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Arbitrary order expansions for the automatic reduction and solutions of nonlinear vibratory systems
have been developed successfully within the realm of the direct parametrisation of invariant manifolds.
Whereas the method has been used with high-order expansions and large dimensional systems, this
article proposes to look at the same problem from the opposite point of view. By using low-dimensional
systems, symbolic computations, analytical developments and numerical verifications, this contribution
analyses the reduced dynamics appearing in cases where a single master mode is involved, reviewing
typical scenarios in nonlinear vibrations: primary resonance, sub- and superharmonic resonances and
parametric excitation. To achieve this task, the normal form style is preferentially used. A symbolic
open-source package is also provided to generalise the presented results to other styles, higher orders, and
different scenarios. It is shown how the low-order terms allow recovering the classical solutions given
by perturbation methods, and how the automated expansions allow one to generalise the analysis to
arbitrary orders. When analytical solutions are not tractable anymore, numerical solutions are employed
to underline how converged solutions are at hand when the validity limit of the expansions is not reached.
All the results presented in this paper can thus be used to better understand the nonlinear dynamical
solutions occurring in nonlinear vibrations, as well as from a system identification perspective, since the
normal form is the simplest dynamical system displaying a given resonance scenario.

Keywords: nonlinear oscillations, normal form, parametrisation method, geometric nonlinearity, nonlinear resonance,
asymptotic expansion, symbolic calculation

1 Introduction

Since its introduction in an abstract framework in (Cabré et al. 2003a; Cabré et al. 2003b; Cabré
et al. 2005; Haro et al. 2016), the parametrisation method for invariant manifolds has been
extensively used in order to produce arbitrary order expansions for model order reduction of
systems with smooth nonlinearities. It has been employed in the field of nonlinear vibrations
in (Haller and Ponsioen 2016), allowing demonstration of the existence and uniqueness of spectral
submanifolds (SSMs). Since then, it has then been successfully extended for reduced order
modeling of large dimensional problems discretized by the finite element (FE) procedure, see
e.g. (Jain and Haller 2022; Li et al. 2022; Vizzaccaro et al. 2022; Opreni et al. 2023; Martin et al.
2023; Vizzaccaro et al. 2024).

Another powerful result given by the method is also to unify the two main approaches that
have been used in the past to compute nonlinear normal modes (NNMs). The centre manifold
technique has been exploited in the works by Shaw and Pierre to derive reduced-order models
based on invariant manifold theory (S. Shaw and Pierre 1991; S. Shaw and Pierre 1993; S. W. Shaw
et al. 1999), whereas the normal form approach has been proposed in (Jezequel and C. Lamarque
1991; Touzé et al. 2004; Touzé and Amabili 2006) in order to derive similar results. The exact link
between the two approaches has been only recently uncovered by using the parametrisation
method for invariant manifolds, which highlights that the two techniques are in fact two different
styles of parametrisation that can be used to solve the invariance equation.
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A. de F. Stabile et al. Normal form analysis of nonlinear oscillator equations

Whereas previous works on the subject focus on direct applications to large dimensional FE
problems to underline the impressive gains in computing time that can be expected from the
application of the method, this contribution aims to give more insights into the results that can be
awaited from a broad use of the method to derive accurate, high-order, analytical results obtained
thanks to symbolic computations on low-dimensional systems. To that purpose, a symbolic
package which relies on the previous developments of the MORFE project (MORFE stands for
Model Order Reduction for Finite Element problems) is released with the present article in order
to help the analyst in producing automated solutions up to arbitrary order. This paper illustrates
how such outputs can be used to analyse the high-order reduced dynamics in different scenarios,
and using ad hoc assumptions. In particular, it will be clearly shown how the first-order solutions
are completely equivalent to solutions from standard perturbation methods. When the solutions
are analytically tractable, they will be symbolically analysed to show how one can easily get
more accurate approximations that take into account the next orders. Finally, when the analytical
solutions are too lengthy, it will be illustrated how one can then use numerical solutions to
reach convergence to a reference solution, once the validity limit of the local expansions is
not exceeded. The purpose of all these developments is thus to show the continuity that exists
between low-order perturbative techniques and high-order numerical solutions, showing to
the analyst how the method can be used in an integrated manner, providing both analytical
approximations for the design and system understanding phase, and accurate numerical solutions.

The development and release of symbolic softwares for computing high-order normal form
solutions, centre manifold approximations or automated perturbative techniques, is not new and
has been largely documented in the past, see e.g. (Elphick et al. 1987; A. Roberts 1997; Leung
and Q. Zhang 1998; Yagasaki 1998; Yagasaki 1999; Yagasaki and Ichikawa 1999; Huseyin and
W. Zhang 2000; W. Zhang et al. 2000; Leung and Q. Zhang 2003) for different proposals. However,
we believe that embedding the normal form development into the more general framework of
the parametrisation method, and proposing a symbolic software to automatically derive such
high-order solutions, including also the graph style parametrisation, is a necessary development
to give more physical insights into the powerful results obtained when treating large dimensional
systems. Moreover, we show in the course of the article that the results analysed are general and
can be used to better understand the reduced dynamics of large-scale problems, as well as to
propose arbitrary order analytical solutions for nonlinear vibration problems. Moreover, thanks
to the original treatment of the non-autonomous forcing term recently proposed in (Vizzaccaro
et al. 2024), the analysis can be enlarged to a high level of forcing and can treat any classical
resonance scenario occurring in nonlinear vibrations: primary resonance, subharmonic and
superharmonic resonance, parametric resonance, etc.

Another purpose of the analytical developments presented in this contribution is to give a
detailed explanation of the different variants of normal forms that have been used in the literature
on nonlinear vibration, by proposing a unified presentation that also explains their advantages
and drawbacks. Indeed, while complex normal form (CNF) is generally in use in the mathematical
literature, see e.g. (Haragus and Iooss 2011; Iooss and Adelmeyer 1999; Jezequel and C. Lamarque
1991; Gabale and Sinha 2009; A. J. Roberts 2014; Haller and Ponsioen 2016; Waswa and Redkar
2020), a real normal form (RNF) has been introduced in (Neild and Wagg 2011; Neild et al. 2015)
and analyzed in (Vizzaccaro et al. 2022; Opreni et al. 2023) in the context of the parametrisation
method. Furthermore, another variant of the normal form has been used in (Touzé et al. 2004;
Touzé and Amabili 2006; Touzé 2014) in order to keep real oscillator-like equations throughout
the process. This third variant is called the oscillator normal form (ONF) and has been fruitful in
order to make a direct link with the calculations of invariant manifolds using the centre manifold
technique as proposed by Shaw and Pierre, see e.g. (Touzé et al. 2021).

The software used to automatically produce the outputs of the high-order expansions
presented in this paper is called MORFE_Symbolic. It is based on the implementation of the
parametrisation method for nonlinear vibrating systems used in the MORFE project (Opreni
et al. 2022). A key feature is also the treatment of the forcing term and the time dependence
of the invariant manifolds, when harmonic excitation is considered (for the case of stochastic
forcing, the reader is referred to (Wang and A. Roberts 2012)). This automatic treatment proposed
in (Vizzaccaro et al. 2024), allows very general results that are not limited to a first-order expansion
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in the forcing amplitude as proposed in (Breunung and Haller 2018; Ponsioen et al. 2018; Ponsioen
et al. 2020; Jain and Haller 2022; Opreni et al. 2023). In particular, the nonlinear dependence upon
the forcing amplitude can be taken into account with the method proposed in (Vizzaccaro et al.
2024), such that all types of resonance scenarios including the superharmonic can be analysed.
The code MORFE_Symbolic also allows one to start from a differential algebraic equation (DAE),
extending again the range of dynamical scenarios that can be analysed. This feature will be
illustrated here in the case of the parametric excitation. A repository that contains different
versions of the symbolic code is published in connection with this manuscript, where both Julia
and Mathematica versions are released. The Julia version has the advantage of not using any
proprietary software. However, today’s symbolic computation capacities of the Julia package are
not as efficient as those of Mathematica. Because of that, the more involved examples studied in
this paper were treated with the Mathematica version, or using a mix of both codes, due to
processing time.

