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How to introduce an initial crack in phase field
simulations to accurately predict the linear elastic
fracture propagation threshold?
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Variational phase field fracture models are now widely used to simulate crack propagation in structures. A
critical aspect of these simulations is the correct determination of the propagation threshold of pre-existing
cracks, as it highly relies on how the initial cracks are implemented. While prior studies briefly discuss
initial crack implementation techniques, we present here a systematic investigation. Various techniques to
introduce initial cracks in phase field fracture simulations are tested, from the crack explicit meshing to the
replacement by a fully damaged phase field, including different variants for the boundary conditions. Our
focus here is on phase field models aiming to approximate, in the Γ-convergence limit, Griffith quasi-static
propagation in the framework of Linear Elastic Fracture Mechanics. Therefore, a sharp crack model from
classic linear elastic fracture mechanics based on Griffith criterion is the reference in this work. To assess
the different techniques to introduce initial cracks, we rely on path-following methods to compute the
sharp crack and the phase field smeared crack solutions. The underlying idea is that path-following
ensures staying at equilibrium at each instant so that any difference between phase field and sharp crack
models can be attributed to numerical artifacts. Thus, by comparing the results from both models, we
can provide practical recommendations for reliably incorporating initial cracks in phase field fracture
simulations. The comparison shows that an improper initial crack implementation often requires the
smeared crack to transition to a one-element-wide phase band to adequately represent a displacement
jump along a crack. This transition increases the energy required to propagate the crack, leading to a
significant overshoot in the force-displacement response. The take-home message is that to predict the
propagation threshold accurately and avoid artificial toughening; the crack must be initialized either
setting the phase field to its damage state over a one-element-wide band or meshing the crack explicitly as
a one-element-wide slit and imposing the fully cracked state on the crack surface.

Keywords: Variational phase-field approach, Initial crack implementation, Linear Elastic Fracture Mechanics, Griffith
theory.

1 Introduction

Phase field fracture models based on the variational approach to fracture, proposed by Francfort
and Marigo (1998) and implemented by Bourdin et al. (2000), have become increasingly popular
in the fracture mechanics community. These models are based on the idea of Griffith (1920) that
the mechanical state of a structure is governed by the balance between the elastic energy and the
fracture surface energy. This idea can also be formalized as the minimization of the potential
energy among any possible crack extension, that is any sharp discontinuity of the displacement
field (Francfort and Marigo 1998). As the crack surface is not known a priori, performing
minimization on this set of sharp cracks is generally not possible in practice. The phase field
fracture models replace the sharp crack with a smeared crack represented by a phase field and use
a regularization of the elastic and fracture energies based on the work of Ambrosio and Tortorelli
(1990); Ambrosio and Tortorelli (1992). For variational phase field models, the regularized
functional has been shown to Γ-converge towards its sharp counterpart (Bellettini and Coscia
1994; Bourdin 1999; Giacomini and Ponsiglione 2003; Chambolle 2004). This property means that
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the results obtained using phase field fracture models, with a small-enough regularization length
and sufficient refinement, converges towards the sharp crack model using Griffith theory.

Recent studies have highlighted the limitations of classical variational phase field models in
describing crack nucleation from ab-nihilo (Kumar et al. 2020; Bažant et al. 2022; Lopez-Pamies
et al. 2024). However, these models effectively handle crack propagation problems. To deal
with the failure of a structure using a variational phase field model, it is therefore necessary
to introduce an initial crack, as in standard Linear Elastic Fracture Mechanics (LEFM). But,
how initial cracks are introduced in phase field simulations can significantly bias the observed
mechanical response, in particular the propagation threshold. For instance, the work of Singh
et al. (2016) shows that an overshoot of the peak force occurs in the force-displacement response
of the structure without a specific treatment applied to the crack tip. Similarly, Kristensen et al.
(2021) also observed an artificial increase of the critical energy release rate when introducing
crack geometrically in the simulation domain. It underscores the importance of having a clear and
reliable method to introduce initial cracks as it affects when and how initial cracks propagates.

The problem of implementing initial cracks in phase field fracture simulation is discussed
in the literature, but in a scattered manner and often as a side study. A first technique, used
by Klinsmann et al. (2015); Singh et al. (2016); Kristensen et al. (2021), among others, consists in
explicitly embedding the initial cracks into the mesh by duplicating nodes, resulting in an infinitely
sharp crack. This technique is largely employed in Finite Element fracture simulations (Anderson
and Anderson 2017, Section 12.4.). However, its application to phase field fracture simulations
raises several questions. Indeed, one challenge is determining the appropriate boundary condition
to impose on the initial crack. For the displacement field, stress-free boundary conditions has to
be used for unloaded crack. However, different boundary conditions in crack phase coexist in
the literature. The phase field variable can be: (a) not set explicitly (zero Neumann boundary
condition), (b) set to a fully cracked state at the crack tip, or (c) set to a fully cracked state on the
whole crack. Similarly, Tanné et al. (2018) proposed to replace the initial crack with a slightly
open sharp V-notch. A second technique consists in including the initial crack in the initial phase
field. With this implementation technique, the initial crack is not meshed explicitly, but the crack
is introduced instead by setting the initial phase field. More specifically, the crack phase is set to
a fully cracked state along the initial crack (Nguyen et al. 2015; Makvandi et al. 2019; Lo et al.
2019; Yoshioka et al. 2020; Kristensen et al. 2021). A third technique can be applied in phase field
models where a history variable governs the crack phase evolution (Miehe et al. 2010). The
initial crack phase field is imposed indirectly through the history variable. This method has been
proposed by Borden et al. (2012) and employed by Klinsmann et al. (2015); K. H. Pham et al.
(2017); Liu et al. (2020), among others. As this method only applies to the phase field models
using a history variable, this approach will only be briefly discussed in this work. For all those
methods, a crucial factor is the initial crack thickness. This aspect is often unspecified in the
literature (or even overlooked in some cases). However, it can significantly impact the numerical
predictions of phase field fracture simulations as it will be shown here.

