Identifiers
DOI 10.46298/jtcam.14449
HAL hal-04735022v3

History
Received Oct 14, 2024
Accepted Mar 27, 2025
Published Sep 22, 2025

Associate Editor
‘Alexander Porp

Reviewers
Thomas HELFER
Chris RICHARDSON
Anonymous

Open Review
HAL hal-05082559

Supplementary Material

DOI 10.5281/zenodo.15577842.

See also addendum for
additional information on
datasets and software

solutions.

Licence
CCBY 4.0
©The Authors

Journal of Theoretical,
Computational and
Applied Mechanics

W (CMMN

Expressing general constitutive models in FEniCSx
using external operators and algorithmic automatic
differentiation

Andrey LATYSHEV"?, ©Jérémy BLEYER3, ®Corrado MAURINT?, and ®Jack S. HALE"
! Institute of Computational Engineering, Department of Engineering, Faculty of Science, Technology and Medicine,
Université du Luxembourg, Luxembourg

2 Institut Jean Le Rond d’Alembert, Sorbonne Université, UMR CNRS 7190, France

3 Laboratoire Navier, Ecole des Ponts ParisTech, Université Gustave Eiffel, UMR CNRS 8205, France

Many problems in solid mechanics involve general and non-trivial constitutive models that are difficult to
express in variational form. Consequently, it can be challenging to define these problems in automated
finite element solvers, such as the FEniCS Project, that use domain-specific languages specifically designed
for writing variational forms. In this article, we describe a methodology and software framework for
FEniCSx / DOLFINx that enables the expression of constitutive models in nearly any general programming
language. We demonstrate our approach on two solid mechanics problems; the first is a simple von Mises
elastoplastic model with isotropic hardening implemented with Numba, and the second a Mohr-Coulomb
elastoplastic model with apex smoothing implemented with JAX. In the latter case we show that by
leveraging JAX’s algorithmic automatic differentiation transformations we can avoid error-prone manual
differentiation of the terms necessary to resolve the constitutive model. We show extensive numerical
results, including Taylor remainder testing, that verify the correctness of our implementation. The software
framework and fully documented examples are available as supplementary material under the LGPLv3 or
later license.

Keywords: constitutive models, automated finite element solvers, algorithmic automatic differentiation, external
operators, FEniCSx, JAX, Numba

Introduction

The finite element method (FEM) has proven itself as a robust numerical method for solving
partial differential equations (PDEs) arising from problems in solid mechanics (Bucalem and Bathe
2011). In the past fifteen years, automated finite element solvers, such as FEniCS(x) (M. Alnzes
et al. 2015; Baratta et al. 2023), FreeFEM++ (Hecht 2012) and Firedrake (Ham et al. 2023), have
introduced high-level domain-specific languages (DSLs) specifically designed for writing finite
element variational forms of PDEs, e.g. the Unified Form Language (UFL) (M. S. Alnzes et al. 2014).
Through a sequence of analysis and code transformation steps (Kirby and Logg 2006; Logg et al.
2012; Homolya et al. 2018), automated finite element solvers can automatically translate the DSL
specification of a particular problem into a high-performance finite element solver.

In the field of solid mechanics, a wide variety of constitutive models are used to predict the
behaviour of materials in response to mechanical loads. As a non-exhaustive list of examples, we
mention elasto-plastic (Simo and Hughes 1998), hyper-elastic (Ogden 1997), poro-elastic (Coussy
2004; Wang and Hong 2012) and visco-elastic (Ferry 1980) material behaviours, for which
constitutive models can be derived from a variety of phenomenological (Tschoegl 2012), statis-
tical (Buche and Silberstein 2020), thermodynamic (Rajagopal and Srinivasa 2000), and more
recently, data-centric justifications (Fuhg et al. 2025).

However, a significant number of widely used constitutive models either cannot be easily
expressed in variational form, or, even if it is possible, the practical resolution of the constitutive

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 1 | 28

https://dx.doi.org/10.46298/jtcam.14449
https://hal.science/hal-04735022v3
https://orcid.org/0000-0002-8820-466X
https://orcid.org/0000-0003-2460-5816
https://orcid.org/0000-0003-3137-1392
https://hal.science/hal-05082559
https://doi.org/10.5281/zenodo.15577842
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-7512-0413
https://orcid.org/0000-0001-8212-9921
https://orcid.org/0000-0003-1092-4461
https://orcid.org/0000-0001-7216-861X
https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

1.

law on a computer is more easily expressed as an algorithm implemented in a computationally
universal programming language. Consequently, domain specific languages such as UFL are
often not rich enough to express the algorithms associated with the wide range of constitutive
models in use today. Typical examples of such complex constitutive models that cannot be,
or are not ideally, expressible in UFL include plasticity models, e.g. (Simo and Hughes 1998),
multiscale models, e.g. (Feyel 2003) and modern data-centric models, e.g. (Stainier et al. 2019;
Masi et al. 2021; Thakolkaran et al. 2022; Zlati¢ et al. 2024; Ulloa et al. 2024), with the latter
being of particular interest due to their increased popularity in the computational mechanics
community in recent years.

Plasticity models are often resolved via algorithms such as the well-known predictor-corrector
scheme which involves the application of a Newton-type method at the local level (Simo and
Hughes 1998). Multiscale constitutive models are frequently resolved by executing another
numerical algorithm, e.g. a molecular dynamics simulation (Saether et al. 2009), or another finite
element code (Feyel 2003), to represent the material behaviour at a lower scale. Data-centric
methods often include non-trivial model structures, e.g. neural networks (Linka and Kuhl 2023;
Zhang et al. 2022), for which high-quality libraries exist for their concise expression, training
on data and execution (Abadi et al. 2015; Frostig et al. 2018). Although diverse, none of these
methods can be naturally expressed in DSLs such as UFL.

Methods for incorporating constitutive models

A number of methods have been proposed to incorporate general constitutive models into
automated finite element solvers such as DOLFINx. One method is to write programmatic
interfaces from the finite element solver to frameworks specifically designed for implementing
non-standard constitutive models such as MFront (Helfer et al. 2015) and ZMAT (Abatour
et al. 2024; Z-Set Software 2023). Although this approach does not require any changes to the
existing functionality of UFL, it requires significant effort to develop interfaces between the finite
element solver and the interface provided by each constitutive modelling package. Furthermore,
programmatic approaches often feel ad hoc as they do not integrate with the abstractions and
automatic differentiation tools provided by UFL to write the variational part of the problem.

A more recent approach, and one that forms the basis for this work, is the introduction of
the external operator extension to UFL (Bouziani and Ham 2021). The external operator is a
symbolic UFL object that represents a general mapping between finite element quantities in
a form; for a formal definition, see (Bouziani and Ham 2021, Definition 1). The action of the
operator itself can then be concretely defined externally, using ‘any’ programming language.
In essence, the external operator concept creates a bridge between the language of forms and
the broader possibilities provided by general programming languages. Another key feature
of external operators is that they can be symbolically differentiated by UFL, producing new
symbolic external operators representing the action of the derivative of the original operator -
this opens up numerous possibilities for using programming languages that support algorithmic
automatic differentiation (AD) to automatically create the necessary derivatives.

Automatic differentiation in constitutive modelling

In solid mechanics the resolution of a constitutive model often requires the evaluation of
derivatives of lengthy expressions, for example, the derivative of the stress field, so-called
consistent tangent moduli. Due to the complexity of these expressions, their derivation by hand
and subsequent translation into programming code is often a source of errors. Because of this,
different approaches can be used to automate and/or approximate the differentiation process,
e.g. finite differences (FD), complex-step (CS) (Lyness and Moler 1967; Lyness 1968), symbolic
differentiation (SD) and algorithmic automatic differentiation (AD) (Griewank and Walther 2008).

We remark that UFL implements Gateaux differentiation of forms, including external operators,
and the output of this is another UFL form. Hence UFL’s differentiation can be considered a type
of SD (M. S. Alnees et al. 2014, p.32).

In this work, we focus on leveraging algorithmic automatic differentiation for the concise
expression of constitutive models and their derivatives. AD is a set of techniques for evaluating

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 2 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

derivatives of quantities defined by general computer programs (Griewank and Walther 2008).
Compared with other differentiation techniques like FD and SD, AD does not suffer from
truncation or round-off errors, does not lead to expression swell and can be applied to general
classes of programs involving control flow statements such as loops and if statements. Together,
these desirable properties allow the application of AD to a wide range of constitutive models
including the ones that cannot be expressed through closed-form symbolic expressions (Brothers
et al. 2014; Tanaka et al. 2016; Dummer et al. 2024).

AD techniques have already been applied successfully to constitutive modelling in solid
mechanics. For instance, Rothe and Hartmann (2015) used AD to define finite strain hyperelasticity,
finite strain elasto-visco-plasticity and fully coupled small strain thermo-visco-plasticity, while
Vigliotti and Auricchio (2021) considered a similar hyperelastic constitutive model, but for a
problem with specific constraints. Seidl and Granzow (2022) and Q. Chen et al. (2014) focused on
AD application to finite strain elasto-plasticity, where the former additionally considered the
hyperelasto-plastic model within the large deformation framework (Q. Chen et al. 2014). Dummer
et al. (2024) also addressed the hyperelasto-plastic model. Blithdorn et al. (2022) leveraged AD
techniques within the constitutive laws of generalized standard materials (GSM) specifically
using an elasto-visco-plastic model as a case study. Lindsay et al. (2021) examined the role of AD
in several multiphysics simulations, such as laser melt pools, phase-field modelling with neural
network-generated free energies, and simulations of metallic nuclear fuel.

Across these works the value of AD tools for implementing constitutive models is evident. A
key benefit is that AD eliminates the need for manual derivation of tangent operators and stiffness
matrices, which significantly reduces the potential for human error and speeds up development
time, without sacrificing accuracy (Rothe and Hartmann 2015; Lindsay et al. 2021). Another
side benefit of some commonly used AD tools is that they can emit code that is well-suited
for parallel computation on Graphics Processing Units (GPUs) and Tensor Processing Units
(TPUs) (Blihdorn et al. 2022). In summary, AD has proven to be a useful tool in implementing
constitutive models, enhancing both computational efficiency and the accuracy of derivative
quantities while minimizing much of the manual effort usually required.

1.3 Existing software

Because of the benefits outlined above, it is natural that there are already contributions that
integrate AD techniques into software for solving PDEs. One of the pioneers is the AceFEM
library (Korelc and Wriggers 2016) which is based on the commercial software system Mathematica.
AceFEM is equipped with the automatic code generation package AceGEN (Korelc 1997; Korelc
and Wriggers 2016), where AD is used to reduce the need for manual linearization of nonlinear
models. The derivatives obtained through AD are then employed to automatically generate
efficient code for the finite element residual vector and stiffness matrix. Similarly, a recent
work (Lindsay et al. 2021) has enhanced the MOOSE multiphysics library by using AD to compute
the global finite element Jacobian matrix. The software package JAX-FEM (Xue et al. 2023) takes
the use of AD further by applying JAX (Frostig et al. 2018) to the entire finite element solution
algorithm, allowing for ‘end-to-end’ differentiation of the finite element solver.

In addition to AD-based software, various other projects have enabled the use of constitutive
models by extending the functionality of existing FEM packages. For example, the fenics-solid-
mechanics project (Jlgaard and Garth 2017) was specifically designed to solve Drucker-Prager
and von Mises plasticity problems from the C++ interface to DOLFIN. The convex-plasticity
project (Latyshev and Bleyer 2022) uses the CVXPY package (Diamond and Boyd 2016) to solve
plasticity problems in a convex optimization framework within FEniCSx. However, these projects
are limited in scope, as they require each constitutive model to be explicitly adapted to the finite
element solver.

Another approach to implementing constitutive models in finite element environments is to
develop specialized interfaces. This idea has been realized in software such as MGIS (Helfer
et al. 2020), dolfinx_materials (Bleyer 2024a) and fenicsx_constitutive (Rosenbusch et al. 2024).
MGIS provides an interface that is used by MFront to define constitutive laws, generate code and
provide this code to other finite element solvers, e.g. within the legacy version of the FEniCS

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 3 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

1.4

library. Similarly, dolfinx_materials allows for the definition of sophisticated material behaviours
that cannot be expressed using standard UFL operators. It does so by leveraging AD from
the JAX package (Frostig et al. 2018) and utilizing the convex optimization framework from
CVXPY (Diamond and Boyd 2016) to define constitutive models. fenicsx_constitutive focuses
on linking DOLFINx with constitutive models written in languages such as C, C++, Rust and
Fortran that can accept data as contiguous arrays, and also existing constitutive models written
to well-established interfaces such as ABAQUS UMAT (Lucarini and Martinez-Pafieda 2024).
MGIS, dolfinx_materials and fenicsx_constitutive all require users to adapt their constitutive
models to the specific interfaces provided by these libraries. Furthermore, they necessitate the
development of additional interfaces to be compatible with other finite element environments.

