—g,] +K-g,] - 6g;,do+ ‘/B[A :Vg,] : Vég, dv = 0. (8b)

3.1.1  Well-posedness and convergence analysis

To elaborate on the well-posedness of the formulation, we define the space d = ® x G. For
@ = (¢.g) € ®the norm || e ||5 is defined by ||(ﬁ||?6 = |loll3 +A||g||é. Then/t\he fully discrete
version of Equation (8) can be written as follows: for all 9, € ®", find @, € ®" such that

B (@, 6p) = t(59p) ()
where
B (¢, 693) Z/B [Dagnden +u-Vonden + i=Vou- Vo + [H-[Von — g,11- [V — 5,
+[K-g,]-8g,+[A:Vg,]: V(Sgh] do, (10a)

{’(5@1)=/BF5(phd0. (10b)

To show well-posedness, one needs to show that B(e, e) is coercive and continuous, and #(e) is
continuous. That is,

B(¢h Gps 0 g1) > M 119412, (112)
B(¢n: gp: 5¢n. 6g5) < m |lpyll5 16945, (11b)
t(n gp) < ¢ llpylls, (11¢)

with M, m and c being positive constants. For the coercivity of B(e, ®), we start with

B(@,, 9) = /3 [Dalgn|* + [u - Vorlon + = Vonl* + [H - [Von — g,11 - [Vor — g,]

+[K-g,] - 9,+[A:Vg,]: Vgh] do. (12)
We show that the second term on the right-hand side is zero, as follows. using the divergence
theorem
/[u -Vole do :/ ¢*[u-n]da - / oV - (pu) do
B 8B B

:‘/anoz[u-n]da—/B(pZV-udv—/(B[u-qu](pdv. (13)
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The first two terms on the right-hand side are zero, given respectively the homogeneous Dirichlet
boundary condition on ¢, and the incompressibility condition. Rearrangement gives the desired
result. From Equation (12) and using Equation (13) we have

B(@p. pp) > /B[Dalfphl2 + 5| Vonl* + HolVor, — g1* + Kolgp|® + Ao Vg, |*] do. (14)

Using the inequality 2ab < ea® + b/ which implies [a — b]? > [1— ¢]a® + [1 — ¢~ !]b? for any ¢,
we have |V, — g,|> > [1 - €]|Von|? + [1 — e7']|g,|*. Consequently, Equation (14) becomes

B(fﬁh,(ﬁh)>/B[Dalqohlz+[%e+Ho[1—€]]|prh|2+[Ho[l—f_l]+Ko]|gh|2+Ao|Vgh|2]d0

[pc +Hol1—ellllgnllg + [Ho[1 = e~ T+ Kol llgpll7. + Aol VgylI7.
[5c +Hol 1~ el1llgnllg +min(Ho[1 - e™'] + Ko, A0) lg, 11 (15)

choosing ¢ such that 0 < ¢ < 1, and K such that Ky + Hy[1 — ¢7!] > 0. Then

2>
=

B@w @) > MIIIE, (16)

with M = min (1/Pe + Hy[1 — €], min (Ko + Ho[1 — '], Ag)). For continuity, we have

B(@y,09),) = /B [Dagydpp +u - Vopdon+ 5-Von - Voon+ [H - [Vo, — g,11 - [Von — 69,
+[K-g,]-6g,+[A:Vg,]:Vdg,]do, (17)

Then using the Cauchy-Schwarz inequality, we have

IB(fﬁh,&?h)l</B[Dalfﬂhll5¢h|+umax|V§0h||5<0h|+ﬁlVfﬁhllV&Dhl

+Hmax|V§0h - gh||V5§0h - 59}1' +Krnax|gh||5gh| +Amax|V!]h||V5gh|]dU

< Dallop|lz2l18@nll 2 + [thmax! [5¢nl |12 + 51 V@l |21 Vol 2
+ 2Hmax |94 5110041 |5 + Kmax| 1951112116912 + Amax [V g1 111211V g | 2

< [Da+tmax + ﬁ + 2Hmax + Kmax + Amax] | @] |51 |5¢h||6’ (18)

With um.x = max; |4;], Hpnax = max;j |Hjj|, Kmax = max;; |Kjj| and Apax = max;jig |Aijrl.
Therefore B(e, ®) is continuous with constant

1
m = Da + tmax + p; + 2Hmax + Kimax + Amax- (19)

To show continuity of £(e), from Equation (10) we have, using the Cauchy-Schwarz inequality,

< IFllzzllnll e, (20)

e(on)] = ‘ / Fon do
B

so that Equation (11c¢) is verified with ¢ = ||F|| 2.