In this article, we explore systematically the impact of various initial crack implementation
techniques on the mechanical response of structures. The sharp crack model will act as our
reference as the phase field smeared crack model Γ-converges towards it. Our aim is to determine
whether certain crack implementation technique introduce a bias into the mechanical results,
in particular the critical load, and why. The comparison of the phase field fracture with the
reference sharp crack model enables us to identify the most reliable technique to introduce
initial cracks in phase field simulations. The findings will help users of the phase field method to
choose the most accurate approach. Focus will be placed on the quasi-static propagation that
satisfies Griffith criterion at each moment using a path-following method. For each crack growth
increment, the corresponding critical load will be determined explicitly in sharp crack models
or through a path-following constraint in phase field simulations. Following the quasi-static
equilibrium path during crack propagation enables us to highlight the errors induced by an
improper crack initialization irrespective of any dynamical effect.

This paper is organized as follows. Section 2 introduces the sharp crack model through
the Griffith theory, and its formalization in the variational approach to fracture. The smeared
crack model (i.e., the phase field fracture model) is then presented as a regularization of the
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variational approach to fracture. Section 3 defines the quasi-static equilibrium path and explains
how it is obtained, analytically and numerically, for the sharp and smeared crack. Section 4
presents various techniques to introduce initial cracks in phase field fracture simulation. Section 5
compares eight different techniques to implement initial cracks in phase field simulations on a
simple problem (Single Edge Notched Tension test). The results obtained in this section enable us
to discuss the different techniques and determinate which ones are unbiased. The whole study has
been done for straight cracks and phase field models without history variables. Section 6 briefly
discusses how the results can be extended beyond. Finally, Section 7 concludes the study and
provides practical recommendations to introduce initial cracks in phase field fracture simulations.

2 From Griffith theory to variational phase field models
Starting from the original idea of Griffith (1920), we recall the variational approach to fracture
proposed by Francfort and Marigo (1998). This section covers the theoretical grounds of this
work with an emphasis on the link between Griffith theory and variational phase field models for
fracture. Bourdin et al. (2008) provides a more detailed discussion on this subject.

2.1 Griffith theory
For a static elastic problem, the displacement field of an elastic body submitted to external loads
minimizes its potential energy P = E −Wext, where E is the body elastic energy andWext is the
external work. In a 2D setting, these quantities are defined by unit thickness. Griffith (1920)
proposed to extend this minimization principle to study the rupture of a solid with a crack Γ of
length 𝑎. To this aim, Griffith (1920) introduced the surface energy 𝐺𝑐 , also called the fracture
energy, defined as the energy required to generate new free surfaces1. From this statement, the
state of the solid at equilibrium must minimize the energy P +𝐺𝑐𝑎. Deriving this energy with
respect to the crack length 𝑎 leads to the definition of the energy release rate

𝐺 = − 𝜕P
𝜕𝑎

at constant load. (1)

To ensure the stability of a given crack equilibrium state, 𝐺 ⩽ 𝐺𝑐 must be imposed, as 𝐺 > 𝐺𝑐

implies the existence of an excess of energy, hence dynamical propagation. Moreover, introducing
an irreversibility constraint and deriving this energy with respect to the crack surface give the
following quasi-static crack propagation conditions:

(𝐺 −𝐺𝑐) ¤𝑎 = 0, 𝐺 ⩽ 𝐺𝑐 , ¤𝑎 ⩾ 0. (2)

It means that two distinct cases can occur. If 𝐺 < 𝐺𝑐 , then ¤𝑎 = 0, which means that the crack
does not propagate. Conversely, if𝐺 = 𝐺𝑐 , then ¤𝑎 ⩾ 0, indicating that the crack propagation
becomes possible.

2.2 Variational approach to fracture
Francfort and Marigo (1998) extended this work by formalizing this idea and writing Griffith
theory in a variational framework as follows.