As a final introductory remark, most of the results presented in the paper aim to analyse
reduced-order dynamics by systematically understanding the effects of the terms produced by
asymptotic expansions. The code MORFE_Symbolic, to which a short introduction is given in
Appendix A, can also be used in a very general manner to produce many more different cases than
the ones analysed here. We think that such a tool is a key requirement for the reinterpretation of
the grammar of nonlinear oscillations. Another interesting feature of the results produced by the
normal form approach is the creation of a dictionary of the simplest dynamical systems that
contain a typical feature in nonlinear vibration. Such a dictionary can be very efficiently used
in the realm of system identification with data-driven techniques. Thanks to the automated
symbolic calculation, the method can be used to derive the dynamical systems that will produce
the feature of e.g. a superharmonic resonance or a 1 : 2 internal resonance with the minimal
number of monomials.

The outline of the paper is as follows. Section 2 is a pedagogical introduction to the different
variants of normal form styles, which underlines some key features of the different techniques.
Section 3 contains most of the analysis by focusing on cases where the reduced dynamics contains
a single master mode. Typical scenarios in nonlinear vibrations are analysed: primary resonance,
super- and sub-harmonic resonance and parametric excitation. Section 4 extends some of these
results by accurately quantifying the effect that a slave mode can have on the reduced dynamics
with a single master mode. In order to restrict the length of the paper, this section is deliberately
shorter than the previous one and closes with an illustrative example.

2 Variants of normal form styles
This pedagogical introductory section aims to explain the different possible styles of normal
forms that have been proposed in the literature for nonlinear vibratory systems. To that purpose
and to make the presentation as simple as possible, the case of the unforced and undamped
Duffing oscillator equation is considered, as it is sufficient to understand the different variants.
The findings extend naturally to coupled nonlinear oscillators, which are studied in the next
sections.

The starting point is the conservative unforced cubic Duffing oscillator

¥𝑢 + 𝜔2𝑢 + ℎ𝑢3 = 0. (1)

The three main variants that will be emphasised in this presentation are: the complex
normal form (CNF), the real normal form (RNF) and the oscillator normal form (ONF). The
complex normal form is recommended by mathematical textbooks (Iooss and Adelmeyer 1999;
A. J. Roberts 2014), and has been used for example in (Jezequel and C. Lamarque 1991; Haller and
Ponsioen 2016; Waswa and Redkar 2020). A pedagogical introduction with application to Duffing
and Mathieu equations is also provided in (A. J. Roberts 2014). The starting point is to write
Equation (1) at first-order, with a diagonalised linear part that contains the eigenvalues {±𝑖𝜔}. By
doing so, complexification is enforced and the link to an oscillator-like equation is lost. This is the
main reason why alternative procedures have been proposed in the vibration literature (namely
RNF and ONF), in order to ease the realification and keep the link with oscillator equations.
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To rewrite the system with a first-order diagonal linear part, the following linear change of
coordinate can be applied[

𝑢
𝑣

]
=

[
1 1
𝑖𝜔 −𝑖𝜔

] [
𝑦1
𝑦2

]
, (2)

where 𝑣 = ¤𝑢 has been introduced. Note that other linear transforms with different normalisations
can be applied here. Equation (1) then becomes

¤𝑦1 = 𝑖𝜔𝑦1 + 𝑖 ℎ2𝜔
(
𝑦3

1 + 3𝑦2
1𝑦2 + 3𝑦1𝑦

2
2 + 𝑦3

2
)
, (3a)

¤𝑦2 = −𝑖𝜔𝑦2 − 𝑖
ℎ

2𝜔
(
𝑦3

1 + 3𝑦2
1𝑦2 + 3𝑦1𝑦

2
2 + 𝑦3

2
)
.. (3b)

In particular, one can see that, whereas only one monomial 𝑢3 is present in Equation (1),
eight monomials are in Equation (3). Note also that Equation (3b) is the complex conjugate of
Equation (3a). This is the direct consequence of the fact that the initial problem, Equation (1) is
second-order in time such that, when rewriting it as a first-order dynamical system, one of the
two equations, namely 𝑣 = ¤𝑢, is tautological.

The normal form procedure can be unfolded on Equation (3). It starts with introducing a
nonlinear change of coordinates between modal coordinates (𝑦1, 𝑦2) and normal coordinates
(𝑧1, 𝑧2) as

𝑦1 = 𝑧1 + 𝑎11𝑧
3
1 + 𝑎12𝑧

2
1𝑧2 + 𝑎13𝑧1𝑧

2
2 + 𝑎14𝑧

3
2 (4a)

𝑦2 = 𝑧2 + 𝑎21𝑧
3
1 + 𝑎22𝑧

2
1𝑧2 + 𝑎23𝑧1𝑧

2
2 + 𝑎24𝑧

3
2 . (4b)

In Equation (4), no quadratic monomials are present because the original system only contains
cubic terms. The normal dynamics is also introduced as

¤𝑧1 = 𝑖𝜔𝑧1 + 𝑓11𝑧
3
1 + 𝑓12𝑧

2
1𝑧2 + 𝑓13𝑧1𝑧

2
2 + 𝑓14𝑧

3
2, (5a)

¤𝑧2 = −𝑖𝜔𝑧2 + 𝑓21𝑧
3
1 + 𝑓22𝑧

2
1𝑧2 + 𝑓23𝑧1𝑧

2
2 + 𝑓24𝑧

3
2, (5b)

where the linear part is preserved because the nonlinear change of coordinates Equation (4) is
identity-tangent.

The sixteen unknown coefficients {𝑎𝑖 𝑗 } and {𝑓𝑖 𝑗 }, 𝑖 ∈ {1, 2} and 𝑗 ∈ {1, 2, 3, 4}, are found by
plugging Equations (4) to (5) into Equation (3), and comparing coefficients for each monomial of
the normal coordinates. This leads to the four following equations, related to Equation (3a),
which are known in the literature as order-three homological equations (note that homological
equations are then automatically derived for each higher order):

For 𝑧3
1 : (𝑖𝜔 + 𝑖𝜔 + 𝑖𝜔) 𝑎11 + 𝑓11 = 𝑖𝜔𝑎11 + 𝑖 ℎ2𝜔 , (6a)

For 𝑧2
1𝑧2 : (𝑖𝜔 + 𝑖𝜔 − 𝑖𝜔) 𝑎12 + 𝑓12 = 𝑖𝜔𝑎12 + 𝑖 3ℎ

2𝜔 , (6b)

For 𝑧1𝑧
2
2 : (𝑖𝜔 − 𝑖𝜔 − 𝑖𝜔) 𝑎13 + 𝑓13 = 𝑖𝜔𝑎13 + 𝑖 3ℎ

2𝜔 , (6c)

For 𝑧3
2 : (−𝑖𝜔 − 𝑖𝜔 − 𝑖𝜔) 𝑎14 + 𝑓14 = 𝑖𝜔𝑎14 + 𝑖 ℎ2𝜔 , (6d)

while another four, not reported here for the sake of brevity, are derived from Equation (3b).
Equation (6) is an underdetermined system of four equations for eight unknowns, admitting

an infinity of possible solutions. Equations (6a) to (6d) can be solved easily for 𝑎11, 𝑎13 and 𝑎14, by
imposing 𝑓11 = 𝑓13 = 𝑓14 = 0. This choice is the classical one to derive the normal form of the
system, with the idea of simplifying as much as possible the normal dynamics Equation (5). Once
the coefficients of the change of coordinates are determined, if Equation (4) is replaced into
Equation (3), terms of order higher than 3 will appear in the expressions, such that another
change of coordinates, similar to Equation (4) but with higher order terms, could be made,
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generalizing the procedure up to arbitrary order. At each time, new homological equations are
derived in order to solve for the coefficients of the system.