Contributions

This article describes two main contributions. Firstly, we describe a methodology and software
framework that extends the open source library DOLFINx to support the recently introduced sym-
bolic external operator in UFL (Bouziani and Ham 2021). In turn, this provides DOLFINx/FEniCSx
users with an interface that allows the definition of general constitutive models via a wide variety
of programming languages. As a didactic example, we show the implementation of von Mises with
isotropic hardening (Bonnet et al. 2014) using Numba, a high-performance Python compiler (Lam
et al. 2015). Building on this software framework, our second main contribution is to explore
the use of programming languages with algorithmic automatic differentiation capabilities for
expressing constitutive models. To demonstrate this we implement a Mohr-Coulomb elastoplastic
model with apex smoothing (Abbo and Sloan 1995) that has previously been implemented
using MFront (Helfer et al. 2015). By leveraging JAX (Frostig et al. 2018), a Python library
for high-performance array computations with composable transformations for automatic
differentiation, we completely avoid both the manual expression and implementation of the
necessary derivatives. The resulting implementation of the complete Mohr-Coulomb finite
element solver in DOLFINx is remarkably compact and its correctness is verified via a Taylor
remainder test and against an existing solution from the literature.

The software framework is openly available as supplementary material (Latyshev and Hale
2024) and includes further fully documented examples. We also note that an earlier version of
this work on implementing external operators in DOLFINx by the same authors was published in
conference proceedings (Latyshev et al. 2024).

Outline An outline of this article is as follows. In Section 2 we introduce the general plasticity
problem which serves as a model problem, and discuss some of the difficulties with implementation
in the FEniCSx environment. In Section 3 we introduce the design and API of our framework
extending DOLFINx. Then, in Section 4 we show two applications of the framework to von Mises
and Mohr-Coulomb plasticity, with the latter leveraging the automatic differentiation features of
JAX, before closing with some conclusions and remarks in Section 5.

General formulation of a plasticity problem

In this section, we introduce a general formulation of plasticity as a model problem. We assume
the reader is relatively familiar with the basic concepts of plasticity theory and the return-mapping
algorithm; for a full treatment of plasticity, we refer the reader to the classic references (Simo and
Hughes 1998; Bonnet et al. 2014). We then describe the challenges of implementing this class of
models in FEniCSx, motivating the extension that we describe in the following section.

Although we cover only one type of constitutive model in this paper - small strain elastoplas-
ticity - it is rich enough to demonstrate the current limitations of automated finite element
environments, e.g. FEniCSx, and the advantages of our proposed methodology. The same
workflow can be applied to other types of general constitutive models such as those discussed in
the introduction and conclusion.

Journal of Theoretical, Computational and Applied Mechanics | September 2025 | jtcam.episciences.org 4 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Notation

Let e(u) = %(Vu + VuT) be the small strain tensor of the displacement field u in Cartesian
coordinate system x = (x, y, z). Throughout the article we utilise Mandel notation (Mandel 1965)
for the stress o and strain ¢ rank-two symmetric tensors to represent them as vectors o and £
respectively as follows in a three-dimensional case

0 = (Oxx, Oyy, Ozz> \/Eo'xya \/EO'xZa \/EO'yZ)T, (1)
€= (&xxs Eyys €225 \/ngy, ‘/ngz, \/Egyz)-r- (2)

The factor V2 is added to the shear components in Equations (1) and (2) to make the following
inner products consistent

c:e=0-¢ e:e=e-e S:S=S-8, (3)

where e and s are the Mandel vectors of respectively deviatoric parts of the strain and stress
tensors e = deve and s = devo.

Model problem

In order to define the model problem, we make several standard assumptions from plasticity
theory. First of all, we assume that the total strains are additively decomposed onto elastic £°
and plastic £ parts: € = £° + €P. Then, by introducing the loading parameter t, the quasi-static
evolution of Hooke’s law for stress and strain has the following form

6=C-£=C-(¢-¢b), (4)

where C is the stiffness matrix and the dot above a symbol denotes a derivative with respect to
the loading parameter t.

With f being the yield function and p representing an ensemble of internal variables, the
plastic flow is governed by the yield criterion

flo.p) <0, (5)

and the flow rule, connecting the plastic strain rate with the gradient of the plastic potential g

= j%9@p) (6)
Jdo

where A > 0 is the plastic multiplier (Simo and Hughes 1998). If g # f in Equation (6), then
we consider a general case of the non-associative plastic flow rule, otherwise, we refer to this
equation as the associative one.

In this work, we limit ourselves to the case of isotropic hardening with a scalar internal
variable p := (%ép - éP)1/2 representing cumulative plastic strain. Thus, the hardening law has
the following form

p = _iCI(G’P), (7)

where g is a hardening function.

Throughout the loading of solid, the elastic deformations occur at those points, where the
stress field strictly satisfies the Yield criterion (5), whereas the plastic flow starts only on the yield
surface

flo,p)=0. (8)

In short, the loading/unloading conditions can be written as follows (Simo and Hughes 1998)

A>0, f(o,p)<0, A-f(o,p)=0. (9)

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 5 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

By applying the backward Euler scheme to Equations (4), (6) and (7) for the plastic regime at
a certain point of the solid, we obtain the following constitutive equations

a
ro(on1, ML) =0y —0p —C- (Ag - AAa_i_(o—nH,PnH)) =0, (10)
rf(0n+1) = f(0n+1:pn+1) =0, (11)

where A is associated with increments of a quantity between the next loading step n + 1 and the
current loading step n. This notation is applied to all quantities of interest throughout the text,
wherever it is necessary. We note that due to the case of isotropic hardening, the internal variable
Pn+1 1s excluded as it can be expressed through AA from Equation (7).

For the elastic regime, we consider a trivial system of equations

Oni1 = 0p,+C - Ag, (12)
AL =0. (13)
By introducing the residual vector r := [rg,r¢]" and the vector of unknowns y :=

[o,,,,AA]T, the Constitutive equations (10) and Equation (11) can be re-written as a non-

linear problem

r(y) =0, (14)

which is solved at those points of the solid, where the Yield surface (8) is reached. For a given
spatial point of the solid, this nonlinear equation does not depend on the stress states at other
points and so can be solved locally. From now on, we reference to Equation (14) as the local
problem for a given point of the solid.

In order to solve Local problem (14), the Newton method is commonly used, which requires a
consistent linearization of the residual r

ity = 52, (15
where we call the matrix j the local Jacobian and the associated Newton method the local Newton
method.

At this point, we have all the necessary ingredients to formulate the global problem. Let Q
be a domain representing a solid body, which is loaded by an external force on a part of its
boundary 0Qp with outward facing normal n, and V be a space of admissible displacements. The
equilibrium state of the solid body is described by the following variational problem: find the
displacement field u € V such that the following weak residual equation is satisfied

F(u;v) = ‘/Q o(e(u)) - €(v)dx — Feyt(v) =0, VYo eV, (16)

together with the Yield criterion (5). The linear functional Fey in Equation (16) represents
the external loading from e.g. a Neumann boundary condition or gravitational body force
(see Section 4). By using the semicolon symbol among arguments of the semi-linear form
F = F(u;v), we separate the argument u, with respect to which the form may be nonlinear, from
the argument v, with respect to which F is linear.

The stress-strain relation o(&(u)) is a nonlinear function, which can implicitly depend
on the history of loading and a set of internal variable(s). In this regard, we apply another
Newton method to solve nonlinear Equation (16), which, similar to the local problem, requires
the linearization of the residual. For this matter, we introduce the tangent operator Ciang(£(12))
or tangent moduli, the derivative of the stress tensor

do(e(w))
Ctang(f(u)) = d—’ (17)
£
which is used to define the Gateaux derivative of the form F in the direction @ € V
Jw0) = [(Canglelu) - e(@) - (o) dx. (19)
Q
Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 6 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

We reference to this Gateaux derivative J as the global Jacobian and to the Newton method, where
J is used in the role of a consistent linearization of the residual F, as a global Newton method.

To satisfy Yield criterion (5) the return-mapping procedure is commonly used (Simo and Hughes
1998). The procedure consists in iterating over stress-strain states through a predictor-corrector
scheme until the equilibrium of Constitutive equations (14) is reached, which is achieved by
applying the local Newton method. The result of the return-mapping procedure is the evaluated
values of the stress o(e(u)) at a given point satisfying Equation (5).

Summarizing, the model problem consists of Global problem (16) with Constraint (5) and
Local problem (14). On each loading step, we solve Equation (16) by applying the global Newton
method. At each iteration of the global Newton method, we satisfy Equation (5) by applying the
return-mapping procedure, which involves solving Equation (14) through the local Newton
method. Thus, the implementation of the model problem includes two nested Newton methods,
which oblige us to compute the Local Jacobian (15) and Global Jacobian (18).

Before continuing we make some specific remarks about implementing general plasticity
models in the current version of DOLFINx. To be able to evaluate the values of the operator
o(&(u)) and assemble the form F from Global problem (16) in DOLFINx, we have to solve Local
problem (14) which requires an implementation of the return-mapping procedure. The return-
mapping procedure is an iterative algorithm that involves a sequence of computations where
each step depends on the previous one. It is most natural to express this type of recursion within
either a procedural (common) or functional (less common) programming paradigm, rather by a
closed-form mathematical formula in UFL. The same argument applies to the tangent operator
Ctang (£(u)). This leads us to the conclusion that the stress operator o (e(u)) is best implemented
‘externally’ to UFL. However, because of this externally defined behaviour, UFL cannot be aware
of the external operators derivative, and so we cannot apply UFL’s SD tools to the form F to
derive the Jacobian J containing Ciang(£(1)). As we will see in the next section, the proposed
framework elegantly deals with these difficulties, by allowing the predictor-corrector algorithm
to govern the behaviour of the stress operator, while also enabling the stress operator to be
naturally expressed within the variational setting and differentiated using UFL.

3 Extension of the external operator concept to DOLFINx

This section discusses the new data-centric design of DOLFINx (Baratta et al. 2023) and the
automatic code generation feature of FFCx (Kirby and Logg 2006; Logg et al. 2012). We then
describe how our framework exploits these concepts as well as external operators to extend the
functionality of DOLFINx to cover a wider range of constitutive modelling possibilities.

Data-centric design of DOLFINx One of the new developments of the DOLFINx library is
the data-centric design (Baratta et al. 2023), where data such as values of a finite element function
at finite element degrees of freedom, or quadrature points, are directly available in the form of
array-like data structures (e.g. the ndarray object of the NumPy package). This data-centric
design gives the external operators straightforward access to solver data for manipulation via
external programming languages that support the same array-like data structures (e.g. Numba,
JAX, PyTorch, MFront, etc).

Automatic code generation of FFCx Another important development used in this work is
the automatic code generation feature of the FEniCSx Form Compiler (FFCx) (Kirby and Logg
2006; Logg et al. 2012) for UFL Expressions. For more details, see (Baratta et al. 2023). In the
context of this study, FFCx is used to generate code that allows DOLFINx to evaluate the values
of the strain tensor £(u) at the quadrature points of the mesh. This can then be passed as data to
user-defined Python callables that define the action of the external operator as discussed in the
previous paragraph.

Leveraging the aforementioned features of DOLFINx and FFCx as well as the concept of
external operators (Bouziani and Ham 2021), we implement a framework that extends DOLFINx
allowing for the expression of a large class of constitutive models. In our implementation of the
external operator concept there is no direct interaction between the DOLFINx finite element
assemblers and external operators - in contrast with the Firedrake implementation (Ham et al.

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 7 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Figure 1

2023). Instead, we replace symbolic UFL ExternalOperator objects prior to assembly of the
finite element form with assembled DOLFINX Function objects containing the evaluation of
the external operators. As the DOLFINx assembler already works with forms containing the
Function objects this approach required no changes upstream in the DOLFINx project and is
therefore also compatible with third-party custom assemblers. Thus, according to our contribution,
an external operator combines properties of both the symbolic UFL’s ExternalOperator and its
data-oriented counterpart the DOLFINX’s Function , which results in the introduction of the
new class FEMExternalOperator inheriting ExternalOperator .

FEMExternalOperator hastwo principal features. The firstis that the FEMExternalOperator
inherits the symbolic functionality of the UFL Externaloperator so that we can also apply the
UFL’s SD capabilities to the forms containing the FEMExternaloOperator objects. The second
feature allows the evaluation of the FEMExternalOperator at interpolation points of a finite
element space in contrast to the Externaloperator object resulting in computed values being
stored in a Function object through ndarray . The evaluation is defined by the user through
Python callables (functions) that specify how an external operator (e.g. stress) acts on its operands
(e.g. strains).

The data-centric design of DOLFINx enables the efficient transfer of data to and from the
user-defined functions evaluating the external operators (e.g. o(&(u))) & Ciang(€(u))), UFL
expressions of their operands (e.g. £(u)), and the DOLFINx environment through standard NumPy
arrays. The framework evaluates the values of operands using code automatically generated by
FFCx, stores the result in an ndarray and passes this data to the user-defined callables. This
design allows a wide range of Python and non-Python languages and frameworks to be used for
implementing the external operators. In practice, almost all modern programming languages and
frameworks can be passed, without copy, the contiguous array-like data underlying a Python

ndarray , and there is increasing standardisation efforts around in-memory formats for sharing
multi-dimensional strided array data such as DLPack (DMLC 2024).