Let us consider an elastic body Ω with an initial crack Γ0. Body forces 𝒇 are prescribed in
the bulk. The body boundary, denoted 𝜕Ω, includes two distinct subsets: 𝜕Ω𝒖 and 𝜕Ω𝒕 , where
displacement 𝒖, respectively, surface forces are prescribed

𝒖 = 𝒖imp on 𝜕Ω𝒖 and σ · 𝒏 = 𝒕 on 𝜕Ω𝒕 . (3)

Crack surfaces are assumed to be free of any external load. Denote UΓ the space of admissible
displacements defined as

UΓ =
{
𝒖 ∈ H1(Ω \ Γ) | ∀𝒙 ∈ 𝜕Ω𝒖, 𝒖 (𝒙) = 𝒖imp(𝒙)

}
, (4)

1 While considered as a reversible energy in (Griffith 1920), we consider here that 𝐺𝑐 includes all the energy dissipated
during propagation.
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where H1(Ω \ Γ) is a classic Sobolev space. In this case, the elastic energy and the external work
are

E(𝒖, Γ) =
∫
Ω\Γ

1
2
ε(𝒖) : E : ε(𝒖) d𝒙,

Wext(𝒖) =
∫
Ω
𝒇 · 𝒖 d𝒙 +

∫
𝜕Ω𝒕

𝒕 · 𝒖 d𝒙,
(5)

where ε(𝒖) = 1
2 (∇𝒖 + ∇T𝒖) is the strain, E is the elasticity tensor. Griffith theory, in Equation (2),

can be rewritten as the minimization problem

(𝒖, Γ) = arg min
𝒖′∈UΓ
Γ′⊇Γ0

E(𝒖′, Γ′) −Wext(𝒖′) +
∫
Γ′
𝐺𝑐 d𝒙 . (6)

The constraint Γ′ ⊇ Γ0 enforces the crack growth (i.e., the cracking irreversibility preventing
cracks from healing). Note that in this framework, a crack is represented by a stress-free surface
that can propagate in the domain Ω. It induces a sharp discontinuity in the displacement field
over which a displacement jump can occur.

2.3 Regularization as variational phase field model

As the crack corresponds to a discontinuity in the elastic body, the minimization problem in
Equation (6) is a free-discontinuity problem, which is a well-studied problem (Ambrosio et al.
2000). In the context of image segmentation, free-discontinuity problems have been regularized
so that sharp discontinuities are replaced by smeared band of non-vanishing width (Mumford and
Shah 1989; Ambrosio and Tortorelli 1992). Francfort and Marigo (1998) proposed to apply the
same regularization to the minimization problem in Equation (6). Applying the regularization
replace the explicit description of the discontinuity surface Γ with a new field: the (crack) phase
field, denoted 𝛼 (𝒙). By convention, we consider that the material at coordinate 𝒙 is uncracked if
𝛼 (𝒙) = 0 and fully crack if 𝛼 (𝒙) = 1. The minimization problem in Equation (6) governing the
state of the domain becomes

(𝒖, 𝛼) = arg min
𝒖∈U
𝛼∈A

E(𝒖, 𝛼) + D(𝛼) −Wext(𝒖) (7)

where U and A are respectively the admissibility space of the displacement field 𝒖 and of the
crack phase field 𝛼 . The irreversibility of cracking is imposed through an irreversibility constraint
on the phase field. Given an initial phase field 𝛼0(𝒙), the phase field can stay constant or only
grow, leading to the admissibility space

A =
{
𝛼 ∈ H1(Ω) | ∀𝒙 ∈ Ω, 𝛼 (𝒙) ⩾ 𝛼0(𝒙)

}
. (8)

The term D(𝛼) is the regularization of the dissipation integral over the (unknown) crack surface
into a domain integral. The different energies are defined as

E(𝒖, 𝛼) =
∫
Ω

1
2
𝑎(𝛼)ε(𝒖) : E : ε(𝒖) d𝒙 and D(𝛼) = 𝐺𝑐

𝑐𝑤

∫
Ω

𝑤 (𝛼)
ℓ

+ ℓ∇𝛼 · ∇𝛼 d𝒙 . (9)

In addition to the classic elastic parameters and the critical energy release rate𝐺𝑐 , the regularization
introduces a new parameter: the regularization length ℓ , to which the thickness of the crack phase
profile is proportional. The function 𝑎(𝛼) describes how the crack phase affects the initial elastic
properties. The function𝑤 (𝛼) describes the local dissipation due to the crack phase growth. The
scaling constant 𝑐𝑤 is deriving from the choice of𝑤 . For the choice of these functions, we retain
the AT1 model, proposed by K. Pham et al. (2011) and shown to be pertinent against experiments
by Tanné et al. (2018). In the AT1 model, the functions are

𝑎(𝛼) = (1 − 𝛼)2, 𝑤 (𝛼) = 𝛼, 𝑐𝑤 = 8/3. (10)
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The energy functional involved in the regularized minimization, in Equation (7), i.e. the
smeared crack model, has been shown to Γ-converge towards its sharp crack counterpart, in
Equation (6), when ℓ → 0 (Braides 1998). In practice, it means that the solution of Equation (7)
converges to the solution of Griffith theory, in Equation (2), when ℓ → 0. Therefore, the
convergence should also be recovered on the numerical solution when the numerical errors
vanish.