A trivial resonance relationship occurs in Equation (6b) since 𝑎12 vanishes, such that one
cannot select 𝑓12 = 0. This is a direct consequence of the eigenspectrum composed of a purely
complex conjugate pair {±𝑖𝜔}. The three variants of normal form styles discussed herein depart
on the choices made in order to solve Equation (6), which can also be viewed as a more or less
stringent interpretation of the resonance relationship. This is detailed now for each of the three
normal form styles.

2.1 The complex normal form style
The complex normal form (CNF) style is the classical treatment proposed in mathematical
textbooks to deal with purely imaginary complex eigenspectrum, see e.g. (Iooss 1988; Haragus
and Iooss 2011; Wiggins 2003; Jezequel and C. Lamarque 1991). Referring to the simple case of
the Duffing equation, it amounts to cancel the three non-resonant monomials 𝑧3

1, 𝑧1𝑧
2
2 and 𝑧3

2
in Equations (6a) to (6d) with the choice 𝑓11 = 𝑓13 = 𝑓14 = 0. For the only resonant monomial
𝑧2

1𝑧2, then one imposes 𝑎12 = 0 and 𝑓12 = 3𝑖ℎ/(2𝜔). This follows from a strict interpretation
of the resonance relationship stemming from the homological equations at each order. The
generalisation of the resonance relationship to arbitrary order can be found in many classical
books, see e.g. (Poincaré 1892; Iooss 1988; Guckenheimer and Holmes 1983; Manneville 1990;
Murdock 2003), and reads, for a dynamical systems of dimension 𝑛 with eigenvalues {𝜆1, . . . , 𝜆𝑛},
and for a monomial of order 𝑝:

𝜆𝑘 =
𝑛∑︁
𝑖=1

𝑚𝑖𝜆𝑖 , with 𝑚𝑖 ⩾ 0 and
𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑝. (7)

For conservative mechanical systems with an eigenspectrum composed of pairs of purely
imaginary numbers, trivial resonance relationships appear at each odd order in the normal form
computation. Focusing on the simple case of the Duffing equation with cubic nonlinearity, an
interesting feature of the CNF is that, for each odd order, only one resonant monomial stays in
the normal form, as a consequence of these trivial resonances. Symbolic calculation of the normal
form up to arbitrary order is possible thanks to the code MORFE_Symbolic, which has been used
to develop the calculations shown in this paper. As an illustration, we give below the CNF for the
Duffing equation up to order 11:

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔𝑧2

1𝑧2 − i
51ℎ2

24𝜔3𝑧
3
1𝑧

2
2 + i

1419ℎ3

27𝜔5 𝑧4
1𝑧

3
2 − i

47505ℎ4

210𝜔7 𝑧5
1𝑧

4
2 + 𝑖

438825ℎ5

211𝜔9 𝑧6
1𝑧

5
2, (8a)

¤𝑧2 = −i𝜔𝑧2 − i
3ℎ
2𝜔𝑧1𝑧

2
2 + i

51ℎ2

24𝜔3𝑧
2
1𝑧

3
2 − i

1419ℎ3

27𝜔5 𝑧3
1𝑧

4
2 + i

47505ℎ4

210𝜔7 𝑧4
1𝑧

5
2 − 𝑖

438825ℎ5

211𝜔9 𝑧6
1𝑧

5
2 . (8b)

As announced, one can observe that only one resonant monomial of the form 𝑧
𝑝+1
1 𝑧

𝑝
2 stays

in the normal dynamics for each odd order 2𝑝 + 1. Equation (8b) is the complex conjugate
of Equation (8a), and one can also observe the change of sign in each successive odd order
coefficients. For the sake of completeness, the nonlinear change of coordinates is reported
in Appendix B.

An essential property of the CNF solution for conservative systems is that an analytic
backbone curve is easily computed for any order. This property is known and has been, for
example, already used in (Breunung and Haller 2018). Let us recall why this property is essentially
linked to the CNF style. In order to derive physical characteristics of the original system, or
even just to compute numerical continuation solution on the reduced dynamics, a realification
procedure needs to be applied to the complex normal form as given e.g. in Equation (8), see for
example (Haro et al. 2016; Vizzaccaro et al. 2022; Opreni et al. 2023) for general discussions.
Different realification procedures can be used, choosing for instance cartesian or polar coordinates.
A key feature of the CNF is to provide very simple expressions when realification with polar
coordinates is employed. Let us introduce the polar form of the normal coordinates as

𝑧1 = 1/2𝜌 e𝑖𝛼 , (9a)
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𝑧2 = 1/2𝜌 e−𝑖𝛼 , (9b)

where it should be noted that 𝜌 and 𝛼 are functions of time, even though this dependence is not
made explicit to lighten the notation. Since only one resonant monomial (𝑧𝑝+1

1 𝑧
𝑝
2 for the first

equation and 𝑧𝑝1𝑧
𝑝+1
2 for the second equation), is present for each odd order, a simple calculation

shows that, whatever the order of the expansion used for the normal form, the dynamical
equation for the amplitude 𝜌 simply reads ¤𝜌 = 0. This is a direct consequence of the existence of
the Lyapunov subcenter manifold (LSM), that is densely filled with a family of periodic orbits that
are parametrised by their amplitude 𝜌 . The equation for the phase then contains all the important
dynamical terms, and reads, for example, up to order 11:

¤𝛼 = 𝜔 + 3ℎ
23𝜔

𝜌2 − 51ℎ2

28𝜔3 𝜌
4 + 1419ℎ3

213𝜔5 𝜌6 − 47505ℎ4

218𝜔7 𝜌8 + 438825ℎ5

221𝜔9 𝜌10. (10)

Note in this case that a simplification by 𝜌 is made in this last equation; this explains why an
odd order 2𝑝 + 1 in the normal form gives rise to a power 𝜌2𝑝 in the resulting equation for
the phase. Since 𝜌 is constant then this equation can be directly integrated and reveals the
frequency-amplitude relationship of the conservative problem, also known as the backbone curve.
With the help of the symbolic processor MORFE_Symbolic, high-order backbone curves can be
easily derived; an example is given below up to order 11:

𝜔NL = 𝜔

(
1 + 3ℎ

23𝜔2 𝜌
2 − 51ℎ2

28𝜔4 𝜌
4 + 1419ℎ3

213𝜔6 𝜌6 − 47505ℎ4

218𝜔8 𝜌8 + 438825ℎ5

221𝜔10 𝜌10
)
. (11)

Note that this property is particularly important and meaningful since it applies to the solutions
derived by the parametrisation method using CNF. Consequently, even when dealing with FE
problems that involve a very large number of degrees-of-freedom (dofs), an analytical backbone
curve can be derived when reducing the problem to a single NNM with CNF, meaning that no
extra calculation (like a continuation procedure) is needed to obtain the amplitude-frequency
relationship for the conservative problem (Breunung and Haller 2018).