3.1.2  Error analysis
The continuity and coercivity of B(e, ®) imply the standard finite element error estimate for
vh G" comprising continuous piecewise-linear polynomial is (Reddy 1998)
|lp — @ullg < Ch. (21)

Thus, we have convergence at a linear rate and the constant C is given by C = ¢[m/M], where m
and M are the continuity and coercivity constants, respectively, and ¢ a constant that depends on
the H? semi-norm of @. Next, we consider the modeling error. The original problem is to find
@o € @ such that

a (@o, ) = £ (6¢) (22)
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Remark 2

Remark 3

3.2

Remark 4

with
a (o, 6¢) = / [Dagodp + [u - Voldp + P—leV(po -Vép]dv and ¢ (dp) = / Fé¢ do.
B B

On the other hand, the MMAD problem is given by (7). Thus we have an error [¢ — @] between
the original (or actual) and MMAD solutions. We now estimate this error. Setting

@ (0.30) +b(p.:50) = ((5p), with b(p.gi09) = [ [H-[Tp—g]] - Vopdn, (3)
from Equations (22) and (23) we have

a (¢ = ¢0.0¢) +b (9. 5¢) = 0. (24)
Now a is coercive since

a(p,¢) > Mollollg (25)
with My = 1/Pe using Equation (13). Next, set §¢ = ¢ — ¢ in Equation (24); this gives

a(¢ = ¢o,¢ = o) +b (9.9 — o) = 0. (26)
Thus, from Equations (25) and (26),

Mo llg = @ollg < b (9,90 — @) < fo ll9llg lle — olla, (27)

where fy = Hnax- Hence,

o\~
lle = @ollo < Molltplla- (28)

Finally, combining Equations (21) and (28) we have, for the error between the original solution
and its MMAD finite element approximation,

o\~
llpo = @nlle < lloo = ¢lle + llo = @nlle < ﬁzlltpll5+Ch. (29)

The modeling error depends on fy/My = HyaxPe. Thus it can be controlled in the limit of small
diffusivity (Pe > 1) through an appropriate choice for H. The finite element approximation error
depends on m/M, where these constants are given in Equations (16) and (19). The choices for H,
K and A will be discussed in Section 3.2.

We note that we have stability in the limit of vanishing reaction (Da — 0).

Choice of H, K and A

The next step to complete our approach is to elaborate on the choice of H, K and A. Following
the works (Brooks and Hughes 1982; Tezduyar and Park 1986), we set H = kaou+klI K =1,
and A =T, where u = u/|u| and I and I being the second- and fourth-order identity tensors,
respectively. The constants ke and k; read

PD

k =Zu-h-y</2 and k =i E,BZ+ F —1] (30)
C - 'ty r Pe 3 Sinhzﬂ

with y; = coth(e;) — 1/a;, a; = Peh; /2, u; = el.T -u, and f§ = 4/(Bh?)/(4D). The subscripts “c” and
“r” refer to convection and reaction, respectively, PD is the problem dimension, e;, the unit vectors
in the finite element natural coordinate system and h;, the dimensionless element characteristic
length in each natural coordinate direction. Also, D denotes the diffusion coefficient (in units of

m?/s), B is the reaction coefficient (in units of s™!), and h represents the dimensionless mesh size.

Specifically, h; refers to the dimensionless characteristic element size in the i-th coordinate
direction. Since we employ structured meshes in all numerical examples, the mesh is uniform in
all directions, and thus h; = h for all i. In the case of unstructured meshes, defining an appropriate
scalar representative mesh size becomes more involved.
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4 Numerical results

In this section we evaluate the performance of the MMAD formulation through a set of numerical
examples in one- and two-dimensional settings. Six different examples are examined. Figure 1
shows the boundary conditions and problem specifications associated with each example.

example 1
F=1
¢=0 ¢=0
=0 =0
L. example 2 1_. example 3 L. example 4
F=0 F=0 M F=0
ﬁ u= ﬁﬁ ? "= ﬁﬁ u =[xz, x1]
s 1202 > 1202 o I'le
I Il 1}
S S
1] 1]
S- S-
p=1 p=1
¢ = 1 (p:()
L. example 5 L. example 6
F=0 g F=1
u =1[0.15,0.1] [t v3
— o o “Z12° 2 =)
1l I I 1]
S- S-
¢=0 ¢=0

Figure 1  Six different case studies for one-dimensional and two-dimensional reaction-convection-diffusion equations.
The boundary conditions, the flow direction and the source term are specified for each case. For the 1D
example, the domain spans B := [0, 1] and for 2D examples, the domain spans 8 := [0, 1] x [0, 1].