3 Quasi-static equilibrium path

At this point, we presented two models for Griffith theory: the sharp crack model and the
smeared crack model using phase field. As specified in the introduction, this work focuses on the
study of crack propagation in quasi-static conditions. To track the whole crack propagation, the
crack must propagate steadily: it must verify the Griffith criterion (𝐺 = 𝐺𝑐 ) throughout the
crack propagation. The series of mechanical states verifying 𝐺 = 𝐺𝑐 during the whole crack
propagation is called the quasi-static equilibrium path. Following the equilibrium path provides
a mean to simulate the whole crack propagation without instability. In this work, it enables
capturing what happens at the beginning of crack propagation, where potential instabilities can
occur. In practice, following this path consists in adapting the load during the crack propagation
to stay at the crack propagation threshold. In this section, we briefly show how the quasi-static
equilibrium path of the structure can be recovered, with both the sharp crack and the phase field
models. More complete description and discussion of path-following methods in the context of
phase field models for fracture will be proposed in another work dedicated to this subject (Loiseau
and Lazarus 2025).

3.1 Sharp crack model

To follow the quasi-static equilibrium path with the sharp crack model, the idea consists in
adapting the load to verify the Griffith criterion𝐺 = 𝐺𝑐 throughout the crack propagation. We
employ the same method as Triclot et al. (2024) to obtain the displacement field at equilibrium for
different crack length. It is recalled in the following paragraph. Note that the crack path must be
known a priori to apply this method.

Let us consider an elastic body Ω with an imposed displacement 𝒖imp = 𝜆𝒖imp on its
boundary 𝜕Ω𝒖 , where 𝜆 is the load factor (or amplitude). Linear elasticity ensures that the whole
displacement field in the body is proportional to the load factor: 𝒖 (𝒙) = 𝜆𝒖 (𝒙), where 𝒖 (𝒙) is
the displacement field induced by the unitary prescribed displacement 𝒖imp. The domain contains
an initial crack of length 𝑎(𝑡 = 0) = 𝑎0, which evolves during the (proportional) loading. The
crack propagates when the energy release rate 𝐺 reaches the critical energy release rate𝐺𝑐 . As
the energy release rate 𝐺 is quadratic in the displacement 𝒖, we can calculate it from the energy
release rate 𝐺 corresponding to 𝜆 = 1 writing 𝐺 = 𝜆2𝐺 . Therefore, the critical load factor 𝜆 can
be recovered for each crack length 𝑎 by:

1. Solving the elastic problem to obtain the displacement field 𝒖 for a unitary load (𝜆 = 1),
2. Calculating the associated energy release rate 𝐺 (𝑎),
3. Calculating the critical load factor using Griffith criterion

𝜆2(𝑎)𝐺 (𝑎) = 𝐺𝑐 =⇒ 𝜆(𝑎) =
√︃
𝐺 (𝑎)/𝐺𝑐 . (11)

Knowing the critical loads for any crack length 𝑎 enables to recover the quasi-static equilibrium
path 𝒖 (𝒙, 𝑎) = 𝜆(𝑎)𝒖 (𝒙, 𝑎).

In practice, we employ Finite Element simulations to compute the displacement field 𝒖 (𝒙, 𝑎)
for a unitary load (𝜆 = 1) and a given crack length 𝑎. The energy release rate 𝐺 is calculated
using the 𝐺 (Θ) method, originally proposed by Destuynder et al. (1981) and later discussed
by Moran and Shih (1987); Suo and Combescure (1992). Algorithm 1 summarizes the methods and
its numerical implementation.
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Require Mesh containing a crack of length 𝑎, initial crack length 𝑎0, crack length increment Δ𝑎 and the maximum
crack length 𝑎max.

1 Initialize the crack length 𝑎 = 𝑎0
2 while 𝑎 < 𝑎max do
3 Solve the elastic problem for a unitary loading (𝜆 = 1)→ 𝒖 (𝒙)
4 Compute the (unitary) energy release rate → 𝐺

5 Compute the critical load factor→ 𝜆 = (𝐺/𝐺𝑐 )1/2
6 Compute the displacement field at equilibrium→ 𝒖 (𝒙) = 𝜆𝒖 (𝒙)
7 Increment the crack length → 𝑎 = 𝑎 + Δ𝑎
8 end while

Algorithm 1 Computation of the quasi-static equilibrium path for the sharp crack model using Finite Element elastic
simulations.

3.2 Smeared crack model

Due to the regularization of the crack discontinuity in phase field models, the method proposed
in the previous section can not be directly applied. To obtain the quasi-static equilibrium path
in phase field models, the idea consists in applying an indirect load control method (Rastiello
et al. 2022). Those methods, initially employed for geometric non-linearities (Wempner 1971;
Riks 1972; Riks 1979; Crisfield 1981), consist in introducing the load factor 𝜆 as an unknown in
the minimization problem, and its associated control equation. For crack propagation problem,
the control equation is arbitrarily chosen to limit crack propagation and enforces a steady
propagation. For instance, Gutiérrez (2004) limited the elastic energy release between two load
steps, whereas Singh et al. (2016) directly controlled the fracture dissipation (which is equivalent
to controlling the crack length). Various control equations have been reviewed by Rastiello et al.
(2022). In this work, we chose to control the load factor 𝜆 by imposing the maximum strain
increment (over the domain Ω) between two steps as proposed by Chen and Schreyer (1991).
It restricts the maximum strain increment in the domain between two load steps to limit the
crack growth. Given the state (𝒖0, 𝛼0) at the previous load step, the minimization problem of
Equation (7) becomes