Workflow After describing every component of our framework, let us summarize the workflow
in Figure 1 and Algorithm 1. Figure 1 schematically visualizes the process of the main steps of
the workflow. Algorithm 1 provides a “minimal” code example of the framework application
to a solid mechanics problem. However, it covers only the main steps of the workflow and
gives only a general idea of how the framework can be used — more detailed examples of the
framework application to specific plasticity problems can be found in Section 4 and supplementary
material (Latyshev and Hale 2024).

Operands UFL
-G 77

|

o(e(u)) =0 —::FEMEXtemalOperator‘:s—p
2 (£(u)) = Cimag| ="+ *0 70t

New forms

](CtangZ i,)

Forms
F(o(e(u));v)
J (4 e)iino)

The diagram summarizes the workflow of implementing a solid mechanics constitutive model
within the framework. The stress field o (£(u)) and its derivative Ciang(£(u)) are wrapped with the

FEMExternalOperator objects, which depend on the UFL-expression of the strain field £(u) and some
external code. Once the forms containing FEMExternalOperator objects are defined, they can be
replaced with their representatives from the DOLFINx environment, the Function objects o and Ciapg.
The values of the UFL-expression of £(u) are computed at Gauss points via the evaluate_operands
function using FFCx generated code and stored in an ndarray . The values of the external operators
and their derivatives are then evaluated at the Gauss points via the evaluate_external operators
function and stored in ndarray . In the final step, the standard DOLFINx assembler is used to assemble
the forms with the Function objects containing o and Ciag.

Journal of Theoretical, Computational and Applied Mechanics | September 2025 | jtcam.episciences.org 8 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

SRS BN

RN

20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39

40

47
48
49

Algorithm 1

Remark
[Memory]

def sigma_external(

derivatives: Tuple[int, ...]
) -> Callable[[np.ndarray], np.ndarray]:
if derivatives == (0,):
return sigma_impl # user-defined function (external code is inside)
elif derivatives == (1,):

return C_tang impl # user-defined function (external code is inside)
else:
raise NotImplementedError

Define the output function space of the external operator
S = fem.functionspace(mesh, quadrature_element)

sigma = FEMExternalOperator(
epsilon(u), # operand: UFL Expression of strains
function_space=S, # Output function space
external function=sigma_external # Python callable

Define the form 'F° and its Jacobian °J°

F = ufl.inner(sigma, epsilon(v)) * dx - F_ext(v)

UFL's SD creates a new 'FEMExternalOperator wrapping the
derivative of ‘sigma’ aka °C_tang’

J = ufl.derivative(F, u, u_hat)

J_expanded = ufl.algorithms.expand_derivatives(J)

Create new forms with ‘FEMExternalOperator replaced with ‘Function objects
appropriately sized to hold the result of evaluating the external operator
F_replaced, F_external operators = replace_external operators(F)

J_replaced, J_external_operators = replace_external_operators(J_expanded)

Define final forms to assemble
F_form = fem.form(F_replaced)
J_form = fem.form(J_replaced)

Loop implementing iterative solution algorithm.

e.g. Newton method, fixed-point iteration etc.

for _ in range(0, 10):
Evaluate values of ‘epsilon(u)’
evaluated_operands = evaluate_operands(F_external_ operators)
Evaluate and update values of ‘sigma’ via 'sigma_ impl'
evaluate_external_operators(J_external_ operators, evaluated_operands)
Evaluate and update values of 'C_tang’ via 'C_tang impl'
evaluate_external operators(F_external operators, evaluated_operands)

Assemble Jacobian into matrix
A_matrix = fem.assemble_matrix(J_form)
Assemble residual into vector
b_vector = fem.assemble_vector(F_form)

Minimal and abbreviated code example of the framework applied to a non-specific solid mechanics
problem. It shows how the main features of the framework (class FEMExternalOperator and functions

replace_external_operators , evaluate_operands evaluate_external_operators)areused

5 5

to define the problem. Note how external operator allows for the concise and unified expression of models
involving variational and non-variational terms in UFL.

The FEMExternalOperator class efficiently manages memory allocation and data transfer
between FEniCSx and user-defined external operators by pre-allocating memory and minimizing
unnecessary data duplication and copying. To store the values of an external operator in
its Function representative prior to assembly, the FEMExternalOperator class allocates the
memory for both the Function object and the function space, to which the former belongs. This
memory allocation happens each time a FEMExternalOperator object is created, e.g. when the
UFL’s AD tools propagate through a form containing the FEMExternalOperator objects. On

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 9 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Remark
[Performance]

Remark
[Parallelism and scaling]

the other hand, the data transfer between FEniCSx and the user’s function does not involve
extra memory allocation. The transfer is performed by copying the values of one NumPy array,
which is a result of the user’s program call, directly into another NumPy array attached to the

Function representative. Asthe Function object is allocated in advance, the framework just
updates the values of Function . Thus, multiple evaluations of the external operators throughout
the modelling do not lead to extra allocation of resources.

For non-trivial constitutive models, the runtime of the user’s implementation of the external
operator usually dominates the runtime of the other aspects of evaluating an external operator, in
particular, the data transfer between DOLFINx and users implemented external operators. As
discussed previously, this data transfer is performed by copying the values from one ndarray to
another. Time spent on such a copy is only a small fraction with respect to the time taken to
execute the user’s implementation of the operator. Notwithstanding this argument, to reach
the highest level of performance we recommend users implemented external operators using
just-in-time (JIT) compilation features available in libraries like Numba and JAX, or in a compiled
language.

It is important to note that even in more sophisticated scenarios where the constitutive model is
defined by dozens of internal state variables, e.g. in crystal plasticity (Méric and Cailletaud 1991),
the evaluation of external operators takes only a small portion of the time consumed by the entire
finite element algorithm. Although the constitutive update involves solving a system of hundreds
of nonlinear equations, this process can usually be performed locally and independently of
constitutive updates at other Gauss points. Consequently, the evaluation of external operators at
Gauss points, which encapsulates the constitutive update, is an embarrassingly parallel task,
unlike, for example, the solution of the resulting finite element linear systems. We also show
programming models (JAX, Numba) where there is the automatic potential to exploit CPU
instruction level parallelism, e.g. single instruction multiple data (SIMD), via Numba’s use of
LLVM and JAX’s use of Accelerated Linear Algebra (XLA) and LLVM. Our approach works
already with the process-level MPI parallelism in DOLFINx and in Appendix A.1 we show
experimentally that the limit for strong scaling of the constitutive update occurs later than for the
linear solve. However, we have not yet explored performance on wider hardware architectures,
e.g. GPUs, or using intermediate levels of parallelism e.g. threads.

Application of the framework to plasticity problems

In order to show how our framework can be used to define constitutive models via external
packages, we solve two plasticity problems. The first one is based on a von Mises model with
isotropic hardening, which is defined via the package Numba. The second one is the plasticity
problem with the non-associative plastic law of the Mohr-Coulomb yield criterion with apex
smoothing, where the JAX package is applied. The detailed implementation of these problems
can be found in the tutorials provided as supplementary material (Latyshev and Hale 2024).

Von Mises plasticity

The simplicity of von Mises plasticity mode with linear isotropic hardening in the case of isotropic
elasticity makes it popular within solid mechanics community as we can derive all the quantities
of interest analytically, which happens rarely in real applications. Thus, the von Mises plasticity is
an obvious choice of a "Hello, world" example to demonstrate the main aspects of our framework.

Here we apply the Numba package to define all the quantities of interest of the von Mises
model following the previous implementations of the authors within FEniCSx in the standard
setting (Bleyer 2024b, plasticity.py) and in conic optimization one (Latyshev and Bleyer 2022,
convex_plasticity.ipynb). The results will be compared against the implementation based on a
pure UFL formulation of the same problem (Latyshev and Hale 2024, von_mises_ufl.py), which
is possible as the von Mises stress vector o and the tangent moduli Ci.,y may be expressed
explicitly via UFL.

Journal of Theoretical, Computational and Applied Mechanics | September 2025 | jtcam.episciences.org 10 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Problem formulation

In the first example, we consider a cylinder expansion problem in the plane strain case. The
domain Q is represented by the first quarter of the hollow cylinder with inner R; and outer R,
radii, where symmetry conditions are set on the left and bottom sides and pressure is applied to
the inner boundary 0Qjnner- The behaviour of cylinder material is defined by the von Mises yield
criterion with linear isotropic hardening law for the associative plastic flow

f(0.p) = 0eq(0) — 00 — Hp <0, (19)

where o.q(0) = 1/%s - s is an equivalent stress, gy is a uniaxial strength and H = EE—EE, is an

isotropic hardening modulus, which depends on the Young E and the tangent elastic mod-
uli E;. Thus, we solve the Weak formulation (16) of the cylinder expansion problem with the
Constraint (19) and the linear functional Fey(v) representing the external force defined as

Fext(0) = q/ n-vdx, (20)
aQinner

where the parameter q is progressively increased up to a value slightly larger than the analytical
collapse load of perfect plasticity
2 R

qlim = —=00 IOg _0- (21)
V3 R;

Implementation

We treat the stress vector o as an external operator acting on the strain vector £(u) and represent
it through a FEMExternalOperator object. By implementation of this external operator, we
mean the implementation of the return-mapping procedure analytically. We evaluate the values
of the stress vector o and its derivative Cang via the Numba package, which typically produces
highly optimized machine code with runtime performance at the level of traditional compiled
languages.

In Algorithm 2 we show the implementation of the return mapping function that returns
the values of the consistent tangent moduli C{’;nlg, "1 and the increment of
cumulative plastic strain Ap in the ndarray -format. On the input, it receives ndarray objects
representing the values of the current increment of the strain tensor £(Au) and values of the
history variables: the stress state " and the internal variable p” from the previous loading step.
In the scope of the return mapping function, we use only standard Python operations and
NumPy functions compatible with Numba. Thus, the definition of our external operator does not
depend on the FEniCSx environment and consequently is not limited by its capabilities.

In terms of performance, we use Numba’s JIT compilation decorated enjit to compile the
function return_mapping at run-time.

the stress tensor o

Validation

As can be seen from the Figure 2, our results agree with the pure UFL implementation (Latyshev
and Hale 2024, von_mises_ufl.py) of the von Mises model.

Mohr—Coulomb plasticity

We implement the non-associative plasticity model of Mohr-Coulomb with apex-smoothing and
solve a soil slope stability problem. We use the JAX package to define constitutive relations
including the differentiation of certain terms. This example demonstrates how AD techniques
may be used to define constitutive models that require differentiation of expressions without
significant differentiation by hand.

The slope stability problem is based on the limit analysis within a semi-definite programming
framework (Bleyer 2022, limit_analysis_3D_SDP.ipynb), where the plasticity model was replaced
by the one defined through the Mohr-Coulomb yield surface with apex smoothing (Abbo and
Sloan 1995).

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 11 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

20
21
22
23
24
25
26
27
28
29
30

31

33
34
35
36
37
38
39

Algorithm 2

@numba.njit

def return _mapping(deps_: np.ndarray, sigma n_: np.ndarray, p_: np.ndarray):
"""performs the return-mapping procedure."""
num_cells = deps_.shape[0]

C_tang_ = np.empty((num_cells, num_quadrature_points, 4, 4),
dtype=sigma_n_.dtype)
sigma_ = np.empty_like(sigma_n_)

dp_ = np.empty_like(p_)

def _kernel(deps_local, sigmxa_n_local, p_local):
"""performs the return-mapping procedure locally at a Gauss point."""
sigma_elastic = sigma_n_local + C_elas @ deps_local
s = deviatoric @ sigma_elastic
sigma_eq = np.sqrt(3.0 / 2.0 * np.dot(s, s))

*

f_elastic = sigma_eq - sigma_0 - H p_local
f_elastic_plus = (f_elastic + np.sqrt(f_elastic**2)) / 2.0

dp = f_elastic_plus / (3 * mu + H)

n_elas

= s / sigma_eq * f_elastic_plus / f_elastic
beta = 3 *

mu “ dp / sigma_eq

*

sigma = sigma_elastic - beta s

n_elas_matrix = np.outer(n_elas, n_elas)

C_tang = C_elas - 3 * mu * (3 * mu / (3 * mu + H) - beta)
n_elas_matrix - 2 * mu * beta * deviatoric

return C_tang, sigma, dp

for i in range(0, num_cells):
for j in range(0, num_quadrature_points):
C_tang [i,j], sigma [i,j], dp_[i,j] = _kernel(deps [i,]],
sigma_n_[i,3], p_[i,3])

return C_tang_, sigma_, dp_

Implementation of the return-mapping procedure of the von Mises plasticity using Numba. The function
return_mapping receives NumPy arrays of values of the strain tensor £(Au) and such variables
conserving the previous loading history as the stress tensor ¢”, and the cumulative plastic strain p”
from the previous loading step, evaluated in all Gauss points. The return-mapping procedure itself
is implemented for one Gauss point in the function _kernel , which then will be called in the loops
through Gauss points and cells. The function return_mapping returns the values of the consistent
tangent moduli Cfa‘;lg, the stress tensor ¢™*!, and the increment of cumulative plastic strain Ap as a
global flatten ndarray -s. These values will be used to update external operators and the variables
of the loading history. Note that num_quadrature_points is statically defined outside the scope of
return_mapping - this gives Numba/LLVM the opportunity to unroll the loop over quadrature points.