It is important to highlight, however, that the above backbone curve is written as a function
of the amplitude 𝜌 of the normal variables 𝑧1 and 𝑧2, and not that of the maximum value of the
physical displacement, which we denote 𝑢max in what follows. In order to obtain the physical
displacement amplitude, the normal coordinates’ polar representation can be inserted into the
nonlinear mapping displacement equation. Substitution of Equation (9) into Equation (B.1a),
limited here at order 3 for the sake of brevity, yields

𝑢 = 𝜌 cos𝛼 + ℎ

32𝜔2 𝜌
3 cos 3𝛼 − 3ℎ

16𝜔2 𝜌
3 cos𝛼. (12)

Since all cosines are in phase, the maximum displacement amplitude is simply given by the
sum of their coefficients, obtained for 𝛼 = 0. This procedure is easily extendable to any order and
is automated in MORFE_Symbolic. Up to order 11, the relationship between the maximum
physical displacement amplitude 𝑢max and the amplitude of the normal coordinate 𝜌 is

𝑢max = 𝜌

(
1 − 5ℎ

25𝜔2 𝜌
2 + 25ℎ2

28𝜔4 𝜌
4 − 2781ℎ3

215𝜔6 𝜌6 + 90493ℎ4

220𝜔8 𝜌8 − 3234957ℎ5

225𝜔10 𝜌10
)
. (13)

With Equations (11) to (13) it is possible to find coordinate pairs (𝜔NL, 𝑢max) that yield the
backbone of the systems parametrized by 𝜌 . Despite the distinction between 𝑢max and 𝜌 , it
is interesting to note, nevertheless, that these two quantities coincide up to the second order,
which implies that Equation (11) can be used as an approximation for the backbone for small
displacement amplitudes.

As an illustration, let us show, for this simple example of the conservative cubic Duffing
oscillator, the convergence of the backbone curve for different orders 𝑜 of normal form expansion.
Figure 1 shows backbone curves obtained with CNF in the way described above up to order
𝑜 = 25. They are compared with the backbone in terms of 𝑢max found using an exact solution
based on Jacobi elliptic functions, available for example in (Salas and Castillo H. 2014).
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Figure 1 Backbone curves for the Duffing oscillator up to order 𝑜 = 25 with a complex normal form style and
parameter values set as 𝜔 = 1, ℎ = 1. The backbone curves are compared with an analytical solution
based on Jacobi elliptic functions (Salas and Castillo H. 2014). (a) Comparison in terms of the maximum
displacement 𝑢max. (b) Comparison as a function of the amplitude 𝜌 of the normal variable.

From Figure 1(a) it can be seen that there exists a maximum validity range for the approxima-
tions given by the normal form expansion, corresponding in this case to a displacement amplitude
of approximately 𝑢max = 0.8. This is in line with the fact that the normal form relies on a local
theory, and this upper bound for validity limit has been explored for example in (C.-H. Lamarque
et al. 2012). Figure 1(b) shows the same backbone as a function of the amplitude 𝜌 of the normal
variable. Since Equation (13) gives 𝑢max as a function of 𝜌 , and since the analytical solution
with Jacobi elliptic functions is given for the amplitude 𝑢max, Equation (13) needs to be inverted
to plot the reference solution. This has been done in Figure 1(b) together with a first-order
approximation 𝑢max = 𝜌 which is frequently used in perturbation methods. This highlights
the difference between 𝑢max and 𝜌 as amplitudes are increasing. In this case, the first-order
approximation 𝑢max = 𝜌 can be used for amplitudes up to about 𝜌 = 0.5, but higher orders cannot
be neglected thereafter. It should be noted that Equation (13) is no longer valid once a certain level
of amplitude is reached, as can be seen by the sudden deviation of the black curve on Figure 1(b)
from where it is graphically expected to go. This deviation occurs at approximately 𝜌 = 0.9,
which corresponds to 𝑢max = 0.85, and is clearly beyond the validity limit of the approximation.

As a last point of discussion, the effect of a viscous damping term in the Duffing equation is
investigated. The damping is appended to Equation (1) with a modal damping factor 𝜉 , and gives

¥𝑢 + 2𝜉𝜔 ¤𝑢 + 𝜔2𝑢 + ℎ𝑢3 = 0. (14)

The damping affects the eigenvalues, which now become

𝜆1,2 = −𝜉𝜔 ± 𝑖𝜔
√︁

1 − 𝜉2 = 𝜔 (−𝜉 ± 𝑖𝛿), (15)

where 𝛿 =
√︁

1 − 𝜉2 has been introduced in order to ease the analytical expressions. A small
damping assumption is made such that (i) underdamped oscillations are considered (𝜉 < 1), and
(ii) the resonance check in the normal form procedure is done on the imaginary (oscillatory) parts
only, as proposed in (Touzé and Amabili 2006; Haller and Ponsioen 2016; Vizzaccaro et al. 2022)
for nonlinear vibratory systems. Due to the increase in length we consider the CNF up to order 7
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only:

¤𝑧1 = (i𝛿𝜔 − 𝜉𝜔) 𝑧1 + i
3ℎ

2𝛿𝜔 𝑧2
1𝑧2 − i

3ℎ2 (
17 − 14𝜉2 + 4i𝜉𝛿

)
8𝜔3𝛿2 (−2i𝛿 + 𝜉) 𝑧3

1𝑧
2
2

− 𝑖
3ℎ3 (

378𝜉6 − 48𝜉4 − 1420𝜉2 − 531𝑖𝛿𝜉 + 378𝑖𝛿𝜉5 − 207𝑖𝛿𝜉3 + 946
)

64𝜔5𝛿3 (9𝜉4 − 9𝜉2 − 4) 𝑧4
1𝑧

3
2, (16)

the second equation for 𝑧2 being the complex conjugate of this one, i.e. ¤𝑧2 = ¤̄𝑧1. The linear term is
due to the change in the eigenvalue. The same resonant monomials are present in the normal
form since the resonance relationships are verified based on the assumption of small damping.
Only the coefficients are slightly modified by the damping ratio 𝜉 . Proceeding with realification
as in the undamped case, it is possible to find the following two equations, by considering the real
and imaginary parts of Equation (16) once 𝑧1 and 𝑧2 are substituted by their polar representation:

¤𝜌 = −𝜉𝜔𝜌 + 32𝜉ℎ2 (
2𝜉2 − 3

)
27𝛿2𝜔3 (1 + 3𝛿2) 𝜌

5 − 33𝜉ℎ3 (
42𝜉4 − 23𝜉2 − 59

)
212𝛿2𝜔5 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌

7 (17a)

¤𝛼 = 𝛿𝜔 + 3ℎ
23𝛿𝜔

𝜌2 + 3ℎ2 (
12𝜉2 − 17

)
26𝛿𝜔3 (1 + 3𝛿2) 𝜌

4 + 3ℎ3 (
189𝜉6 − 24𝜉4 − 710𝜉2 + 473

)
211𝛿𝜔5 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌6. (17b)

Equation (17a) gives the decay rate of the oscillation amplitude. Note that up to the first order,
the equation can be integrated to give the usual exponential decay predicted by the linear theory.
A nonlinear damping ratio 𝜉NL can be defined by dividing Equation (17a) by −𝜌𝜔 . A nonlinear
instantaneous frequency 𝜔NL can also be derived from Equation (17b) through ¤𝛼 = 𝜔NL, which
yields the two equations

𝜉NL = 𝜉

(
1 − 32ℎ2 (

2𝜉2 − 3
)

27𝛿2𝜔4 (1 + 3𝛿2) 𝜌
4 − 33ℎ3 (

42𝜉4 − 23𝜉2 − 59
)

212𝛿2𝜔6 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌
6
)

(18a)

𝜔NL = 𝛿𝜔

(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2 + 3ℎ2 (

12𝜉2 − 17
)

26𝛿2𝜔4 (1 + 3𝛿2) 𝜌
4 + 3ℎ3 (

189𝜉6 − 24𝜉4 − 710𝜉2 + 473
)

211𝛿2𝜔6 (1 + 3𝛿2) (1 + 3𝜉2) 𝜌6
)
. (18b)

Equation (18b) can be viewed as a damped backbone curve that smoothly perturbs from the
undamped case when 𝜉 ≠ 0 (Touzé and Amabili 2006; Llave and Kogelbauer 2019). It gives an
analytical formula for taking the damping into account in the backbone curve and quantitatively
compares conservative and damped cases. Equation (18a) underlines that the linear viscous
damping creates a nonlinear decay rate. However, its effect is only apparent at large amplitudes
since the nonlinearities are of order 𝜌4 or higher.