(𝒖, 𝛼) = arg min
𝒖∈U
𝛼∈A

E(𝜆𝒖, 𝛼) + D(𝛼) −Wext(𝜆𝒖)

subject to max
𝒙∈Ω

(ε(𝜆𝑢 (𝒙)) − ε(𝒖0)) = Δεimp,
(12)

where Δεimp is an arbitrary maximum strain increment which (indirectly) controls the load step.
To solve the problem in Equation (12), we extend the classic solution method of phase

field fracture models. Let us start by describing how the problem without path-following in
Equation (7) is solved. As the functional is poly-convex, the minimization problem can be split
into two sub-problems on the displacement field and the crack phase (Bourdin et al. 2000). The
solution method consists of alternatively solving those two sub-problems, hence the alternate
minimization name. The equation governing the stationary points of each sub-problem is
obtained by calculating the directional derivatives of the energy functional and equating them
to zero for any direction. It gives the variational formulation for the two sub-problems. From
a practical point of view, the discretization of the problem and its resolution are performed
via the Finite Element Method using FEniCSx (Alnæs et al. 2014; Baratta et al. 2023). The
irreversibility constraint on the phase field is imposed through variational inequality using the
solver vinewtonrsls from the PETSc library.

When introducing the path-following constraint in Equation (12), the problem can still
be solved alternatively. Instead of solving the displacement sub-problem for given boundary
conditions, it is solved with unitary boundary conditions (𝜆 = 1 =⇒ 𝒖imp = 𝒖imp) giving the
displacement field 𝒖 (𝒙). Then, the control equation is solved to get the critical load factor 𝜆,
and the displacement field is rescaled: 𝒖 (𝒙) = 𝜆𝒖 (𝒙). The phase field sub-problem remains
unchanged. The algorithm to solve one load step of this problem is summarized in Algorithm 2.
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Require Domain mesh, initial state (𝑢0 (𝒙), 𝛼0 (𝒙)), load increment Δεimp.
1 while not converged do
2 Solve the elastic sub-problem for a unitary loading (𝜆 = 1)→ 𝒖 (𝒙)
3 Solve the control equation to obtain the critical load factor→ 𝜆

4 Compute the displacement field at equilibrium: → 𝒖 (𝒙) = 𝜆𝒖 (𝒙)
5 Solve the phase field sub-problem to get the phase field → 𝛼 (𝒙)
6 end while

Algorithm 2 Computation of a load step of the quasi-static equilibrium path for the smeared crack model.

4 Initial crack implementation techniques in phase field fracture

This section presents the different crack initialization techniques for phase field fracture
simulations that will be compared and analyzed. The techniques are classified into two categories:
the geometric initial cracks (explicitly represented in the mesh) and the phase initial cracks
(embedded in the initial phase field). For each category, different variants of the technique will be
proposed. An identifier is associated with each technique variant for clarity purposes. Figure 1
provides a summary and illustrates each of the variants considered in this work.

4.1 Geometric initial crack (GEO)

The geometric initial cracks are specified in the geometry (i.e., in the mesh) of the domain. This
technique corresponds to incorporating initial cracks as sharp (non-regularized) discontinuities
with traction-free boundary conditions, as it is usually done in fracture mechanics.

Different variants of the geometric technique will be tested, starting with changes of the crack
thickness. Two thicknesses are compared: an infinitely thin crack (T0) and a one-element-wide
crack (T1). Note that infinitely thin crack (T0) corresponds to duplicating nodes along the crack
path, as often employed in fracture mechanics Finite Element simulations. For all geometric
initial cracks, the displacement boundary condition is set as zero Neumann boundary condition,
corresponding to traction-free crack surfaces. Then, the effect of boundary conditions on the
initial crack 𝛼 is also investigated. Three different boundary conditions in crack phase 𝛼 are
considered: zero Neumann boundary conditions (NEU), crack phase imposed to 1 at the crack tip
(TIP), and crack-phase imposed to 1 along whole crack (WHL).

4.2 Phase field initial cracks (PHA)

The phase field initial cracks are obtained by initializing the crack phase field. It corresponds to
adding the initial cracks to the domain as regularized discontinuities.

In this technique, the width of initial crack will also be investigated for the phase field initial
crack. Two variants are considered: the case of the infinitely thin initial crack (T0), and the case
of a one-element-wide initial crack (T1).