Problem formulation

We solve a soil slope stability problem of a domain Q represented by a rectangle [0, L] X [0, H]
under plane strain assumptions. For this problem the homogeneous Dirichlet boundary conditions
for the displacement field u = 0 on the right side x = L and the bottom y = 0. The loading
consists of a gravitational body force ¢ = [0, —y] " with y being the soil self-weight

Fext(v):Lq'vdx' (22)

We progressively increase the soil self-weight y until a plateau on the loading-displacement curve
is reached.
The constitutive model of the soil is described by a non-associative plasticity law without

Journal of Theoretical, Computational and Applied AAechanics} September 2025

jtcam.episciences.org 12 |28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Figure 2

o -

1.0 7 J’r’f, - T
:j 0.8
~
=
L 0.6 T ©
2 ®
§ ®
2 0.4 ®
T ®
& G
< 0.2

—@— pure UFL
dolfinx-external-operator (Numba)
0.0 1O
T T T T T
0.000 0.005 0.010 0.015 0.020

Displacement of inner boundary u, at (R;,0) [mm]

Displacement of the inner boundary of the cylinder u, (R;, 0) with respect to the applied pressure in the
von Mises model with isotropic hardening implemented via two methods. The plastic deformations are
reached at the pressure g, equal to the analytical collapse load for perfect plasticity.

hardening that is defined by the Mohr-Coulomb yield surface f and the plastic potential g. Both
quantities may be expressed through the following function h

h(o,a) = L (30) sina + \/JZ(U)KZ(G, a) + a?(a) sin® @ — ccos a, (23)
f(o) =h(o,9), (24)
g(o) =h(o.¥), (25)

where c is a cohesion, ¢, { and 0 are friction, dilatancy and Lode angles respectively, [; (o) = tro
is the first invariant of the stress field and J,(o) = %s - s is the second invariant of the deviatoric
part of the stress. The explicit expressions of other terms of the function h together with the exact
values of model parameters can be found in Appendix A.3. In summary, we solve Problem (16),
with Constraint (24) and Linear functional (22).

Implementation

Similarly to the von Mises example we define the external operator o and its derivative Ciang
through the implementation of the return-mapping procedure. However in the case of Mohr-
Coulomb, this procedure is not trivial, compared to the von Mises case, and must be implemented
numerically. In practice, we must solve System of constitutive equations (14) through the
consistent linearisation of Jacobian (15) for the local Newton method.

For the correct implementation of the return-mapping procedure in this example, we need to
take derivatives of certain terms. We distinguish three levels of the differentiation: the level of
definition of the local residual r from Constitutive equations (14), the local level and the global
level. The first level is linked to the derivative of Plastic potential (25), dgd(;) ,
of the Constitutive equations (14). At the local level, we need to compute the local Jacobian
Jjly) = drd(yy), the derivative of the local residual r with respect to its argument. Finally, at the
global level, we pass a derivative through the entire return-mapping procedure with respect to
the strain tensor ¢ or, in other words, we compute the tangent matrix Crang(£(u)) = W, the
derivative of the external operator o, which is needed for the global jacobian J of Variational
form (16). The correct computation of all the three derivatives: dgd(;), drd(yy) and da(gé")), is
crucial for the correct implementation of the Mohr-Coulomb model. In our implementation we
apply AD techniques from the JAX package to compute the derivatives exactly at each level at a
certain point (e.g. at a Gauss point).

At the level of the residual r, the derivation of the plastic potential g(o) is straightforward.

Once we define a function evaluating the values of g for a given stress field, it is sufficient to

which defines one

Journal of Theoretical, Computational and Applied Mechanics } September 2025

Jtcam.episciences.org 13 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

'S

[N BN

[N BN

call the JAX’s AD jacfwd function which creates a new function dgdsigma that computes the
value of the plastic potential derivative locally at a given Gauss point:

def g(sigma_local):
return h(sigma_local, psi)

dgdsigma = jax.jacfwd(g)

where psi is the constant dilatancy angle.

At the local level, deriving the jacobian j(y) = %;’) is more complicated than the differ-

entiation of the plastic potential due to the presence of several mathematical equations and
conditionals. Despite this, by implementing a function computing the residual r, the application
of the JAX’s AD is still straightforward as can be seen in the following code-snippet:

def r(y_local, deps_local, sigma_n_local):
sigma_local = y_local[:stress_dim]
dlambda_local = y_local[-1]

res_g = r_g(sigma_local, dlambda_local, deps_local, sigma n_local)
res_f = r_f(sigma_local, dlambda_local, deps_local, sigma_n_local)

res = jnp.c_["0,1,-1", res_g, res_f] # concatenates an array and a scalar
return res

drdy = jax.jacfwd(r)

Subsequently, the obtained function drdy will be used in the local Newton method to compute
the local Jacobian, see Algorithm 3 .

At the global level, the computation of the derivative w does not look trivial. Indeed,
in contrast to the plastic potential g and the local residual r, the stress operator o is defined
via the iterative solver, on which the return-mapping procedure is based. This implies passing
the derivative through the entire solver in order to get the value of %ﬁ")). Regardless of
this difficulty, the automatic differentiation techniques are able to compute the derivative of
such a numerical algorithm. For instance, JAX can calculate the derivative of the function

return _mapping (see Algorithm 3) automatically in spite of the presence of the while loop .
This results in a new program dsigma_ddeps (see Algorithm 3) that computes the values of
the tangent moduli Cyapng exactly at a Gauss point, so there is no need for a supplementary
computation of the stress tensor.

Although we obtained functions to compute all three derivatives required to define the
Mohr-Coulomb model, these functions are still constructed to be called for a single Gauss
point, whereas we need to evaluate them on the entire quadrature space. In this regard, JAX’s
vectorization transformation vmap serves as a convenient tool to extrapolate them to the level
of the entire function space. In particular, we vectorize the function dsigma_ddeps to get

dsigma_ddeps_vec that computes the values of the tangent moduli Ct.ng and the stress field o
at all Gauss points of the functional space simultaneously:

dsigma_ddeps_vec = jax.jit(jax.vmap(dsigma_ddeps, in_axes=(0, 0)))

where similar to the Numba package, we compile the final vectorized function by using the JAX’s
function jit.

Finally, we define the external operator o and its derivative Cian, via a single function
C_tang_impl :

def C_tang_impl(deps: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
deps_ = deps.reshape((-1, 4))
sigma_n_ = sigma_n.x.array.reshape((-1, 4))

(C_tang_global, state) = dsigma_ddeps_vec(deps_, sigma_n_)

return C_tang global.reshape(-1), sigma_global.reshape(-1)

Journal of Theoretical, Computational and Applied Mechanics | September 2025

jtcam.episciences.org 14 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Algorithm 3

Remark

[Mohr-Coulomb model
without AD]

def return_mapping(deps_local: np.ndarray, sigma_n_local: np.ndarray):
niter = 0

dlambda = ZERO_SCALAR
sigma_local = sigma_n_local
y_local = jnp.concatenate([sigma_local, dlambda])

res = r(y_local, deps_local, sigma_n_local)
norm_res0 = jnp.linalg.norm(res)

def cond_fun(state):
norm_res, niter, _ = state
return jnp.logical_and(norm_res / norm_resO > tol, niter < Nitermax)

def body_fun(state):
norm_res, niter, history = state

y_local, deps_local, sigma_n_local, res = history

j = drdy(y_local, deps_local, sigma_n_local)
j_inv_vp = jnp.linalg.solve(j, -res)
y_local = y_local + j_inv_vp

res = r(y_local, deps_local, sigma_n_local)
norm_res = jnp.linalg.norm(res)
history = y_local, deps_local, sigma_n_local, res

niter += 1
return (norm_res, niter, history)
history = (y_local, deps_local, sigma_n_local, res)

norm_res, niter_total, y_local = jax.lax.while_loop(cond_fun, body_fun,
(norm_res0, niter, history))

sigma_local = y_local[0][:stress_dim]

dlambda = y_local[0][-1]

sigma_elas_local = C_elas @ deps_local
yielding = f(sigma_n_local + sigma_elas_local)

return sigma_local, (sigma_local, niter_total, yielding, norm_res, dlambda)

dsigma_ddeps = jax.jacfwd(return_mapping, has_aux=True)

Implementation of the return-mapping procedure of the Mohr-Coulomb plasticity with apex smoothing
via JAX package. The function return_mapping receives NumPy arrays of values of the strains £(Au)
and the stresses 6" evaluated at a given Gauss point. The return-mapping procedure is implemented via
the Newton method wrapped by the JAX’s while_loop . It returns a tuple of the new stress field values
at a given Gauss point and another tuple containing the same values of the stress field plus some auxiliary
data related to the Newton method. Then we apply the JAX’s AD jacfwd to compute the derivative
of the function return_mapping with respect to its first input. This results in the creation of a new
function dsigma_ddeps that returns both the stress field and its derivative at a given Gauss point.

which can then be attached to the definition of the UFL external operator.

The aforementioned derivatives are commonly obtained analytically in numerous applications of
not only the Mohr-Coulomb model but other plasticity models as well. In practice, the analytical
expressions of these derivatives are involved and so their translation into programming code can
create multiple lines of code (Helfer et al. 2024), which is often a source of human error leading
to additional effort spent on debugging. As we demonstrated in the application of JAX, AD
can simplify the differentiation by hand and significantly reduce the amount of code needed to
implement complex analytical formulas.

Journal of Theoretical, Computational and Applied AAechanics} September 2025

jtcam.episciences.org 15 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

Verification

Within the Mohr-Coulomb example, we perform three verification tests. The first checks the
correct tracing of Yield surface (24). The second is the Taylor remainder test verifying that the
Jacobian (18) is a consistent first-order approximation of Residual (16). The third checks that
our solution of the slope stability problem defined by Equations (16), (22) and (23) matches an
existing result found in the literature.

Yield surface tracing In this part, we verify that the Mohr-Coulomb model is implemented
correctly by visually tracing its yield surface. We generate several stress paths and check whether
they remain within the yield surface after passing through the return mapping function,
which depends on the derivatives % and %;’). The yield surface with the stress paths
projected onto the deviatoric plane is shown in Figure 3, where we observe that the yield
surface of Mohr-Coulomb with apex smoothing is reached along different stress paths (colored
lines). Moreover, the obtained yield surface lies along the standard Mohr-Coulomb one without
smoothing (black contour line). These results justify the correct implementation of the plasticity

model and the derivatives dgdsigma and drdx obtained by JAX’s AD.

o

90

T
[o)}

T
(8}

=
Magnitude of the stress path deviator, p [MPa]

180°

w

N

270°

Figure 3 Tracing of the Mohr-Coulomb with apex smoothing yield surface. It is obtained by passing several
stress paths projected onto the deviatoric plane (p, 8), where p = 4/2J,(0) and 0 is the Lode angle (see
Appendix A.3). Each colour represents one loading step along the stress paths. The circles are associated
with the loading during the elastic phase. Once the loading reaches the elastic limit, the circles start
outlining the yield surface, which in the limit lay along the standard Mohr-Coulomb one without smoothing
(black contour).

Taylor remainder test We perform a Taylor remainder test to verify that the assembled
residual F and its Jacobian J are consistent zeroth- and first-order approximations of the residual
F, respectively. To implement the Taylor remainder test and to ensure that the test results
are mesh-independent we apply the Taylor remainder theorem on Banach spaces (Blanchard
and Briining 2015, p. 524) to the operator ¥ : V. — V’ which is linked with the form F in the
following way

(F (u),0) := F(u;0), (26)

where V”’ is a dual space of V, (-, -) is the V' X V duality pairing. Precise details and discussion on
how we implemented the Taylor remainder test using the dual norm can be found in Appendix A.4.
By applying the Taylor remainder theorem on Banach spaces, which perturbs the operator
¥ in the direction k du € V for k > 0, we obtain that the norm of the zeroth- and first-order
Taylor remainders ||r£||V/ and ||r,i||vf converge at first- and second-order convergence rates in k,

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 16 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

respectively

Irpllv: = 7 (u + k Su) = F (w)lly: — 0at O(k), (27)
Irgllv: = IF (u + k Su) = F(u) = (J (W) (kSu)ly — 0 at O(K?), (28)

with the operator J : V. — L(V,V’) representing the Jacobian J of the form F
(I (u))(kbu),v) := J(u; kéu,v), (29)

where L(V,V’) is a space of bounded linear operators from V to V. The plots in Figure 4 show

1073 1073
el 1 el 1
E g
5 1075 A 1 5 1070 A 1
=} =
— -
< —7 4 0 < 1077 A o
EJRG —— 12l | T —— [l
] s
£ 10791 Irgllv] & oo] lI72 1y
- -
— =
'2 11 %\ 11
> 10" ' A 1071 A
10713 1 10713 1
™T MR | T T MR | T MR | T T T
107 1075 1074 1073 1072 107° 1075 1074 1073 1072
k k
(a) Elastic phase (b) Plastic phase

Figure 4 Taylor remainder test for the form F around (a) a solution u in the purely elastic phase and (b) a solution u
containing a portion of the domain in the plastic phase. For the purely elastic phase (a) the norm of the
zeroth-order Taylor remainder rg achieves the first-order convergence rate, whereas the norm first-order
remainder r,l is computed to the level of machine precision, as the purely elastic problem can be expressed
as a quadratic functional (constant Jacobian). For the plastic phase (b), the norm of the zeroth-order Taylor

remainder rg reaches the first-order convergence rate, whereas the norm of the first-order remainder r,i

achieves the second-order convergence rate. These results imply that the automatically derived Jacobian is
a consistent (correct) first-order approximation of the residual.

that the computed first-order and second-order convergence rates of the Taylor remainders are in
agreement with the expectations defined by the Taylor remainder theory. From this, we can
conclude that, together, FEniCSx (UFL, FFCx and DOLFINx) and JAX produce a consistent (correct)
approximation of the assembled finite element residual and Jacobian for the Mohr-Coulomb
model.