The first example is 1D and the rest of the examples are 2D. In order to effectively examine
the influence of reaction or convection dominance in the problem, different cases with various
Damkéhler numbers and Peclet numbers are considered. All simulations are carried out using
our in-house finite element code. For the 1D example, the domain is discretized into 100 linear
elements. For the 2D examples, the domain is discretized into a structured grid consisting of 1600
bi-linear quadrilateral elements. Throughout the examples, continuous piecewise-linear functions
are employed for the finite element approximation of all fields.

Example 1 We consider a 1D reaction-convection-diffusion problem. As shown in Figure 1, both ends of the

domain are subject to Dirichlet boundary conditions ¢ = 0 and the source term is F = 1.

Figure 2 shows the solutions obtained by standard Galerkin FEM and the MMAD method for
different values of Damkdhler and Peclet numbers. The solid black line in each plot shows the
exact solution and the dashed line with points shows numerical solutions. Five different cases
are considered; two extreme cases in the top row and the bottom row representing a highly
reaction-dominated regime and a highly convection-dominated regime, respectively; and three
intermediate cases with comparable convection and reaction contributions. For all these cases
the diffusion is very small. It is observed that the FEM solution shows small oscillations in the
vicinity of the sharp gradients for the reaction-dominated case.

For the three intermediate cases, increasing the Peclet number damps out the oscillations on
the left side but exacerbates the oscillations on the right side.

For the convection-dominated case, the FEM solution is completely oscillatory throughout

Journal of Theoretical, Computational and Applied Mechanics } October 2025 | jtcam.episciences.org 8 | 17


https://jtcam.episciences.org

S. FIROOZ et al.

A gradient-enhanced approach for stable finite element approximations of reaction-convection-diffusion problems

Figure 2

Example 2

FEM MMAD
@ T Y ]
12| ?. ° g : :
2 . ; o8l [ 1
S| 1 1 ; :
I s ° ;
< | 08} 1 4] os} 1
a
ol e 11 oaf 4
I ’
o | 04} 4
=9
02l exact | °2r exact 7
FEM ---o--- MMAD ----a---
L L L L L L L L
=% 02 04 06 08 1X 0 02 04 06 08 1X
@ T g ("2 ]
- 12 9 :. B b
=) al :; o || o8F | 1]
I P
S | o8t 1] 06| =
g | o !
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Comparison of FEM and MMAD solution for a 1D reaction-convection-diffusion problem described in
Example 1. The solid black line represents the exact solution and the dashed lines (with points on top)
represent the solutions obtained from different numerical schemes. The characteristic element length is
h=0.01.

the entire domain. The MMAD method for all cases gives stable, accurate and oscillation-free
solutions.

We consider a 2D reaction-convection-diffusion problem where the domain 8 := [0,1] x [0, 1] is
subject to Dirichlet boundary conditions on two edges and Neumann boundary conditions on two
other edges. The source term is F = 0, the element characteristic length is A = 0.025 and the flow
is irrotational with angle 45°. This benchmark example is taken from (Brooks and Hughes 1982).
Note though that, the results presented in (Brooks and Hughes 1982) do not include reaction.

Results obtained with standard finite element approximations and the current MMAD
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Figure 3

Remark 5

formulation are presented in Figure 3.

Pe=1, Da=10®

Pe = 10°, Da = 103

Pe = 10°, Da = 10

Pe = 103, Da = 10!

Pe = 10°, Da = 1073

Comparison of FEM and MMAD solution for a 2D reaction-convection-diffusion problem described in
Example 2 taken from (Brooks and Hughes 1982). The characteristic element length is A = 0.025 and the
flow direction is u = [V2/2, V2/2].