In order to better understand the evolution of the above quantities, the terms inside the
brackets in Equations (18a) and (18b) are plotted as a function of 𝜌 for 𝜔 = 1 and ℎ = 1 in
Figure 2(a) and Figure 2(b). From the figures, it is possible to notice that the inclusion of damping
does not significantly alter the shape of the backbones up to 𝜌 = 0.8, which corresponds to the
validity limit of the asymptotic expansion.

It is also worth mentioning that, in contrast to the undamped case, obtaining the maximum
physical displacement 𝑢max as a function of amplitude 𝜌 is not feasible analytically, since the
coefficients of the nonlinear mappings are now complex. Both cosines and sines appear in the
equation for 𝑢 (𝜌) (analogous to Equation (12)), hence there is no simple analytical solution
for 𝑢max.

As a summary, the CNF shares a number of advantageous characteristics. It has a lot of
symmetries, leads to the most parsimonious representation of the normal dynamics, and analytical
backbone curves are directly attainable with polar realification. The only drawback is that
the normal dynamics is expressed with complex coordinates. In order to obtain normal form
calculations that stay in a real formulation, different variants have thus been proposed in the past.

2.2 The real normal form
The real normal form (RNF) has been first introduced by Neild and Wagg (2011); Neild et al. (2015);
Liu and Wagg (2019); Nasir et al. (2021); Wagg (2022), and reformulated in the context of the
parametrisation method in (Vizzaccaro et al. 2022; Opreni et al. 2023). Note that the denomination
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Figure 2 Duffing oscillator with increasing values of the damping ratio 𝜉 : (a) damped backbone curve and (b)
nonlinear damping ratio. The results are obtained using a complex normal form style, for the parameter
values 𝜔 = 1 and ℎ = 1.

RNF is not used by Neild and Wagg who called the method DNF for direct normal form, see
e.g. (Elliott et al. 2018). In their case, the adjective direct was used to mean that the normal
form technique is directly applied to second-order problems in time that are under study for
mechanical vibration. Also in their approach, the developments were slightly different from the
one presented herein since the target was to obtain time-domain approximations of the solutions.
On the other hand, the method has been named RNF in (Vizzaccaro et al. 2022) in order to keep
the adjective direct to refer to calculations that affect the physical, and not the modal coordinates.

The main idea of the RNF consists of keeping two monomials as resonant in Equation (3a). In
addition to the term 𝑧2

1𝑧2, which is trivially resonant and kept in the CNF, the monomial 𝑧1𝑧
2
2 is

also defined as a resonant one. This implies that in Equation (6) the choice to zero coefficient
𝑓12 is not made, but rather coefficient 𝑎12 is set to zero. In such way, 𝑓12 = 𝑖3ℎ/(2𝜔), changing
the final expressions for Equations (4) to (5). The origin of this choice lies in the fact that the
goal of the calculation proposed in (Neild and Wagg 2011; Neild et al. 2015) was to apply the
normal form computation to second-order problem, which gives additional constraint to the
developments. Since the second derivative of the mapping with respect to time needs to be
computed, the homological equations need to be written with these terms, and squares of the
eigenfrequencies appear naturally in the resonance relationships. This can also be seen in
the homological equations derived in (Vizzaccaro et al. 2022) that have been rewritten only
for the displacement mapping, by using the relationship that exists at any order between the
displacement and the velocity mappings. In this case, the ill-conditioning of the term in front of
the mapping, which is due to resonance relationships, appears with squared values. Rewriting the
resonance relationships Equation (7) with squares leads to

(𝜆𝑘 )2 =

(
𝑛∑︁
𝑖=1

𝑚𝑖𝜆𝑖

)2

, with 𝑚𝑖 ⩾ 0 and
𝑛∑︁
𝑖=1

𝑚𝑖 = 𝑝, (19)

which is indeed the resonance relationship used to derive the RNF. For the sake of illustration,
the RNF of the Duffing equation is here given up to order 7, it reads

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔 𝑧2

1𝑧2 + i
3ℎ
2𝜔 𝑧1𝑧

2
2 − i

15ℎ2

24𝜔3 𝑧
3
1𝑧

2
2 − i

3ℎ2

23𝜔3 𝑧
2
1𝑧

3
2 + i

267ℎ3

27𝜔5 𝑧
4
1𝑧

3
2 − i

3ℎ3

27𝜔5 𝑧
3
1𝑧

4
2, (20a)

¤𝑧2 = −i𝜔𝑧2 − i
3ℎ
2𝜔 𝑧2

1𝑧2 − i
3ℎ
2𝜔 𝑧1𝑧

2
2 + i

3ℎ2

23𝜔3 𝑧
3
1𝑧

2
2 + i

15ℎ2

24𝜔3 𝑧
2
1𝑧

3
2 + i

3ℎ3

27𝜔5 𝑧
4
1𝑧

3
2 − i

267ℎ3

27𝜔5 𝑧
3
1𝑧

4
2, (20b)
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while the nonlinear mapping is given in Appendix C. As a consequence of the choice retained for
fulfilling the resonance relationship, the same monomials now appear on the two lines of the
normal dynamics. Interestingly, the cubic order terms share the same coefficients. This property
is useful in order to retrieve an oscillator equation when coming back to real coordinates using a
cartesian representation. We define the cartesian real coordinates (𝑎1, 𝑎2) as

𝑎1 = 𝑧1 + 𝑧2, (21a)

𝑎2 =
𝑧1 − 𝑧2

𝑖
. (21b)

By stopping the RNF developments in Equation (20) at order three, one can see that the dynamics
for 𝑎1 is simple and reads ¤𝑎1 = −𝜔𝑎2. Consequently, an oscillator equation can be written for the
cartesian coordinates (𝑎1, 𝑎2) as

¥𝑎1 + 𝜔2𝑎1 + 3ℎ
4 (𝑎3

1 + 𝑎1
¤𝑎2
1

𝜔2 ) = 0. (22)

Whereas the CNF was conveniently realified with polar coordinates, the RNF is better suited
for realification using cartesian coordinates, thanks to the symmetry properties appearing in the
coefficients of Equation (20). Unfortunately the nice property ¤𝑎1 = −𝜔𝑎2 is completely linked to
the fact that cubic coefficients are all equal. From order 5, this property is lost, but realification is
still easy to manage since the two different coefficients sum up and hence can be factorized.
Equations (20) to (21) yield

¤𝑎1 = −𝜔𝑎2 + 9ℎ2

256𝜔3𝑎
4
1𝑎2 + 9ℎ2

128𝜔3𝑎
2
1𝑎

3
2 +

9ℎ2

256𝜔3𝑎
5
2

− 135ℎ3

4096𝜔5𝑎
6
1𝑎2 − 405ℎ3

4096𝜔5𝑎
4
1𝑎

3
2 −

405ℎ3

4096𝜔5𝑎
2
1𝑎

5
2 −

135ℎ3

4096𝜔5𝑎
7
2, (23a)