Solution of slope stability problem We now demonstrate that our numerical solution of the
slope stability problem matches the results found in the literature. We progressively increase the
second component of the gravitational body force ¢ = [0, —y]" from Equation (22), the soil

num

self-weight y, up to the critical value y;""", when the perfect plasticity plateau is reached on the
loading-displacement curve at the top left corner (0, H). Then we compare y;:"™ with analytical

Yiim found through the formula of the slope stability factor Ly,
him = yimH/c. (30)

Equation (30) is derived in the case of the standard Mohr-Coulomb model without smoothing
under plane strain assumptions for associative plastic flow (W. F. Chen and Liu 1990). In the
case of the rectangular slope with friction angle ¢ and dilatancy angle i both equal to 30°,
lim = 6.69 (W. F. Chen and Liu 1990, p. 368). The values of model parameters used in this
numerical test can be found in Table A.2. The orange loading-displacement curve shown
in Figure 6 confirms that the numerically estimated yield strength limit reached for ;™ is close
to ylim. Additionally, we demonstrate the magnitude of the displacement field at the last loading
step in Figure 5, where the slip of the rectangular slope can be observed on the left side x = 0.
We remark that our implementation also supports non-associative plastic flow where f # g

in Equations (24) and (25). We perform a second simulation setting ¥ = 10° and ¢ = 30° with

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 17 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

A

Figure 5 Slip of the slope for the Mohr-Coulomb problem. The domain is warped by the displacement field
(magnified). The magnitude of the displacement field is shown by the colour and reaches its maximum at
the bottom left corner.

0.002928

0.002500

0.002000

0.001500

0.001000

0.000500

Magnitude of displacements, ||u||, [mm]

0.000000

all other parameters as in Table A.2. This creates the green load displacement curve shown in
Figure 6. In this scenario, the material law exhibits less volume expansion and makes the plastic
potential surface flatter, which results in a lower yield strength limit than in the associative case.

[)
(=]
|

=
53
|

-
o
|

Soil self-weight y [MPa/mm3]

51 associative flow (¢ =1 = 30°)
—#— non-associative flow (¢ = 30°, ¥ = 10°)
== Yim

o

T T T T T T T
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

Displacement of the slope uy at (o, H) [mm]

Figure 6 Displacement of the slope u, (0, H) with respect to the soil self-weight y in the Mohr-Coulomb model with
apex smoothing for the associative plastic flow (¢ = ¢/ = 30°) and the non-associative one (¢ = 30°, i = 10°).
Reaching the yield strength limit y*™ (the plateau) is associated with losing the stability by the slope. The
yiim for the associative flow is obtained via an analytical solution using the standard Mohr-Coulomb model
without smoothing (W. F. Chen and Liu 1990, p. 368).

5 Conclusion

In this article, we described a methodology to define a range of constitutive models in FEniCSx /
DOLFINx and a supporting software framework. Our framework provides the user with an
interface that wraps a constitutive model via an external operator (Bouziani and Ham 2021).
Data is passed between the external operator and DOLFINx using standard array-like data
structures, allowing a wide range of different programming languages and environments to be
used. Together these developments enable the definition of a general class of constitutive models
in FEniCSx. In particular, the application of the framework is demonstrated with two plasticity
problems: the von Mises model with isotropic hardening (using the Numba package) and the
Mohr-Coulomb model with apex smoothing (using the JAX package). In the example of the

Journal of Theoretical, Computational and Applied Mechanics | September 2025 | jtcam.episciences.org 18 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

A.1

Remark
[Setup]

Remark

[Differences]

Mohr-Coulomb model, we demonstrated that AD significantly reduces the amount of manual
differentiation required to express a general constitutive model.

This paper has focused on using modern algorithmic automatic differentiation tools, exem-
plified by JAX, to implement constitutive models, and we are particularly excited about the
possibilities that this type of approach can open in mechanics problems involving challenging
constitutive models. Although we focused on one constitutive model type (small strain elastoplas-
ticity) implemented using two programming environments (Numba and JAX), the framework
serves as a general interface to expand the capabilities of FEniCSx to different types of constitutive
models implemented in numerous ways. For example, CVXPY (Diamond and Boyd 2016) could be
used to implement and solve convex plasticity models (Latyshev and Bleyer 2022), PyTorch and
TensorFlow to build data-centric neural network-based constitutive models or an external solver
could be called to implement a multi-scale model. Beyond solid mechanics, the framework could
be applied to fluid mechanics problems with general non-Newtonian constitutive behaviour or
various multi-physics problems such as magnetorheological elastomers (Mukherjee et al. 2021).

Aside from these newer approaches to implementing constitutive models, Rosenbusch et al.
2024 notes that a great number of useful constitutive models have already been implemented in
traditional programming languages, e.g. C and Fortran, via de facto standard interfaces, e.g.
UMAT (Lucarini and Martinez-Pafieda 2024) or generated using dedicated tools, e.g. ZMAT (Z-Set
Software 2023) and MFront (Helfer et al. 2020). In future work it would be valuable to include
interfaces and examples inclusive to these approaches.

Although we mentioned the possibility of executing constitutive models on GPUs, we have
not explored this direction here; although it is now well established that high-order matrix-free
finite element methods (vs low-order matrix assembly finite element methods we tackled here)
are optimal for the performance profile of GPUs, the overall picture of how matrix-free methods
should be applied to solid mechanics problems with general constitutive models remains an
active topic of research (Brown et al. 2021; Brown et al. 2022; Lewandowski et al. 2023).

On a final note, we hope that the software framework proves useful to the wider community
for integrating constitutive models, both old and new, into FEniCSx, and for exploring the
possibilities that novel hardware architectures can bring to problems in solid mechanics.

Appendices

Strong scaling of the Mohr-Coulomb model

As a complement to the remark on the parallelism at the end of Section 3, we show a strong
parallel scaling test with the Mohr-Coulomb model described in Section 4.2. These results do not
constitute a rigorous performance analysis but do indicate reasonable performance and scaling.

In the strong parallel scaling test the number of displacement degrees-of-freedom is kept
fixed at 321 602 and the number of MPI processes is doubled in a geometric sequence from 1
through to 64. For the first ten pseudo-timesteps of the slope stability problem we measured the
maximum wall time across the MPI processes of the external operator and operand evaluations,
Jacobian assemblies and inner linear solves of the outer Newton method. We additionally record
the total time for all ten pseudo-timesteps. The results are shown in Figures A.1 and A.2.

The main takeaway is that while evaluations of the operands, external operators and Jacobian
assemblies scale perfectly up to 64 MPI processes, the direct linear solver MUMPS reaches
its strong scaling limit around 16 MPI processes. This result supports our statement that the
constitutive update is an “embarrassingly parallel task” in contrast with other time consuming
parts of the full solution process.

The numerical simulations were performed on a machine with 2 sockets, each containing an
AMD EPYC Rome 7742 64-core processor and 2 TB DDR4 RAM. The software environment was
Debian 11, using Podman 5.3.1 container runtime. Instructions for building the environment used
in the strong scaling test, as well as the Docker file, are available in (Latyshev 2024).

The implementation of the problem differs from the one described in the main text. Instead of
passing the entire return mapping function through the JAX AD transformations, here we

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 19 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

apply the implicit function theorem to define the tangent moduli Ciang directly. This alternative
implementation provides better performance (results not shown) and can be found in the
supplementary material (Latyshev 2024, demo_plasticity_mohr_coulomb_mpi.py).

2
10™ 3 2
] -1
2 E Jacobian assemblies
(%]
E 1ot 4 Newton inner linear solves
-—]
= 3 External operators and operand
3 . 1 evaluations
>< 1 .
<§v] -1 Total time
0
10"
T T T T T T T
2° 2! 2? 23 24 25 28

Number of processes, n

Figure A.1 Strong scaling test of the first ten pseudo-timesteps of the Mohr-Coulomb model. The plot indicates that
the direct linear solve reaches its scaling limit at around 16 processes while evaluations of the operands,
external operator and Jacobian assemblies continue to scale strongly up to 64 processes. We also remark
that the time for the operand and external operator evaluation is on the same order as the linear solver. .

20 7 Jacobian assemblies
Newton inner linear solves
External operators and operand
o 15 evaluations
Q
£
T 10
2
x
3
=
5
(0] T T T T T T T
1 2 4 8 16 32 64

Number of processes, n

Figure A.2 Breakdown of timings for the tenth pseudo-timestep of the strong scaling Mohr-Coulomb test. .

A.2 von Mises plasticity

Table A.1 contains the material and geometry parameters of the von Mises plasticity example.

A.3 Mohr-Coulomb with apex smoothing

Here we cover the plasticity model with a non-associated flow rule based on the Mohr-Coulomb
yield criterion with apex smoothing (Abbo and Sloan 1995) from Section 4.2. The model is defined

jtcam.episciences.org 20 | 28

Journal of Theoretical, Computational and Applied Mechanics } September 2025

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

Symbol Value Units Meaning
E 70 - 103 MPa Young modulus
E; E/100 MPa Tangent modulus
v 0.3 = Poisson ratio
00 250 MPa Yield strength
Re 1.3 mm External radius of the cylinder
R; 1.0 mm Internal radius of the cylinder

Table A.1 Material and geometry parameters used in the von Mises plasticity example in Section 4.1.

by the yield function f and the plastic potential g expressed as follows:

h(o,a) = L (30) sina + \/JZ(U)KZ(G, a) + a?(a) sin® @ — ccos a, (A1)
f(G) = h(6> ¢)3 (AZ)
g(o) = h(a,¥), (A.3)

where ¢ and i are the friction and dilatancy angles respectively, ¢ is the cohesion parameter,
I, (o) = tro is the first invariant of the stress field, J;(o) = %s - s is the second invariant of
the deviatoric part of the stress field. In the quantity a(«) := atan ¢/tan a, the tension cut-off
parameter a defines how close the hyperbolic approximation is to the Mohr-Coulomb yield
surface without smoothing.

In the Equation (A.1) the term K (6, &) depends on either friction or dilatancy angle through
the parameter and the Lode angle 8 = 6(0):

-3V3)5(0)

2,2 (o)

where J3 = det s is the third invariant of the deviatoric part of the stress field. The term K (6,)
is defined as follows:

0(o) = %arcsin() € [—%, %], (A.g)

K(0.) = {cos 0 - \/% sin a sin 0, |6| < Or, (As)

A(a) + B(a) sin 30 + C(a) sin? 36, 10| > Or,
where 07 is a transition angle, which “in practice, should not be too near 30° to avoid ill-

conditioning ... and the typical value is 25°” (Abbo and Sloan 1995, p. 429) and the terms A, B and
C are defined as follows:

Ala) = —% sin a sign @ sin @7 — B(«) sign 0 sin 307 — C(a) sin® 307 + cos 07, (A.6)
B(a) = sign 0 sin 667 (cos Or — \/% sin o sign 6 sin 97) /18 cos® 307

— 6 c0s 60t (sign 0sin 01 + \%3 sin « cos QT) /18 cos® 3607, (A7)
C(a) = —cos360r (cos O0r — % sin ¢ sign 6 sin 97) /18 cos® 307

— 3sign 0 sin 367 (sign 0sinOr + \/% sin a cos 9T) /18 cos® 307, (A.8)

with
+1, 0> 0°

sign 6 = {—1, 00 (A9)

The set of all parameters together with their values used for the numerical simulation (cf. Sec-
tion 4.2) is given in the Table A.2. The values are based on the limit analysis within semi-definite
programming framework (Bleyer 2022, limit_analysis_3D_SDP.ipynb) and the implementation of
the Mohr-Coulomb model with apex smoothing in MFront (Helfer et al. 2024).

jtcam.episciences.org 21 | 28

Journal of Theoretical, Computational and Applied Mechanics } September 2025

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

Table A.2

A.gq

Symbol Value Units Meaning
E 6778 MPa Young modulus
v 0.25 = Poisson ratio
c 3.45 MPa Cohesion
¢ 30 o, degree Friction angle
1 {10, 30} °, degree Dilatancy angle
or 26 °, degree Transition angle
a 0.26c/tan ¢ MPa Tension cut-off parameter
I 1.2 mm Length of the slope
H 1.0 mm Height of the slope

Material and geometry parameters used in the Mohr-Coulomb with apex smoothing plasticity model, see
Section 4.2.