For the reaction-dominated case, the solution by FEM suffers from small oscillations close
to the boundary. The same level of oscillations holds for the case with equal Damkéhler and
Peclet numbers. For the other cases with Peclet number greater than the Damkdhler number,
the oscillations close to the boundary disappear and they appear in the vicinity of the shock.
Increasing the ratio of Peclet to Damkoéhler number leads to higher degrees of oscillation. The
MMAD method though leads to an exact solution for the reaction-dominated case and the case
with equal Damkoéhler and Peclet numbers.

For the remaining three cases where convection becomes more dominant, the MMAD solution
is stable and relatively accurate. Note that the MMAD solution for these cases is not identical to
the exact solution; that is, the shock in the exact solution is significantly sharper, occurring over
the width of a single element, whereas the MMAD solution exhibits a more gradual transition.

The exact analytical solution is shown only for the 1D case. For the 2D cases, instead of the exact
solution to this problem, a reference solution obtained from a significantly refined mesh was used
as a proxy for the exact solution. This solution exhibits very sharp gradients where the transition
occurs within the width of a single element.

This reference solution is not included in the figures as the behavior is qualitatively reproduced
by the MMAD method in the initial examples shown in Figures 3 and 4. Accordingly, we state
that “the MMAD method leads to a highly accurate solution for the reaction-dominated case and

Journal of Theoretical, Computational and Applied Mechanics | October 2025 | jtcam.episciences.org 10 | 17


https://jtcam.episciences.org

S. FIROOZ et al.

A gradient-enhanced approach for stable finite element approximations of reaction-convection-diffusion problems

Example 3

Figure 4

Example 4

the case with equal Damkdhler and Péclet numbers,” based on the excellent agreement with the
highly resolved solution.

As suggested in (Brooks and Hughes 1982; Tezduyar and Park 1986), we consider a 2D reaction-
convection-diffusion problem where the domain B := [0,1] X [0, 1] is subject to Dirichlet
boundary conditions on all its edges. Similar to the previous example, the source term is F = 0,
the element characteristic length is h = 0.025 and the flow is irrotational with angle 45°. Note
that the results presented in (Brooks and Hughes 1982) do not include reaction.

Results obtained with standard FEM and the current MMAD formulation are presented in
Figure 4. Similar to the previous example, for the reaction-dominated case and the case with

Pe =1, Da = 10®

Pe = 10%, Da = 10°

Pe =10°, Da= 10

Pe = 103, Da = 10!

Pe = 10°, Da = 1073

Comparison of FEM and MMAD solution for a 2D reaction-convection-diffusion problem described in
Example 3. The characteristic element length is h = 0.025 and the flow direction is u = [V2/2, V2/2].

equal Damkéhler and Peclet numbers, the solution by FEM suffers from small oscillations close to
the boundary. For the other cases with Pe = 103 and Da = 10, the oscillations exist both close to
the boundary and in the vicinity of the shock. For the last two cases the FEM solutions are
completely unstable. Similar observations to the previous example hold for the MMAD solutions.

As suggested in (Brooks and Hughes 1982; Tezduyar and Park 1986), we consider a 2D reaction-
convection-diffusion problem with the domain B := [0, 1] X [0, 1]. As shown in Figure 1, all four
edges are subject to Dirichlet boundary conditions ¢ = 0. The velocity components are defined
as u; = —x, and u, = x; with x; and x; being the coordinates. Another condition is enforced
on the line AB along which ¢ is set equal to sin(27x;). The source term is F = 0, the element
characteristic length is A = 0.025. The example is also referred to as the “Donut problem”. Note
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that, the results presented in (Brooks and Hughes 1982) do not include reaction.
The results obtained with standard FEM and the MMAD method are presented in Figure 5.
For the two first cases with Da = 10°, and Da = 1 (respectively reaction-dominated and slightly

FEM MMAD

Pe =1, Da = 10°

05 g5 05 o 05 05 o5

08

= |

Pe = 10%, Da

05 o5

Pe = 10°, Da = 102

Pe = 10, Da=10"*

Pe = 10°, Da = 10"

Figure 5 Comparison of FEM and MMAD solution for a 2D reaction-convection-diffusion problem described in

Example 5

Example 6

Example 4. The characteristic element length is h = 0.025 and the flow is rotational with the characteristic
velocity u = [—x3, x1] with x; and x; being the coordinates.

convection-dominated), the hill is damped very early, nonetheless the FEM solution suffers
from instabilities on the left side of the hill. For the third convection-dominated case with
Da = 1072 and Pe = 10°, the FEM solution renders severe instabilities all over the domain.
Further decrease in the Damkohler number yields more dominance of convection leading to more
stable solutions. The MMAD solution exhibits stable and accurate behavior regardless of the
dominance of convection or reaction.