Let us describe how the phase field initial crack are implemented in practice. For clarity
purposes, we consider the case of a single straight initial crack. Curved initial cracks are discussed
in Section 6. To implement phase field initial cracks, two steps are required. First, the nodal
values of the phase field are set to one along the initial crack. The case of an infinitely thin (T0)
and one-element-wide (T1) initial crack must be distinguished. For the (T0) initial crack, the
phase field 𝛼 (𝒙) = 1 is prescribed at the nodes along the initial crack. It requires the mesh nodes
to be rigorously aligned along the initial crack. For a (T1) initial crack, the phase field 𝛼 (𝒙) = 1 is
prescribed on the nodes of elements crossed by the initial crack. In this case, the elements must
be aligned to represent a straight crack accurately so that the initial crack goes through their
centers. The second step consists in regularizing the sharp crack to make it smeared. This can be
done by solving the phase field sub-problem (see step 5 of Algorithm 2) with zero loads.

Figure 2 illustrates how the initial phase field is defined for both variants. This figure shows
the phase field for infinitely thin and one-element-wide initial cracks. The values before and after
regularization are shown. The nodal values of the phase field are represented as square markers
in the figure to highlight the prescribed field values before the regularization.
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Identifier Variant Illustration

GEO-T0-NEU
Geometric technique
Infinitely thin crack
∇𝛼 · 𝒏 = 0 on crack

GEO-T0-TIP

Geometric technique
Infinitely thin crack
𝛼 = 1 on tip
∇𝛼 · 𝒏 = 0 on lips

GEO-T0-WHL
Geometric technique
Infinitely thin crack
𝛼 = 1 on crack

GEO-T1-NEU
Geometric technique
One-element-wide crack
∇𝛼 · 𝒏 = 0 on crack

GEO-T1-TIP

Geometric technique
One-element-wide crack
𝛼 = 1 on tip
∇𝛼 · 𝒏 = 0 on lips

GEO-T1-WHL
Geometric technique
One-element-wide crack
𝛼 = 1 on crack

PHA-T0
Phase technique
Infinitely thin crack

PHA-T1 Phase technique
One-element-wide crack

Figure 1 Illustration of the different crack initialization techniques. The green line on the GEO-T0 illustrations
corresponds to the line where the node are duplicated. The color corresponds to the phase field with
blue being uncracked (𝛼 = 0) and red being fully cracked (𝛼 = 1). The abbreviation BC corresponds to
boundary condition. .

5 Comparison of initial crack implementation techniques

5.1 Presentation of the numerical benchmark

The Single Edge Notched Tensile (SENT) test, which is often used a numerical benchmark for
phase field simulations, is employed to compare the different crack initialization techniques. The
geometry and boundary conditions, illustrated in Figure 3, correspond to those used by Singh
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(a) Infinitely thin (T0), before regularization. (b) Infinitely thin (T0), after regularization.

(c) One-element-wide (T1), before regularization. (d) One-element-wide (T1), after regularization.

Figure 2 Illustration of the definition of phase field initial crack (PHA). The red color corresponds to the crack (𝛼)
whereas the blue color corresponds to the uncracked parts (𝛼 = 0).

et al. (2016). The SENT specimen is a square with a side length 𝐿 = 1mm and an initial crack of
length 𝑎0 = 𝐿/2 = 0.5mm. The material is linear elastic with a Young modulus 𝐸 = 230.77GPa, a
Poisson ratio 𝜈 = 0.43, a critical energy release rate 𝐺𝑐 = 2700 Jm−2, and a regularization length
ℓ = 0.015mm. In this section, we use two types of mesh for the phase field simulations. First, an
ideal structured mesh with elements aligned with the initial crack and the expected crack path is
used to concentrate fully on the influence of the initial crack implementation technique. The
techniques satisfyingly representing initial cracks with this mesh are then confronted with an
unstructured mesh (still verifying the conditions required to apply the technique). For the sake of
brevity, the meshes are represented in the results. The mesh size is set to ℎ = ℓ/6 in the region
𝑦 ∈ [𝐿/2 − 2ℓ, 𝐿/2 + 2ℓ], where 𝑦 is the coordinate along the vertical direction. Larger elements
with a size ℎfar = 2ℓ are used outside this region.

Figure 3 Geometry of the SENT specimen and
boundary conditions.

L = 1mm

a0 = 0.5mm

uimp

Following the recommendations of Bourdin et al. (2008), the critical energy release rate in the
phase field simulations is adjusted to obtain the correct effective energy release rate

𝐺eff
𝑐 = 𝐺PF

𝑐

(
1 + ℎ

𝑐𝑤ℓ

)
. (13)

Hence, in the phase field simulations, we choose the critical energy release rate 𝐺PF
𝑐 so that the

effective critical energy release rate 𝐺eff
𝑐 = 𝐺𝑐 =⇒ 𝐺PF

𝑐 = 2541 Jm−2.
To compare the techniques, we will consider the force-displacement curves from the sharp

and smeared crack models in Figures 4(a), 5(a) and 6(a). In these curves, the displacement 𝑢 is the
vertical component of the imposed displacement 𝒖imp. The force 𝐹 is the vertical component of
the reaction force 𝑭 calculated by integrating the traction vector (obtained by post-processing the
displacement field 𝒖) over the upper face.
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5.2 Infinitely thin initial cracks (T0)
We start by presenting the results with infinitely thin initial cracks (variants with T0). The
comparison will be based on two types of observations both represented in Figure 4. The first
type of observations, in Figure 4(a), is the force-displacement curves. The force-displacement
obtained with the different initial crack implementation techniques are represented along with
the reference curve of the sharp crack model. The second type of observation is the phase field
around the initial crack tip after the propagation. They are provided in Figures 4(b) to 4(e).
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e
𝐹
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]

Sharp crack model
GEO-T0-NEU
GEO-T0-TIP
GEO-T0-WHL
PHA-T0

(a) Force-displacement curves for an infinitely thin initial crack (T0). The inset illustrates thickening of the crack
phase band occurring for PHA-T0 during the snap-back.