Taylor remainder test in the dual space

In Section 4.2, we formulated the Taylor remainder test by establishing the convergence of
the norm of the Taylor remainders rg and ri, see Equations (27) and (28), of the operator 7,
which links to the form F through Equation (26). In the next sections, for practical reasons, we
reformulate the Taylor remainder test for the finite subset Vj, C V and explain how we implement
it in more detail. Our implementation leads to mesh-independent norms for the Taylor remainders,
which is a direct consequence of explicitly considering the dual space. This choice is motivated by
the work of Kirby (2010) and will be discussed in the final part of this appendix.

Notation

For simplicity we work with scalar-valued functions u : Q — R - the arguments here extend
trivially to the vector-valued case u : Q — R? used in the main text. For the vector-valued case
in the main text we use the inverse of the finite element discretisation of the vector-valued
Laplacian for the Riesz map L™!, see Equation (A.20) .

We suppose that the space V}, is spanned by a finite set of basis functions {¢;}?, with
n = dim Vj,. Then uy, € Vj, can be represented as a linear combination of the basis functions

n

up = Z Ui Qi, (A.lO)

i=1

where the coefficients u; forms the Euclidean vector u = [uy,...,u,]" € R™
Following the notation of Kirby (2010), we introduce an interpolation operator 7, : R" — V},
that maps the vector of coefficients u into the function u € Vj

Thu = up. (A.11)

Similarly, the operator 7/ : R" — V},” maps the Euclidean vector f € R” to the linear functional
f € Vi’ where V},/ is the dual space to V},

I)f=f. (A.12)

Implementation of the Taylor remainder test

The objective of the Taylor remainder test is to check that the computer implementation of the
form F : V}, X V, — R and its Jacobian J : V), X V}, X Vi, — R in the direction kdu;, € Vi, with
k > 0 are consistent zeroth- and first-order approximations of the form F respectively. To this
end, we introduce the operators ¥ : V, —» V},” and J : V}, = L(Vi, V'), where L(V,,, V') isa
space of bounded linear operators from Vj, to V3. These operators are linked with the forms F
and J in the following way respectively

(F (un), on) = F(up;on), (A.13)
(T (up))(kbup), vp) = J (up; kup, o), (A1)

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 22 | 28

https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

where, as in the main text, (-, -) is the V},” X V}, duality pairing and the semicolon is used to
emphasize that the forms are nonlinear in the first argument and linear in the remaining ones.

We assume the functional # is once Fréchet-differentiable allowing for the application of the
Taylor (remainder) theorem on Banach spaces (Blanchard and Brining 2015, p. 524). This allows
us to establish the first-order convergence rate in k of the dual norm of the zeroth-order Taylor

remainder r,g

Il 5= 1 Cun + e Su) = F (), — 0 at O(k), (A15)

and the second-order convergence rate in k of the dual norm of the first-order Taylor remainder r]i

Irellvs = 15 Cun + k Sup) — F (up) = (F (un)) (kSup) Iy, o at O(Kk?). (A.16)

In practice, to compute the norm in the dual space V3" we apply the Riesz representation
theorem (Riesz 1907; Axler 2020). The theorem states that there is a linear isometric isomorphism
R : V' — V, which associates a linear functional f € V' with a unique element Rf =u € V
such that

(f,0) =(u,v), VYoeV, (A.17)
where (-,) is a standard inner product in V. Moreover, the norms satisfy the equality

£ llv: = flullv. (A.18)

IfV ={v e H(Q) : v|r = 0}, where the subset I' C dQ of the boundary of the domain Q has
positive measure p(I') > 0 then the Riesz map can be defined through the following weak form
of the Laplace operator (Kirby 2010, p. 273)

(f,v) = (Rf,v) = ‘/Q V(Rf)-Vodx, VYoeV, (A.19)

from where, for V}, C V, we obtain that the Riesz map is the matrix L™! representing the inverse
Laplace operator, which is defined as

L,-j=/V(pl--V(pjdx, Lj=1,...,n. (A.20)
Q

Thus, if f € V" and f := (Ih’)‘lf € R™ then the Riesz representer Rf = I, (L™If).

The Riesz representation theorem leads us to the following formula expressing the norm of
the linear functional f € V},’ from the finite dual space V},” through the Riesz matrix L™! (Kirby
2010, p. 281)

I£113,, =L (A.21)

Now we introduce the vectors of coefficients r;; = I 1y

L T € R, i € {0,1} of the Taylor
remainders into Equations (A.15) and (A.16)

rz =F(u+kdu) — F(u) e R", (A.22)
r,lC =F(u+kdu) — F(u) = J(u) - kbu € R", (A.23)

where du = Zh_15uh, F(-) = (Ih’)_lf(') and J(+) = (Ih’)_lj(-)fh (Kirby 2010, p. 280). Finally, by

combining Equations (A.21) to (A.23), we can derive expressions for the norms of the remainders
in the dual space V3’

||r,’;||%,h, = (r;'c)T[_—lr;'c, i €{0,1}. (A.24)

Journal of Theoretical, Computational and Applied Mechanics } September 2025

Jtcam.episciences.org 23 | 28

https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

Summary

The overall implementation of the mesh-independent Taylor remainder test presented in this
work consists of the following steps:

Fix the Euclidean vectors u and du such that u, = Z,u € V}, and duy, = I,6u € V.

Compute the Euclidean vector F(u) and the matrix J(u).

Compute the matrix L defined in Equation (A.20).

For each k > 0:

(a) Compute the vectors rg and r}{ following Equation (A.22) and Equation (A.23).

(b) Solve the linear systems Ly = r, i € {0, 1} (i.e. apply the Riesz map).

(c) Compute the norms of the Taylor remainders as ||r]’c||2h, = (r}c)T -y, i €{0,1}.

el A s

Dual vs Euclidean norms

The Taylor theorem could be applied directly to the form F : V}, X Vj, — R or the vector-function
F : R" — R" representing the operator ¥ : Vj, — V},” but such a choice would lead us to the use
of mesh-dependent Euclidean norms for the correspondent Taylor remainders.

As demonstrated by Kirby (2010), the Riesz map serves as the “simplest” preconditioner
for iterative solvers, providing mesh-independent convergence rates when computed through
dual norms. We apply the same idea to the Taylor remainder test, where the question on the
choice for the norm of Taylor remainders naturally arise. In practice, we often work with the
Euclidean vector F(u), which represents an element from the dual space. Hence, applying the
dual norm to this object through the Riesz matrix results in a mesh-independent object. From this
perspective, considering the operator ¥ within the Taylor remainder test is more convenient as it
inherently encourages the use of dual norms, in contrast to the application of the Taylor theorem
to the form F or the vector-function F. Thus, as the work Kirby (2010) demonstrates that when
Euclidean representations encode Hilbert space objects, it is crucial to account for the functional
nature of these representations to achieve mesh-independent estimates.

References

[SW] Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems 2015. SWHID: (swh:1:snp:gbgscof2877
21757b29324b83c69d602eeof c70a;origin=https://github.com/tensorflow/tensorflow).

Abatour, M., K. Ammar, S. Forest, C. Ovalle, N. Osipov, and S. Quilici (2024). A generic formulation
of anisotropic thermo-elastoviscoplasticity at finite deformations for finite element codes.
Computational Mechanics. [Do1], [0A].

Abbo, A. and S. Sloan (1995). A Smooth Hyperbolic Approximation to the Mohr-Coulomb Yield
Criterion. Computers & Structures 54(3):427-441. [DOI1].

Alnees, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes,
and G. N. Wells (2015). The FEniCS Project Version 1.5. Archive of Numerical Software 3(100):9-
23. [Do1], [oA].

Alnees, M. S., A. Logg, K. B. Qlgaard, M. E. Rognes, and G. N. Wells (2014). Unified Form Language:
A Domain-Specific Language for Weak Formulations of Partial Differential Equations. ACM
Transactions on Mathematical Software 40(2):1-37. [DOT1].

Axler, S. (2020). Measure, Integration & Real Analysis. Vol. 282. Graduate Texts in Mathematics.
Springer. [0A].

[SW] Baratta, . A,, J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson, M. E. Rognes,
M. W. Scroggs, N. Sime, and G. N. Wells, DOLFINx: The next Generation FEniCS Problem
Solving Environment 2023. SWHID: (swh:1:snp:582c883a8982fa5723ce07749638493cff1e4b34;0r
igin=https://github.com/FEniCS/dolfinx).

Blanchard, P. and E. Briining (2015). Mathematical Methods in Physics: Distributions, Hilbert Space

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 24 | 28

http://archive.softwareheritage.org/swh:1:snp:9b95c9f287721757b29324b83c69d602ee0fc70a;origin=https://github.com/tensorflow/tensorflow
http://archive.softwareheritage.org/swh:1:snp:9b95c9f287721757b29324b83c69d602ee0fc70a;origin=https://github.com/tensorflow/tensorflow
http://dx.doi.org/10.1007/s00466-024-02543-8
https://doi.org/10.1007/s00466-024-02543-8
http://dx.doi.org/10.1016/0045-7949(94)00339-5
http://dx.doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1145/2566630
https://doi.org/10.1007/978-3-030-33143-6
http://archive.softwareheritage.org/swh:1:snp:582c883a8982fa5723ce07749638493cff1e4b34;origin=https://github.com/FEniCS/dolfinx
http://archive.softwareheritage.org/swh:1:snp:582c883a8982fa5723ce07749638493cff1e4b34;origin=https://github.com/FEniCS/dolfinx
https://jtcam.episciences.org

Latyshev et al. Expressing general constitutive models in FEniCSx

Operators, Variational Methods, and Applications in Quantum Physics. Vol. 69. Springer. 598 pp.
[Do1].

[SW] Bleyer,]., Fenics_optim — Convex Optimization Interface in FEniCS version 2.0.1, 2022. DOI:
10.5281/zen0do.3604085, SWHID: (swh:1:snp:bdeebs12425b5937adgb3osdasd6a1844fsbafez;ori
gin=https://gitlab.enpc.fr/navier-fenics/fenics-optim).

[SW] Bleyer, J., Dolfinx_materials: A Python Package for Advanced Material Modelling version 0.3.0,
2024. DOL: 10.5281/zen0do.13882183, SWHID: (swh:1:snp:21b985e61521c6838d98bg3cb13ffagde
bboe3ssb;origin=https://github.com/bleyerj/dolfinx_materials).

[SW] Bleyer, J., Numerical tours of Computational Mechanics with FEniCSx version 0.2, 2024. DOI:
10.5281/zen0do.10470942, SWHID: (swh:1:snp:0a8sfabcfeazasggcqcscsdiggesby32de183664;0ri
gin=https://github.com/bleyerj/comet-fenicsx).

Blihdorn, J., N. R. Gauger, and M. Kabel (2022). AutoMat: Automatic Differentiation for Generalized
Standard Materials on GPUs. Computational Mechanics 69(2):589—613. [Do1], [0A].

Bonnet, M., A. Frangi, and C. Rey (2014). The Finite Element Method in Solid Mechanics. McGraw-Hill
Education. 352 pp. 1SBN: 978-8838674464.

Bouziani, N. and D. A. Ham (2021). Escaping the Abstraction: A Foreign Function Interface for the
Unified Form Language [UFL]. First Workshop on Differentiable Programming (NeurIPS 2021)
(Dec. 13, 2021). [0A].

Brothers, M. D., J. T. Foster, and H. R. Millwater (2014). A Comparison of Different Methods for
Calculating Tangent-Stiffness Matrices in a Massively Parallel Computational Peridynamics
Code. Computer Methods in Applied Mechanics and Engineering 279:247-267. [DO1].

Brown, J., A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier, V. Dobrev, Y. Dudouit, L. Ghaffari,
T. Kolev, D. Medina, W. Pazner, T. Ratnayaka, J. Thompson, and S. Tomov (2021). libCEED:
Fast algebra for high-order element-based discretizations. Journal of Open Source Software
6(63):2945. [DOI], [0A].

Brown, J., V. Barra, N. Beams, L. Ghaffari, M. Knepley, W. Moses, R. Shakeri, K. Stengel,
J. L. Thompson, and J. Zhang (2022). Performance Portable Solid Mechanics via Matrix-Free
p-Multigrid. [oa].

Bucalem, M. L. and K.-J. Bathe (2011). The Mechanics of Solids and Structures - Hierarchical
Modeling and the Finite Element Solution. Springer. ISBN: 9783540264002.

Buche, M. R. and M. N. Silberstein (2020). Statistical mechanical constitutive theory of polymer
networks: The inextricable links between distribution, behavior, and ensemble. Physical
Review E 102(1):012501. [DOI], [ARXIV].

Chen, Q., J. T. Ostien, and G. Hansen (2014). Automatic Differentiation for Numerically Exact
Computation of Tangent Operators in Small-and Large-Deformation Computational Inelastic-
ity. 143rd Annual Meeting & Exhibition (San Diego, United States, Feb. 16-20, 2014). Springer,
pp 289—296. [DOI].

Chen, W. F. and X. L. Liu (1990). Limit Analysis in Soil Mechanics. Vol. 52. Developments in
Geotechnical Engineering. Elsevier Science. 477 pp. ISBN: 9780444598356.