¤𝑎2 = 𝜔𝑎1 + 3ℎ
4𝜔𝑎3

1 +
3ℎ
4𝜔𝑎1𝑎

2
2 −

21ℎ2

256𝜔3𝑎
5
1 −

21ℎ2

128𝜔3𝑎
3
1𝑎

2
2 −

21ℎ2

256𝜔3𝑎1𝑎
4
2

+ 33ℎ3

1024𝜔5𝑎
7
1 +

99ℎ3

1024𝜔5𝑎
5
1𝑎

2
2 +

99ℎ3

1024𝜔5𝑎
3
1𝑎

4
2 +

33ℎ3

1024𝜔5𝑎1𝑎
6
2. (23b)

From these two equations, one can try to recover an oscillator-like equation. Deriving the
first equation with respect to time, replacing ¤𝑎2 by the second expression, and stopping the
developments at order 5, one obtains:

¥𝑎1 + 𝜔2𝑎1 + 3ℎ
4

(
𝑎3

1 + 𝑎1𝑎
2
2
) − 15ℎ2

128𝜔2
(
𝑎5

1 + 2𝑎3
1𝑎

2
2 + 𝑎1𝑎

4
2
)
= 0. (24)

This underlines that, for order 5 and higher, a closed-form expression involving only 𝑎1 is not
possible anymore such that two equations need to be kept with both 𝑎1 and 𝑎2. Equation (23) or
Equation (24) can then be solved with a perturbative approach or a numerical continuation
method to derive the backbone curve.

All these results show that the RNF can be advantageously used with Cartesian coordinates
for realification. It can be easily automated since the choice of resonant monomials derives from
a broader interpretation of the resonance relationship. Arbitrary order solutions are at hand
and can be computed thanks to MORFE_Symbolic. However, the resulting equations are not
oscillator-like from order 5. Besides, it seems that no simple and exact solution allows giving an
analytical backbone curve at arbitrary order, as was the case for the CNF. To draw out such a
solution a few more assumptions need to be made, following for example the approximations
used in (Neild and Wagg 2011; Neild et al. 2015). This is illustrated in Appendix C.

2.3 The oscillator normal form

The oscillator normal form (ONF) has been first introduced in (Touzé 2003; Touzé et al. 2004; Touzé
and Amabili 2006; Touzé 2014), with the main idea of keeping oscillator equations without using
any complex formulation. To that purpose, the linear part is not made diagonal with complex
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entries, but stays under its anti-diagonal formulation, see (Touzé et al. 2004). To better understand
how the ONF can be interpreted from the previous example where complexification is used, the
key point is to understand that all complex monomials appearing due to the complexification
of a real one, need to be kept in the analysis, in order to make possible the come back to
oscillator-like equations. For the Duffing equation, the real monomial 𝑢3 in Equation (1) gives rise
to 8 monomials for 𝑦1 and 𝑦2 as shown in Equation (3). Since all these are mandatorily needed to
be able to reconstruct 𝑢3, it means that no terms in Equation (6) will be cancelled. The choice
𝑎11 = 𝑎12 = 𝑎13 = 𝑎14 = 0 is selected. As a consequence, the Duffing Equation (1) is under its
oscillator normal form. In ONF, the trivially resonant monomial is 𝑢3 and cannot be cancelled,
but many other terms, which are not linked to trivial resonances, can be cancelled in the process.
In particular, all quadratic terms are not resonant and can be eliminated thanks to a nonlinear
change of coordinate, see (Touzé et al. 2004) for general discussions and (Touzé 2014) for examples
and classification of nonlinear terms thanks to this interpretation of the resonance relationship.

One of the main advantages of the ONF is thus to keep oscillator-like equations throughout
the process. The nonlinear change of coordinate is given between two real coordinates that are
homogeneous to a displacement and a velocity, whereas this interpretation is lost when using
complex formulations. This choice came along with other advantages. For example, only the ONF
allows drawing out a term-by-term comparison of the NNM calculation using either the centre
manifold technique as proposed by Shaw and Pierre, or the normal form approach, see e.g. (Touzé
et al. 2004; Touzé et al. 2021) for such discussions. Thanks to the ONF, a direct comparison with
the quadratic manifold method with modal derivatives has also been made possible. Indeed, since
real coordinates are used in the two approaches, term-by-term comparisons are at hand, which
allows understanding that the quadratic manifold is a simplification of the general formula given
by ONF, see (Vizzaccaro, Salles, et al. 2021; Shen et al. 2021; Touzé et al. 2021) for more details. A
final advantage of the ONF is that it can be rewritten from physical coordinates, which allows
deriving a non-intrusive version of the reduction technique using the normal form, which has
been named DNF for direct normal form, see (Vizzaccaro, Shen, et al. 2021; Opreni et al. 2021).

However, numerous drawbacks are linked to this formulation. First, it is difficult to translate
the choice on the resonant monomial as a broader algebraic interpretation of the resonance
relationships, as it has been possible for the RNF with Equation (19). As a consequence, it appears
very difficult (and maybe not possible) to generalise the ONF to arbitrary order and automate
its computation. As an illustration of these complications, one can refer to (Shami et al. 2022)
to see how the ONF with resonant quadratic terms can be computed up to order three. As a
consequence, the ONF will not be much commented on in the rest of this paper, and is not
included in MORFE_Symbolic.

3 High-order solutions for single-degree-of-freedom systems with
forcing and damping
This section extends the analysis using normal form expansions to illustrate how this formalism
allows an understanding of the main features of nonlinear oscillations. Primary and secondary
resonances will be analysed. The first case under study is a Duffing oscillator with quadratic and
cubic nonlinearities, derived to explain how the even order nonlinear terms can be cancelled and
how the high-order terms on the backbone can be analysed in terms of hardening/softening
behaviour.

3.1 Duffing oscillator with quadratic and cubic nonlinearities
In this section, the results of the previous section are generalised to a Duffing equation with
quadratic and cubic nonlinearities:

¥𝑢 + 𝜔2𝑢 + 𝑔𝑢2 + ℎ𝑢3 = 0. (25)

Using the automated symbolic development provided by MORFE_Symbolic, the complex
normal form (CNF) can be written up to arbitrary order. The first step consists in diagonalising
the linear part using Equation (2), then the nonlinear mappings and the reduced dynamics are
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computed, by applying the procedure that is illustrated by Equations (4) to (6). For the sake of
illustration, the normal dynamics up to order 7 is shown here:

¤𝑧1 = i𝜔𝑧1 + i
−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧2
1𝑧2 + i

−3140𝑔4 + 8388𝑔2ℎ𝜔2 − 1377ℎ2𝜔4

432𝜔7 𝑧3
1𝑧

2
2

+ i
−523960𝑔6 + 2186724𝑔4ℎ𝜔2 − 1913274𝑔2ℎ2𝜔4 + 114939ℎ3𝜔6

10368𝜔11 𝑧4
1𝑧

3
2 . (26)

while the associated nonlinear mapping is reported in Appendix D. For the sake of brevity, only
the equation for 𝑧1 is shown in Equation (26), the second equation for 𝑧2 being simply its complex
conjugate. Rewriting the coefficients appearing in Equation (26) as 𝑖 𝑓 (𝑝) , for odd 𝑝 corresponding
to the odd monomial remaining:

¤𝑧1 = i𝑓 (1)𝑧1 + i𝑓 (3)𝑧2
1𝑧2 + i𝑓 (5)𝑧3

1𝑧
2
2 + . . . , (27)

the backbone is analytic and reads, using a polar representation for (𝑧1, 𝑧2) as in Section 2.1,
Equation (9):

𝜔NL = 𝑓 (1) + 𝑓 (3)
(𝜌

2

)2
+ 𝑓 (5)

(𝜌
2

)4
+ . . . (28)

Given the expressions of the coefficients 𝑓 (𝑝) shown in Equation (26), one can see that,
assuming ℎ ⩾ 0, the quadratic and cubic nonlinearities play opposite roles in defining the
hardening/softening behaviour. This has been used for a long time to predict, only from the sign
of 𝑓 (3) , the type of nonlinearity for structures, using for example the oscillator normal form,
see e.g. (Touzé et al. 2004; Touzé and Thomas 2006; Touzé and Amabili 2006; Touzé et al. 2008).
Arbitrary order expansions allow a finer understanding of the hard/soft transition, and have
already been used for rotating beams in (Martin et al. 2023).