(b) GEO-T0-NEU. (c) GEO-T0-TIP.

(d) GEO-T0-WHL. (e) PHA-T0.

Figure 4 Comparison of the phase field fracture solutions with the different crack initialization techniques for
an infinitely thin initial crack (T0). The top part shows the force-displacement curves along with the
reference solution from the sharp crack model. The lower part shows the crack phase field after crack
propagation with blue being uncracked (𝛼 = 0) and red being fully cracked (𝛼 = 1).

Before commenting the peak and post-peak part of Figure 4(a), let us note that the elastic
phase is biased by the smeared crack model. Indeed, the diffusion of the crack induces a loss of
macroscopic rigidity. Thus, it induces a small decrease of the slope in the elastic part. This loss
decreases when reducing the regularization length ℓ . This applies for all the following results
(except for the PHA-T0 technique, which is discussed later). Moreover, our simulations are
stopped when the elastic energy reaches 0.2% of its maximum value. Hence, the load does not
drop to zero after failure because the crack has not fully propagated; a small ligament remains.
As we focus on the peak load, this choice does not impact our analysis.

The first observation, in Figure 4(a), is that all the geometric methods (GEO) present a
peak on the force-displacement curve, which does not appear on the reference solution. As
the path-following method employed here enables to properly capture the snap-back, we can
conclude that this peak is a numerical artifact. This type of overshoot has already been observed
directly in the work of Singh et al. (2016) and indirectly in the work of Klinsmann et al. (2015).
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The peak reduces when the crack phase is set to 1 either on the crack tip or on the whole crack
boundary. Nevertheless, it persists with all the geometric methods, even when the crack phase
is imposed to one on the whole crack (WHL). In Figures 4(b) to 4(d), it can be observed that
the crack phase is initially equal to one on a (duplicated) line of nodes. However, after the
propagation, the crack phase equals one on a line of elements (i.e., two lines of nodes). Indeed, for
the displacement “discontinuity” to occur in an element, the whole element needs to be cracked.
Thus, a slight bifurcation of the crack is necessary to transition from an infinitely thin initial
crack to a one-element-wide crack that enables the displacement jump. This transition requires
an artificial excess of energy to propagate the infinitely thin initial crack compared to a proper
initial crack.

The case of the PHA initial crack is different. The associated force-displacement curve in
Figure 4(a) shows a Young modulus that is initially too high and a snap-back is observed in what
is supposed to be the elastic phase. As shown in the inset images of Figure 4(a), the observed
snap-back corresponds to the thickening of the initial crack. The reason is that a whole line of
elements must be cracked for the displacement “discontinuity” to occur. Thus, the initial crack
field needs to thicken to allow the displacement jump across the crack. Once this thickening is
achieved, the remainder of the curves matches the reference results, and no force overshoot is
observed.

From those first results, we can conclude that infinitely thin initial cracks should not be used
in phase field fracture. It means that a duplication of the nodes on the crack faces is not sufficient
to adequately represent an initial crack (even when setting the crack phase to one along the
crack). Note that the proposition of Tanné et al. (2018) to introduce the initial crack as a sharp
V-notch will show similar issues if the notch tip is one node. Indeed, the problem of having to
transition from one node to a line of cracked elements persists.

5.3 One-element-wide initial cracks (T1)

Let us now present the results for one-element-wide initial cracks. The results are shown in
Figure 5. The Figure 5(a) provides a quantitative comparison of the initial crack implementation
techniques through the force-displacement curves. Reference results obtained via the sharp
crack model are also reported in this figure. The phase fields around the initial crack tip after
propagation are also provided in Figures 5(b) to 5(e).

The technique GEO-T1-NEU shows a significant overshoot on the force-displacement curve
compared to the reference solution. This artificial overshoot is due to the use of the Neumann
boundary conditions. Indeed, it imposes that the derivative of the phase field normal to the crack
is null, forcing multiple elements to crack at once to start the crack propagation. Once again, it
generates an artificial increase in the energy required for the crack to propagate.

The GEO-T1-TIP also shows a (smaller) overshoot on the force-displacement curve. In
Figure 5(c), we observe a cone shape at the beginning of the crack propagation. It can be compared
to other methods where the overshoot is not observed, e.g. GEO-T1-WHL in Figure 5(d). One
possible explanation is that the regularization region of the phase is not developed as it would for
a propagated crack. What happens before the crack tip likely affects the energy required to
propagate the initial crack, hence the crack propagation threshold.