Coussy, O. (2004). Poromechanics. Wiley. 320 pp. [Do1].

Diamond, S. and S. Boyd (2016). CVXPY: A Python-Embedded Modeling Language for Convex
Optimization. Journal of Machine Learning Research 17(83):1—5. [URL].

[SW] DMLC, DLPack version 1.0, 2024. Distributed (Deep) Machine Learning Community (DMLC).
SWHID: (swh:1:snp:54adagq296b2dbga6ff73188368711ee9ffoq79bf;origin=https://github.co
m/dmlc/dlpack).

Dummer, A., M. Neuner, P. Gamnitzer, and G. Hofstetter (2024). Robust and Efficient Imple-
mentation of Finite Strain Generalized Continuum Models for Material Failure: Analytical,
Numerical, and Automatic Differentiation with Hyper-Dual Numbers. Computer Methods in
Applied Mechanics and Engineering 426:116987. [DOI], [0A].

Ferry, J. D. (1980). Viscoelastic Properties of Polymers. John Wiley & Sons. ISBN: 9780471048947.

Feyel, F. (2003). A Multilevel Finite Element Method (FE2) to Describe the Response of Highly
Non-Linear Structures Using Generalized Continua. Computer Methods in Applied Mechanics
and Engineering 192(28-30):3233-3244. [DoOI].

Frostig, R., M. J. Johnson, and C. Leary (2018). Compiling Machine Learning Programs via
High-Level Tracing. Systems for Machine Learning. SysML Conference 2018 (Stanford, United

Journal of Theoretical, Computational and Applied Mechanics } September 2025 | jtcam.episciences.org 25 | 28

http://dx.doi.org/10.1007/978-3-319-14045-2
https://doi.org/10.5281/zenodo.3604085
http://archive.softwareheritage.org/swh:1:snp:bdeeb512425b5937ad9b305da5d6a1844f5bafe2;origin=https://gitlab.enpc.fr/navier-fenics/fenics-optim
http://archive.softwareheritage.org/swh:1:snp:bdeeb512425b5937ad9b305da5d6a1844f5bafe2;origin=https://gitlab.enpc.fr/navier-fenics/fenics-optim
https://doi.org/10.5281/zenodo.13882183
http://archive.softwareheritage.org/swh:1:snp:21b985e61521c6838d98b93cb13ffa9debb9e35b;origin=https://github.com/bleyerj/dolfinx_materials
http://archive.softwareheritage.org/swh:1:snp:21b985e61521c6838d98b93cb13ffa9debb9e35b;origin=https://github.com/bleyerj/dolfinx_materials
https://doi.org/10.5281/zenodo.10470942
http://archive.softwareheritage.org/swh:1:snp:0a85fabcfea2a599c4c3c3d149c5b732dc183664;origin=https://github.com/bleyerj/comet-fenicsx
http://archive.softwareheritage.org/swh:1:snp:0a85fabcfea2a599c4c3c3d149c5b732dc183664;origin=https://github.com/bleyerj/comet-fenicsx
http://dx.doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.1007/s00466-021-02105-2
https://doi.org/10.48550/arXiv.2111.00945
http://dx.doi.org/10.1016/j.cma.2014.06.034
http://dx.doi.org/10.21105/joss.02945
https://doi.org/10.21105/joss.02945
https://doi.org/10.48550/arXiv.2204.01722
http://dx.doi.org/10.1103/physreve.102.012501
http://arxiv.org/abs/2004.07874
http://dx.doi.org/10.1007/978-3-319-48237-8_38
http://dx.doi.org/10.1002/0470092718
http://jmlr.org/papers/v17/15-408.html
http://archive.softwareheritage.org/swh:1:snp:54ada4296b2db9a6ff73188368711ee9ff0479bf;origin=https://github.com/dmlc/dlpack
http://archive.softwareheritage.org/swh:1:snp:54ada4296b2db9a6ff73188368711ee9ff0479bf;origin=https://github.com/dmlc/dlpack
http://dx.doi.org/10.1016/j.cma.2024.116987
https://doi.org/10.1016/j.cma.2024.116987
http://dx.doi.org/10.1016/s0045-7825(03)00348-7
https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

States, Mar. 31-Apr. 2, 2019). [HAL].

Fuhg, J. N., G. A. Padmanabha, N. Bouklas, B. Bahmani, W. Sun, N. N. Vlassis, M. Flaschel,
P. Carrara, and L. De Lorenzis (2025). A review on data-driven constitutive laws for solids.
Archives of Computational Methods in Engineering 32:1841-1883. [DOI], [ARXIV].

Griewank, A. and A. Walther (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Society for Industrial and Applied Mathematics. 438 pp. [Do1].

Ham, D. A., P. H. J. Kelly, L. Mitchell, C. Cotter, R. C. Kirby, K. Sagiyama, N. Bouziani, S. Vorder-
wuelbecke, T. Gregory, J. Betteridge, D. R. Shapero, R. Nixon-Hill, C. Ward, P. E. Farrell,
P. D. Brubeck, I. Marsden, T. H. Gibson, M. Homolya, T. Sun, A. T. T. McRae, F. Luporini,
A. Gregory, M. Lange, S. W. Funke, F. Rathgeber, G.-T. Bercea, and G. R. Markall (2023).
Firedrake User Manual.

Hecht, F. (2012). New Development in Freefem++. Journal of Numerical Mathematics 20(3-4):251—
266. [DoI], [HAL].

Helfer, T., J. Bleyer, T. Frondelius, I. Yashchuk, T. Nagel, and D. Naumov (2020). The ‘MFront-
GenericlnterfaceSupport’ Project. Journal of Open Source Software 5(48):2003. [Do1], [0A].

Helfer, T., B. Michel, J.-M. Proix, M. Salvo, J. Sercombe, and M. Casella (2015). Introducing the
Open-Source Mfront Code Generator: Application to Mechanical Behaviours and Material
Knowledge Management within the PLEIADES Fuel Element Modelling Platform. Computers
& Mathematics with Applications 70(5):994—1023. [DOI], [0A].

[SW] Helfer, T., B. Michel, J.-M. Proix, J. Sercombe, M. Casella, and M. Salvo, Invariant-based
implementation of the Mohr-Coulomb elasto-plastic model in OpenGeoSys using MFront
version 4.2.1, 2024. vcs: https://thelfer.github.io/tfel/web/MohrCoulomb.html.

Homolya, M., L. Mitchell, F. Luporini, and D. A. Ham (2018). TSFC: A Structure-Preserving Form
Compiler. SIAM Journal on Scientific Computing 40(3):C401-C428. [Do1], [0A].

Kirby, R. C. (2010). From Functional Analysis to Iterative Methods. STAM Review 52(2):269-293.
[Dpor].

Kirby, R. C. and A. Logg (2006). A Compiler for Variational Forms. ACM Transactions on
Mathematical Software 32(3):417-444. [DO1], [ARXIV].

Korelc, J. (1997). Automatic Generation of Finite-Element Code by Simultaneous Optimization of
Expressions. Theoretical Computer Science 187(1-2):231-248. [Do1], [0A].

Korelc, J. and P. Wriggers (2016). Automation of Finite Element Methods. Springer. 346 pp. [Do1].

Lam, S. K., A. Pitrou, and S. Seibert (2015). Numba: A LLVM-based Python JIT Compiler. Second
Workshop on the LLVM Compiler Infrastructure in HPC (Austin, USA, Nov. 15-20, 2015).
ACM, pp 1-6. [DOI].

Latyshev, A. (2024). Accompanying dataset for the paper “Expressing general constitutive models in
FEniCSx using external operators and algorithmic automatic differentiation”. Dataset. [Do1].

[SW] Latyshev, A. and J. Bleyer, Convex-Plasticity: Efficient Implementation of Plasticity Problems
Resolution Using Convex Optimization Solvers Incorporated in a Finite Element Code 2022.
SWHID: (swh:1:dir:577c47880e6dcd53d4b3180387062773ba117d35;0rigin=https://github.co
m/a-latyshev/convex-plasticity;visit=swh:1:snp:5dcee27135e59813050e3ab8814dad6{ffbgb
az285;anchor=swh:1:rev:8d69fae3bs7871a0245ac678cf85f0d864€e2577a).

Latyshev, A, J. Bleyer, J. Hale, and C. Maurini (2024). A Framework for Expressing General
Constitutive Models in FEniCSx. 16e Colloque National en Calcul de Structures (Giens, France,
May 13-17, 2024). [HAL].

[SW] Latyshev, A. and J. S. Hale, dolfinx-external-operator 2024. swHID: (swh:1:dir:31fo70937a900
400249d32131cbefbb2dgc899fo;origin=https://github.com/a-latyshev/dolfinx-external-op
erator;visit=swh:1:snp:dffdyeccaofo66degq7eac3fco1ffd78f 6aaz4b7;anchor=swh:1:rev:53
756daea149fecazbab36855dbf8cdd66abeoct).

Lewandowski, K., D. Barbera, P. Blackwell, A. H. Roohi, I. Athanasiadis, A. McBride, P. Steinmann,
C. Pearce, and L. Kaczmarczyk (2023). Multifield finite strain plasticity: Theory and numerics.
Computer Methods in Applied Mechanics and Engineering 414:116101. [DoI1], [0A].

Lindsay, A., R. Stogner, D. Gaston, D. Schwen, C. Matthews, W. Jiang, L. K. Aagesen, R. Carlsen,
F. Kong, A. Slaughter, C. Permann, and R. Martineau (2021). Automatic Differentiation in
MetaPhysicL and Its Applications in MOOSE. Nuclear Technology 207(7):905-922. [Do1], [0A].

Linka, K. and E. Kuhl (2023). A new family of Constitutive Artificial Neural Networks towards

Journal of Theoretical, Computational and Applied Mechanics } September 2025

Jtcam.episciences.org 26 | 28

https://hal.science/hal-05188750
http://dx.doi.org/10.1007/s11831-024-10196-2
https://arxiv.org/abs/2405.03658
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1515/jnum-2012-0013
https://hal.sorbonne-universite.fr/hal-01476313
http://dx.doi.org/10.21105/joss.02003
https://doi.org/10.21105/joss.02003
http://dx.doi.org/10.1016/j.camwa.2015.06.027
https://doi.org/10.1016/j.camwa.2015.06.027
https://thelfer.github.io/tfel/web/MohrCoulomb.html
http://dx.doi.org/10.1137/17m1130642
https://doi.org/10.1137/17m1130642
http://dx.doi.org/10.1137/070706914
http://dx.doi.org/10.1145/1163641.1163644
http://arxiv.org/abs/1112.0402
http://dx.doi.org/10.1016/s0304-3975(97)00067-4
https://doi.org/10.1016/s0304-3975(97)00067-4
http://dx.doi.org/10.1007/978-3-319-39005-5
http://dx.doi.org/10.1145/2833157.2833162
http://dx.doi.org/10.5281/zenodo.15577842
http://archive.softwareheritage.org/swh:1:dir:577c47880e6dcd53d4b3180387062773ba117d35;origin=https://github.com/a-latyshev/convex-plasticity;visit=swh:1:snp:5dcee27135e59813050e3ab8814dad6ffb9ba285;anchor=swh:1:rev:8d69fae3b57871a0245ac678cf85f0d864e2577a
http://archive.softwareheritage.org/swh:1:dir:577c47880e6dcd53d4b3180387062773ba117d35;origin=https://github.com/a-latyshev/convex-plasticity;visit=swh:1:snp:5dcee27135e59813050e3ab8814dad6ffb9ba285;anchor=swh:1:rev:8d69fae3b57871a0245ac678cf85f0d864e2577a
http://archive.softwareheritage.org/swh:1:dir:577c47880e6dcd53d4b3180387062773ba117d35;origin=https://github.com/a-latyshev/convex-plasticity;visit=swh:1:snp:5dcee27135e59813050e3ab8814dad6ffb9ba285;anchor=swh:1:rev:8d69fae3b57871a0245ac678cf85f0d864e2577a
https://hal.science/hal-04610881
http://archive.softwareheritage.org/swh:1:dir:31f070937a900400249d32131cbefbb2d9c899f0;origin=https://github.com/a-latyshev/dolfinx-external-operator;visit=swh:1:snp:dffd7ecca0f066de947eac3fc61ffd78f6aa24b7;anchor=swh:1:rev:53756daea149feca3bab36855dbf8cdd66a6c0c1
http://archive.softwareheritage.org/swh:1:dir:31f070937a900400249d32131cbefbb2d9c899f0;origin=https://github.com/a-latyshev/dolfinx-external-operator;visit=swh:1:snp:dffd7ecca0f066de947eac3fc61ffd78f6aa24b7;anchor=swh:1:rev:53756daea149feca3bab36855dbf8cdd66a6c0c1
http://archive.softwareheritage.org/swh:1:dir:31f070937a900400249d32131cbefbb2d9c899f0;origin=https://github.com/a-latyshev/dolfinx-external-operator;visit=swh:1:snp:dffd7ecca0f066de947eac3fc61ffd78f6aa24b7;anchor=swh:1:rev:53756daea149feca3bab36855dbf8cdd66a6c0c1
http://archive.softwareheritage.org/swh:1:dir:31f070937a900400249d32131cbefbb2d9c899f0;origin=https://github.com/a-latyshev/dolfinx-external-operator;visit=swh:1:snp:dffd7ecca0f066de947eac3fc61ffd78f6aa24b7;anchor=swh:1:rev:53756daea149feca3bab36855dbf8cdd66a6c0c1
http://dx.doi.org/10.1016/j.cma.2023.116101
https://doi.org/10.1016/j.cma.2023.116101
http://dx.doi.org/10.1080/00295450.2020.1838877
https://doi.org/10.1080/00295450.2020.1838877
https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

automated model discovery. Computer Methods in Applied Mechanics and Engineering
403:115731. [DOI], [0A].