As suggested in (Franca and Valentin 2000; Duan et al. 2012), we consider a 2D reaction-convection-
diffusion problem where the domain 8 := [0, 1] X [0, 1] is subject to Dirichlet boundary conditions
on all its edges. The source term is F = 0, the element characteristic length is h = 0.025 and the
flow is irrotational with velocity components u = [0.15,0.1]. Results obtained with FEM and
MMAD method are presented in Figure 6. Observations similar to Example 3 can be drawn
regarding the behavior of the FEM and MMAD solutions.

We consider a 2D reaction-convection-diffusion problem where the domain 8 := [0, 1] X [0, 1]
is subject to Dirichlet boundary conditions on all its edges. The source term here is F = 1,
the element characteristic length is h = 0.025 and the flow is irrotational with angle 60°. This
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Pe = 1, Da = 10®

Pe = 10%, Da = 10°

Pe =10°, Da= 10

Pe = 10%, Da = 10!

Pe = 10°, Da = 1073

Figure 6 Comparison of FEM and MMAD solution for a 2D reaction-convection-diffusion problem described in
Example 5. The characteristic element length is A = 0.025 and the flow direction is u = [0.15,0.1].

benchmark example is taken from (Codina 1998). The values for the velocity, diffusion coefficient
and reaction coefficient are identical to those considered in (Codina 1998). That is, the diffusion
coefficient is D = 10™* m?/s, the velocity and reaction coefficient are chosen accordingly to yield
the given Damkdhler and Peclet numbers.

The results obtained with standard FEM and the MMAD method are presented in Figure 7. For
the first and the last cases with high Peclet numbers, the FEM solution is completely oscillatory
and unstable. Some oscillations close to the boundary are observed for the case with high
Damkohler number. The MMAD solution provide stable and accurate solutions for all the three
cases.

Computational time comparison Figure 8 compares the computational cost of the classical
FEM and the MMAD method in both one-dimensional (1D) and two-dimensional (2D) settings.
The figure shows the normalized computational time for each method, where the red bars
represent FEM and the blue bars represent MMAD. MMAD is consistently more computationally
expensive than FEM in both 1D and 2D. This is due to the introduction of the additional field g,
which increases the number of degrees of freedom (DOFs). In 1D, FEM has one DOF per node,
while MMAD has two DOFs per node. In 2D, the difference is even more pronounced where FEM
still has one DOF per node, but MMAD has three DOFs per node. This explains why the gap in
computational cost between FEM and MMAD widens as the problem dimension increases.
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Pe = 10*, Da=10"*

Pe =1, Da = 10*

Pe = 5% 10%, Da = 10*

Figure 7 Comparison of FEM and MMAD solution for a 2D reaction-convection-diffusion problem described in
Example 6. The characteristic element length is h = 0.025 and the flow direction is u = [1/2, V3/2].

normalized
computational ¢jassical FEM s
time MMAD  —

15

05

1D 2D

Figure 8 Comparison of the computational time between the classical FEM and the MMAD method.

5 Summary and outlook

We have proposed a novel micromorphic-based artificial diffusion method to circumvent the
instabilities commonly observed in standard Galerkin finite element approximations of reaction-
convection-diffusion problems. The key idea in our approach is to introduce an auxiliary
micromorphic-type variable, which enriches the formulation through the addition of terms
involving the variable and its gradient. Sufficient conditions for well-posedness and convergence
of the method have been presented. A number of examples comprising reaction- or convection-
dominated situations, as well as combinations of two, illustrate the stability and accuracy of
the MMAD approach. An important challenge in extending our proposed approach arises in
the context of fully coupled flow problems where the velocity field is no longer prescribed but
instead treated as an additional unknown. In such settings, the micromorphic coupling tensor
H, which is designed to align with the local flow direction, must be determined dynamically.
Developing adaptive or robust strategies for defining H in such coupled problems is an important
direction for future research.
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