The crack initialization techniques GEO-T1-WHL and PHA-T1 can not be distinguished
from each other in terms of mechanical response and phase field. Their force-displacement
curves have the same shape as the reference solution. Moreover, we can observe, in Figures 5(d)
and 5(e), that the initial crack and the propagated part of the crack are indistinguishable for
both implementation techniques. To find which method is the best choice, we investigated the
numerical performances of both methods. The number of iterations required for the alternate
minimization to converge gives an indication of the overall numerical performances of both
methods. The geometric initialization technique cumulates 11 055 iterations, whereas the phase
initialization technique has 11 734. While the geometric method has a lower total number of
iterations, no method clearly outperforms the other.
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(a) Force-displacement curves for a one-element-wide initial crack (T1).

(b) GEO-T1-NEU. (c) GEO-T1-TIP.

(d) GEO-T1-WHL. (e) PHA-T1.

Figure 5 Comparison of the phase field fracture solutions with the different crack initialization techniques for a
one-element-wide initial crack (T1). The top part shows the force-displacement curves along with the
reference solution from the sharp crack model. The lower part shows the crack phase field after crack
propagation with blue being uncracked (𝛼 = 0) and red being fully cracked (𝛼 = 1).

5.4 Extension to unstructured mesh
The crack initialization techniques GEO-T1-WHL and PHA-T1 properly represent an initial
crack on a structured mesh. Now, we want to check whether this result extends to unstructured
meshes. Figure 6 shows the results obtained with unstructured mesh. We observe that the
force-displacement curves in Figure 6(a) perfectly superimpose. While more oscillations in the
post-peak can be observed, the peak force remains mostly unchanged. Note that the oscillations
are due to the irregular mesh preventing the crack propagation in a perfect straight line, as
shown in Figures 6(c) and 6(e). Those oscillations decrease with mesh refinement (Loiseau and
Lazarus 2025).

6 Discussion on the extensions to more complex cases
This study only tackles the case of rectilinear initial cracks and phase field models not relying on
a history variable. Extensions to curved cracks and models governed by a history variable can be
envisaged and are discussed in the following paragraphs.

The extension of GEO-T1-WHL and PHA-T1 to curved initial cracks is primarily a technical
difficulty. For the geometric technique, the crack boundaries (either internal or external) must
align with the crack path, and the crack itself must remain one-element wide. For the phase field
initial crack PHA-T1, the nodal values of the phase field must be set to 𝛼 (𝒙) = 1 on all the nodes
of elements intersecting with the crack path. Ideally, the mesh nodes should be aligned with the
initial crack so that the crack path passes through the centers of these elements.
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(a) Force-displacement curves for a one-element-wide initial crack.

(b) GEO-T1-WHL (before propagation). (c) GEO-T1-WHL (after propagation).

(d) PHA-T1 (before propagation). (e) PHA-T1 (after propagation).

Figure 6 Comparison of the phase field fracture solutions on unstructured meshes with the crack initialization
techniques GEO-T1-WHL and PHA-T1. The top part shows the force-displacement curves along with the
reference solution from the sharp crack model. The fields on the lower part show the phase field before
and after propagation for both techniques with blue being uncracked (𝛼 = 0) and red being fully cracked
(𝛼 = 1).

For a phase field model governed by a history variable, such as the model proposed by Miehe
et al. (2010), all the proposed techniques can be applied. However, the initial phase field can also
be indirectly imposed through the history variable as it drives the crack phase growth. As this
method does not apply to every phase field model, it has not been studied in this study. However,
it corresponds to indirectly setting the initial crack phase through the history variable. The
outcome should be similar to that achieved using the initial phase field approach (PHA).

7 Conclusion
This study assesses various techniques for incorporating initial cracks in variational phase field
fracture simulations so that it provides a good approximation of Griffith theory. Different crack
initialization techniques for phase field fracture simulations are compared to a sharp crack model,
towards which the phase field model should theoretically Γ-converges. This study shows that
representing initial cracks as infinitely thin, for instance by duplicating nodes, leads to invalid
propagation thresholds in phase field simulations. Indeed, this approach induces peaks in the
force-displacement curves and the critical load is significantly overestimated. This conclusion is
expected as, for phase field fracture simulations using continuous finite elements, cracks must
be at least one element wide to properly represent the displacement jump across the crack.
Therefore, any initial crack must also be at least one element wide to maintain consistency and to
avoid the artificial excess of energy required to transition to a one-element-wide zone. Moreover,
this studies shows that the crack phase field must be set to 1 (fully cracked state) along the entire
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initial crack boundary to avoid artificial toughening effects.
This study enables us to identify two unbiased techniques to incorporate initial cracks in

phase field fracture simulations:
• Geometric technique (GEO-T1-WHL): This approach consists of embedding a one-element-wide
crack in the geometry (i.e., in the mesh) and imposing the crack phase field to the fully cracked
state (𝛼 = 1) on it,

• Initial phase field technique (PHA-T1): This method initialized the phase field to the fully cracked
state on the elements that the initial crack crosses.
Both techniques give equivalent results for a similar numerical cost, so both methods can be
employed indifferently.
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