Logg, A., K. B. Qlgaard, M. E. Rognes, and G. N. Wells (2012). FFC: The FEniCS Form Compiler.
Automated Solution of Differential Equations by the Finite Element Method. Vol. 84. Springer.
Chap. 11, pp 227-238. [Do1].

Lucarini, S. and E. Martinez-Pafieda (2024). UMAT4COMSOL: An Abaqus user material (UMAT)
subroutine wrapper for COMSOL. Advances in Engineering Software 190:103610. [DoI], [0A].

Lyness, J. N. (1968). Differentiation Formulas for Analytic Functions. Mathematics of Computation
22(102):352—362. [DOI].

Lyness, J. N. and C. B. Moler (1967). Numerical Differentiation of Analytic Functions. SIAM
Journal on Numerical Analysis 4(2):202—210. [Do1].

Mandel, J. (1965). Généralisation de la théorie de plasticité de W. T. Koiter. International Journal of
Solids and Structures 1(3):273-295. [DoI1].

Masi, F,, L Stefanou, P. Vannucci, and V. Maffi-Berthier (2021). Thermodynamics-Based Artificial
Neural Networks for Constitutive Modeling. Journal of the Mechanics and Physics of Solids
147:104277. [DO1], [0A].

Méric, L. and G. Cailletaud (1991). Single Crystal Modeling for Structural Calculations: Part
2—Finite Element Implementation. Journal of Engineering Materials and Technology 113(1):171—
182. [poI], [HAL].

Mukherjee, D., M. Rambausek, and K. Danas (2021). An Explicit Dissipative Model for Isotropic
Hard Magnetorheological Elastomers. Journal of the Mechanics and Physics of Solids 151:104361.
[po1], [oA].

Ogden, R. W. (1997). Non-linear Elastic Deformations. Courier Corporation. ISBN: 9780486696485.

[SW] Qlgaard, K. B. and N. W. Garth, FEniCS Solid Mechanics 2017. SWHID: (swh:1:snp:7a008f58ab
9a65c8d3133e713f2afff31bco6b21;0rigin=https://bitbucket.org/fenics-apps/fenics-solid-
mechanics).

Rajagopal, K. and A. Srinivasa (2000). A thermodynamic frame work for rate type fluid models.
Journal of Non-Newtonian Fluid Mechanics 88(3):207-227. [DOI1].

Riesz, F. (1907). Sur une espéce de géométrie analytique des systémes de fonctions sommables. FR.
Comptes rendus de 'Académie des Sciences 144:1409—1411.

Rosenbusch, S. M., P. Diercks, V. Kindrachuk, and J. F. Unger (2024). Integrating custom constitutive
models into FEniCSx: A versatile approach and case studies. Advances in Engineering Software
206:103922. [DOI], [0A].

Rothe, S. and S. Hartmann (2015). Automatic Differentiation for Stress and Consistent Tangent
Computation. Archive of Applied Mechanics 85(8):1103-1125. [DOI].

Saether, E., V. Yamakov, and E. H. Glaessgen (2009). An embedded statistical method for coupling
molecular dynamics and finite element analyses. International Journal for Numerical Methods
in Engineering 78(11):1292-1319. [DOI].

Seidl, D. T. and B. N. Granzow (2022). Calibration of Elastoplastic Constitutive Model Parameters
from Full-Field Data with Automatic Differentiation-Based Sensitivities. International Journal
for Numerical Methods in Engineering 123(1):69—100. [DOI], [ARXIV].

Simo, J. C. and T. J. R. Hughes (1998). Computational Inelasticity. Springer-Verlag. 392 pp. [Do1].

Stainier, L., A. Leygue, and M. Ortiz (2019). Model-Free Data-Driven Methods in Mechanics:
Material Data Identification and Solvers. Computational Mechanics 64(2):381-393. [Do1],
[ARXTV].

Tanaka, M., D. Balzani, and J. Schréder (2016). Implementation of Incremental Variational
Formulations Based on the Numerical Calculation of Derivatives Using Hyper Dual Numbers.
Computer Methods in Applied Mechanics and Engineering 301:216—241. [DOI].

Thakolkaran, P., A. Joshi, Y. Zheng, M. Flaschel, L. De Lorenzis, and S. Kumar (2022). NN-EUCLID:
Deep-learning Hyperelasticity without Stress Data. Journal of the Mechanics and Physics of
Solids 169:105076. [DoT1], [0A].

Tschoegl, N. W. (2012). Linear Viscoelastic Response. The Phenomenological Theory of Linear
Viscoelastic Behavior. Springer. Chap. 2, pp 35-68. [Do1].

Ulloa, J., L. Stainier, M. Ortiz, and J. E. Andrade (2024). Data-Driven Micromorphic Mechanics for
Materials with Strain Localization. Computer Methods in Applied Mechanics and Engineering

Journal of Theoretical, Computational and Applied Mechanics } September 2025

jtcam.episciences.org 27 | 28

http://dx.doi.org/10.1016/j.cma.2022.115731
https://doi.org/10.1016/j.cma.2022.115731
http://dx.doi.org/10.1007/978-3-642-23099-8_11
http://dx.doi.org/10.1016/j.advengsoft.2024.103610
https://doi.org/10.1016/j.advengsoft.2024.103610
http://dx.doi.org/10.2307/2004665
http://dx.doi.org/10.1137/0704019
http://dx.doi.org/10.1016/0020-7683(65)90034-x
http://dx.doi.org/10.1016/j.jmps.2020.104277
https://doi.org/10.1016/j.jmps.2020.104277
http://dx.doi.org/10.1115/1.2903375
https://hal.science/hal-05188766
http://dx.doi.org/10.1016/j.jmps.2021.104361
https://doi.org/10.1016/j.jmps.2021.104361
http://archive.softwareheritage.org/swh:1:snp:7a008f58ab9a65c8d3133e713f2afff31bc06b21;origin=https://bitbucket.org/fenics-apps/fenics-solid-mechanics
http://archive.softwareheritage.org/swh:1:snp:7a008f58ab9a65c8d3133e713f2afff31bc06b21;origin=https://bitbucket.org/fenics-apps/fenics-solid-mechanics
http://archive.softwareheritage.org/swh:1:snp:7a008f58ab9a65c8d3133e713f2afff31bc06b21;origin=https://bitbucket.org/fenics-apps/fenics-solid-mechanics
http://dx.doi.org/10.1016/s0377-0257(99)00023-3
http://dx.doi.org/10.1016/j.advengsoft.2025.103922
https://doi.org/10.1016/j.advengsoft.2025.103922
http://dx.doi.org/10.1007/s00419-014-0939-6
http://dx.doi.org/10.1002/nme.2529
http://dx.doi.org/10.1002/nme.6843
http://arxiv.org/abs/2010.03649
http://dx.doi.org/10.1007/b98904
http://dx.doi.org/10.1007/s00466-019-01731-1
http://arxiv.org/abs/1903.07983
http://dx.doi.org/10.1016/j.cma.2015.12.010
http://dx.doi.org/10.1016/j.jmps.2022.105076
https://doi.org/10.1016/j.jmps.2022.105076
http://dx.doi.org/10.1007/978-3-642-73602-5_2
https://jtcam.episciences.org

Latyshev et al.

Expressing general constitutive models in FEniCSx

429:117180. [DOI], [ARXIV].

Vigliotti, A. and F. Auricchio (2021). Automatic Differentiation for Solid Mechanics. Archives of
Computational Methods in Engineering 28(3):875-895. [Do1], [ARXTV].

Wang, X. and W. Hong (2012). A visco-poroelastic theory for polymeric gels. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences 468(2148):3824-3841. [Do1],
[oa].

Xue, T, S. Liao, Z. Gan, C. Park, X. Xie, W. K. Liu, and J. Cao (2023). JAX-FEM: A Differentiable
GPU-accelerated 3D Finite Element Solver for Automatic Inverse Design and Mechanistic
Data Science. Computer Physics Communications 291(108802):108802. [Do1], [0A].

[SW] Z-Set Software, ZMAT 2023.

Zhang, W., D. S. Li, T. Bui-Thanh, and M. S. Sacks (2022). Simulation of the 3D hyperelastic
behavior of ventricular myocardium using a finite-element based neural-network approach.
Computer Methods in Applied Mechanics and Engineering 394:114871. [Do1], [0A].

Zlati¢, M., F. Rocha, L. Stainier, and M. Canadija (2024). Data-Driven Methods for Computational
Mechanics: A Fair Comparison between Neural Networks Based and Model-Free Approaches.
Computer Methods in Applied Mechanics and Engineering 431:117289. [Do1], [ARXTV].

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
BY

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the authors-the copyright holder. To view a copy of
this license, visit creativecommons.org/licenses/by/4.0.

Authors’ contributions AL: Conceptualisation, Formal analysis, Investigation, Methodology, Software, Validation,
Visualisation, Writing - original draft, Writing - review and editing. JB: Conceptualisation, Methodology, Supervision
(Masters thesis of AL), Validation, Writing - review and editing. CM: Conceptualisation, Supervision (Masters and PhD
thesis of AL), Project administration, Writing - review and editing. JSH: Conceptualisation, Formal analysis, Funding
acquisition, Methodology, Project administration, Software, Supervision (PhD thesis of AL), Writing - review and
editing.

Supplementary Material The software framework presented in this article is available at the permalink
doi:10.5281/zenodo.10907417. The repository includes von Mises and Mohr-Coulomb plasticity examples cov-
ered in the text as well as further fully documented examples. The Python scripts plotting the figures in this article
from their data are available in (Latyshev 2024). The software solutions used in this work are also archived at the
permalink swh:1:dir:31f070937a900400249d32131cbefbb2dgc8ggfo.

Acknowledgements The authors would like to thank Patrick E. Farrell for his valuable remarks on computing the
dual norm in the Taylor remainder test and Jorgen S. Dokken for his contribution extending the software framework to
codimension one mesh entities. We would like to thank the anonymous reviewers for their questions on incorporating
traditional approaches for implementing constitutive models and execution on GPUs that led us to improve the
discussion section.

Funding This research was funded in whole, or in part, by the Luxembourg National Research Fund (FNR), grant
reference PRIDE/21/16747448/MATHCODA. For the purpose of open access, and in fulfilment of the obligations
arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY
4.0) license to any Author Accepted Manuscript version arising from this submission.

Competing interests The authors declare that they have no competing interests.

Journal’s Note JTCAM remains neutral with regard to the content of the publication and institutional affiliations.

Journal of Theoretical, Computational and Applied Mechanics | September 2025

Jtcam.episciences.org 28 | 28

http://dx.doi.org/10.1016/j.cma.2024.117180
http://arxiv.org/abs/2402.15966
http://dx.doi.org/10.1007/s11831-019-09396-y
http://arxiv.org/abs/2001.07366
http://dx.doi.org/10.1098/rspa.2012.0385
https://doi.org/10.1098/rspa.2012.0385
http://dx.doi.org/10.1016/j.cpc.2023.108802
https://doi.org/10.1016/j.cpc.2023.108802
http://dx.doi.org/10.1016/j.cma.2022.114871
https://doi.org/10.1016/j.cma.2022.114871
http://dx.doi.org/10.1016/j.cma.2024.117289
http://arxiv.org/abs/2409.06727
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.10907417
https://archive.softwareheritage.org/swh:1:dir:31f070937a900400249d32131cbefbb2d9c899f0;origin=https://github.com/a-latyshev/dolfinx-external-operator;visit=swh:1:snp:dffd7ecca0f066de947eac3fc61ffd78f6aa24b7;anchor=swh:1:rev:53756daea149feca3bab36855dbf8cdd66a6c0c1
https://jtcam.episciences.org

	Expressing general constitutive models in FEniCSx using external operators and algorithmic automatic differentiation
	Abstract
	1 Introduction
	1.1 Methods for incorporating constitutive models
	1.2 Automatic differentiation in constitutive modelling
	1.3 Existing software
	1.4 Contributions

	2 General formulation of a plasticity problem
	2.1 Notation
	2.2 Model problem

	3 Extension of the external operator concept to DOLFINx
	4 Application of the framework to plasticity problems
	4.1 Von Mises plasticity
	4.2 Mohr—Coulomb plasticity

	5 Conclusion
	A Appendices
	A.1 Strong scaling of the Mohr-Coulomb model
	A.2 von Mises plasticity
	A.3 Mohr-Coulomb with apex smoothing
	A.4 Taylor remainder test in the dual space

	References