Figure 3 shows the behaviour of the coefficients 𝑓 (𝑝) for 𝑝 = 3, 5, 7 and 9. 𝑓 (3) changes
sign only once (for the case under study, with ℎ = 1 fixed and varying 𝑔), meaning that the
transition from hardening to softening behaviour occurs at 𝑔 = 3

√︁
ℎ/10. On the other hand,

higher-order coefficients are polynomials of higher degrees in the coefficients 𝑔 and ℎ and thus
have numerous zeros, see Figures 3(a) and 3(b). Figure 3(c) shows the backbone curves obtained
just before and after the transition of the cubic coefficient (while the next orders do not change
sign), namely for 𝑔 = 0.85 (𝑓 (3) > 0, and 𝑓 (5) > 0, 𝑓 (7) < 0, 𝑓 (9) < 0), and 𝑔 = 1 (𝑓 (3) < 0, and
𝑓 (5) > 0, 𝑓 (7) < 0, 𝑓 (9) < 0). A reference solution obtained numerically by continuation is
compared to two truncations, respectively to orders 7 and 9, of the analytical backbone curve. For
𝑔 = 0.85, the negative signs of 𝑓 (7) and 𝑓 (9) change the high amplitude behaviour of orders 7 and
9 truncations that depart from reference, needing orders higher than 9 to achieve convergence up
to the selected amplitudes. For 𝑔 = 1, the positive coefficient 𝑓 (5) plays the major role since 𝑓 (3)
is close to zero.

Two other cases where the dominant behaviour is softening are shown in Figure 3d for
𝑔 = 1.5 and 𝑔 = 1.65, around the change of sign of 𝑓 (5) . Again, in such a situation, the mixed signs
of the different truncations ask for high-order development to reach convergence. Nevertheless,
the qualitative change of behaviours is captured. Also, the validity limit of the normal form
development is probably impacted by the different values of quadratic and cubic coefficients.

For the sake of completeness, the RNF and ONF analysis are reported in Appendix E. In these
two cases, automatic analysis of the backbone curve up to high order is more difficult.

3.2 Effect of forcing and damping
In this section, an analysis of the forced and damped Duffing oscillator with high-order normal
form expansions is developed. The goal is to show how normal form approach relates to and
extends the established procedure in nonlinear vibration theory, based on perturbation methods.
All these results will then be helpful to understand and analyse reduced-order models with a
single nonlinear normal mode assumption. The starting point is thus a forced-damped Duffing
oscillator

¥𝑢 + 𝜔2𝑢 + 2𝜉𝜔 ¤𝑢 + ℎ𝑢3 =
𝜅

2

(
e+𝑖Ω𝑡 + e−𝑖Ω𝑡

)
, (29)
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Figure 3 Hardening/softening behaviour for the Duffing oscillator with quadratic and cubic nonlinearities. A
complex normal form style is used with parameter values set as 𝜔 = 1, ℎ = 1. (a) Behaviour of the
coefficients 𝑓 (𝑝) as a function of 𝑔. (b) Zoom on the area highlighted by the black dashed box in (a). The
vertical dashed lines indicate the values of 𝑔 for which the backbones have been calculated. (c-d) Backbone
curves for different values of 𝑔. A reference solution obtained by numerical continuation is compared to
the backbone curves obtained with CNF up to orders 𝑜 = 7 and 𝑜 = 9.

where the forcing has already been rewritten with complex notation, while a viscous damping is
introduced with the damping ratio 𝜉 . We start by considering the case of a forcing frequency Ω
which is far from the primary and secondary resonances.

3.2.1 Non-resonant excitation

The case of an out-of-resonance forcing frequency Ω leads to a minimal number of resonant
monomials in the normal form, since only the trivial resonances are considered. Thanks to
the efficient treatment of the non-autonomous forcing term presented in (Vizzaccaro et al.
2024), an arbitrary order expansion in terms of the power of the non-autonomous term is also
implemented in MORFE_Symbolic. This key feature allows computing and analysing the
high-order terms produced by the forcing in the normal form, a case that is not considered for
example in (Breunung and Haller 2018; Opreni et al. 2023; Jain and Haller 2022), where only
linear terms of the forcing are included.

The method proposed in (Vizzaccaro et al. 2024) to deal with the forcing term is to make the
system autonomous by adding two additional coordinates, namely 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 ,
augmenting the size of the original system but keeping the added coordinates unchanged. More
precisely, the state variables of the augmented system become 𝒚 = [𝑢, 𝑣, 𝑧3, 𝑧4]⊤, while the
augmented normal coordinates are 𝒛 = [𝑧1, 𝑧2, 𝑧3, 𝑧4]⊤, such that only the first two physical
coordinates need to be sought as a parametrisation of the normal ones, i.e.[

𝑢
𝑣

]
=𝑾 (𝒛), (30)

with𝑾 (𝒛) denoting the nonlinear mappings. Additionally, because of the definition of the added
variables, their reduced dynamics is trivial, and already known:

¤𝑧3 = Ω𝑧3, (31a)
¤𝑧4 = −Ω𝑧4. (31b)

This leads to an efficient reformulation of the parametrisation method asking for slight modifica-
tions in the algorithm as compared to the autonomous case. When a single master mode (NNM)
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is selected, the reduced dynamics depends on four coordinates (𝑧1, 𝑧2, 𝑧3, 𝑧4), which can be easily
reduced to (𝑧1, 𝑧2) only by replacing 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 .

Another key feature of the method proposed in (Opreni et al. 2023; Vizzaccaro et al. 2024), to
handle the external periodic forcing, is to compute the parametrisation for only one value of the
external forcing. Rigorously speaking, the parametrisation needs to be computed for each forcing
frequency, as proposed, for example, in (Jiang et al. 2005), to produce exact solutions. However, to
alleviate the associated computational burden, the parametrisation can be computed for a single
excitation frequency Ω𝑝 , and this ROM can be used to draw out rapidly frequency response
curves (FRC), assuming that the dependence upon Ω is small. This strategy is also adopted here
to propose analytical solutions obtained with symbolic computations that lend themselves well to
analysis.

The complex normal form (CNF) up to order three for the forced, undamped (𝜉 = 0) Duffing
oscillator Equation (29), and for this out-of-resonance case, is computed at a single excitation
frequency Ω𝑝 = Ω. It reads

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔𝑧2

1𝑧2 + i
3ℎ𝜅2

4𝜔 (Ω2 − 𝜔2)2𝑧1𝑧3𝑧4, (32)

where again only the first equation is shown, the second equation for 𝑧2 being the complex
conjugate. At this order, only two resonant monomials are present in the CNF. The first one,
𝑧2

1𝑧2, has already been commented on in Section 2.1 in Equation (8). The second one, 𝑧1𝑧3𝑧4,
depends on the forcing, and scales with the amplitude of the forcing squared, 𝜅2. This monomial
is very interesting since it appears only due to the complete treatment of the forcing shown
in (Vizzaccaro et al. 2024). Since 𝑧3 = e+𝑖Ω𝑡 and 𝑧4 = e−𝑖Ω𝑡 , the monomial can be interpreted as
having a direct consequence on the nonlinear oscillation frequency. In particular, it shows the
dependence of the free oscillation frequencies upon the forcing amplitude. For such conservative
dynamics, the system’s response is characterised by a quasi-periodic behaviour, stemming from
the contributions of the free oscillations and of the forced response, whose effect is completely
embedded into the nonlinear mapping equations. As commented next, the free oscillation term
is generally related to the transient and is damped out when losses are taken into account.
Interestingly, the monomial 𝑧1𝑧3𝑧4 corresponds to a trivial resonance and will thus be present
in all normal form dynamics that are considered in the next sections (primary and secondary
resonance). It is thus further analysed, in particular for secondary resonances, since in this case
the forcing is not assumed to be small such that the dependence of the oscillation frequencies
upon forcing amplitude is not negligible.

The nonlinear mapping up to order 3, that corresponds to Equation (32), reads:

𝑢 = (𝑧1 + 𝑧2) +
(
ℎ

8𝜔2𝑧
3
1 −

3ℎ
4𝜔2𝑧

2
1𝑧2 − 3ℎ

4𝜔2𝑧1𝑧
2
2 +

ℎ

8𝜔2𝑧
3
2

)
−

(
1

(Ω2 − 𝜔2)
𝜅

2 (𝑧3 + 𝑧4)
)

−
(

3ℎ𝜅
2 (Ω2 − 𝜔2) (Ω + 𝜔) (Ω + 3𝜔)𝑧

2
1𝑧3 + 3ℎ𝜅

2 (Ω2 − 𝜔2) (Ω − 𝜔) (Ω − 3𝜔)𝑧
2
1𝑧4

+ 3ℎ𝜅
(Ω2 − 𝜔2)2𝑧1𝑧2(𝑧3 + 𝑧4)

)
(33)

In the above equation, note that the sums and subtractions of variables 𝑧3 and 𝑧4 can be written
as cosines and sines. The velocity mapping is not shown here for the sake of brevity, and also
because it can be retrieved from the derivation of Equation (33) with respect to time; see the
remark in Appendix B. Note also that Equation (33) has been truncated to O(𝜅2) terms only to
make it more concise.

Equation (33) shows that the autonomous deformation of the associated invariant manifolds,
already present in Equation (B.1), is recovered but there are also additional non-autonomous
deformations, driven by the added coordinates 𝑧3 and 𝑧4. The linear terms in 𝑧3 and 𝑧4 in the
first line of Equation (33) account for a rigid-body rotation of the invariant manifold, already
commented on in (Opreni et al. 2023). Then the terms of the next two lines show that together
with this rigid-body motion, the manifold shows deformations along the phase of the forcing.
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The symbolic code MORFE_Symbolic can be used to derive higher-order approximations of
the normal form and nonlinear change of coordinates in this case of non-resonant excitation.
Interestingly, since only trivially resonant monomials are in the normal form, the dynamics will
be composed of two different terms. First, the autonomous terms with resonant monomials will
strictly follow those appearing in the unforced case, see Equation (8) for an example up to order 9.
In addition to these, all the trivially resonant monomials will reappear, multiplied by a factor of
the form 𝑧

𝑝
3𝑧

𝑝
4 with 𝑝 ⩾ 1. Higher order results are not shown here but can be automatically

produced via MORFE_Symbolic.
Finally, the effect of the viscous damping term is investigated to close this case of non-resonant

excitation. With the damping, the eigenvalues of Equation (29) are 𝜆1,2 = −𝜉𝜔 ± 𝑖𝜔
√︁

1 − 𝜉2 =
𝜔 (−𝜉 ± 𝑖𝛿), see Equation (15). The CNF up to order three for the non-resonant response is then

¤𝑧1 = (i𝛿𝜔 − 𝜉𝜔) 𝑧1 + i
3ℎ

2𝛿𝜔 𝑧2
1𝑧2 + 3𝑖ℎ𝜅2

4𝛿𝜔 ((Ω2 − 𝜔2)2 + 4𝜉2𝜔2Ω2)𝑧1𝑧3𝑧4, (34)

the second equation for 𝑧2 being the complex conjugate of this one. The real part in the first
monomial shows that these oscillations are damped out. Consequently, as commented in (Opreni
et al. 2023), the reduced dynamics is trivial and all the effects are embedded in the nonlinear
mapping, where only the terms related to 𝑧3 and 𝑧4 remain.

3.2.2 Primary resonance

The case of a resonant forcing with Ω ≃ 𝜔 is discussed next. In this case of primary resonance,
we compute the parametrisation at the value of the damped oscillation frequency 𝛿𝜔 (imaginary
part of the eigenvalue), such that Ω𝑝 = 𝛿𝜔 . With this choice and taking the damping into account,
the complex normal form (CNF) at primary resonance up to order 3 becomes

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧3 + 𝑓4𝑧

2
1𝑧4 + 𝑓5𝑧1𝑧2𝑧3 + 𝑓6𝑧1𝑧3𝑧4 + 𝑓7𝑧2𝑧

2
3 + 𝑓8𝑧

2
3𝑧4, (35)

where only the first equation is given, the second on 𝑧2 being the complex conjugate. The
coefficients 𝑓𝑗 , 𝑗 = 1, . . . , 8, read:

𝑓1 = 𝜆1, 𝑓2 = 𝑖
3ℎ

2𝛿𝜔 , 𝑓3 = −𝑖 𝜅

4𝛿𝜔 , 𝑓4 = 𝑖
3ℎ𝜅

8𝛿2𝜔3 (2𝛿 + 𝑖𝜉) (36a)

𝑓5 = 𝑖
3ℎ𝜅

4𝛿2𝜔3 (2𝛿 − 𝑖𝜉) , 𝑓6 = 𝑖
3ℎ𝜅2

16𝛿3𝜔5 (4𝛿2 + 𝜉2) , (36b)

𝑓7 = 𝑖
3ℎ𝜅2

32𝛿3𝜔5 (2𝛿 − 𝑖𝜉)2 , 𝑓8 = 𝑖
3ℎ𝜅3

128𝛿4𝜔7 (2𝛿 − 𝑖𝜉)2 (2𝛿 + 𝑖𝜉) . (36c)

Additionally, the nonlinear mappings for this case are given in Appendix F. Note that, as
opposed to the non-resonant case, the coefficients of the normal form are not a function of the
forcing frequency Ω. This is a direct consequence of the choice Ω𝑝 = 𝛿𝜔 . A different choice could
be introduced here, for example by selecting Ω𝑝 = 𝜔 , which appears closer to the assumption
made in perturbative techniques. Indeed, these two choices are almost indistinguishable for most
practical cases where the small damping assumption is met such that 𝛿 ≈ 1. Since the analysis
developed here does not necessarily assume small damping, it appeared more coherent to expand
around Ω𝑝 = 𝛿𝜔 , which also leads to simpler expressions for the coefficients. For comparison
purposes, the coefficients obtained with the expansion around Ω𝑝 = 𝜔 are given in Appendix G.

The first two monomials in Equation (35) are respectively the linear term and the cubic
nonlinear stiffness that were already present without forcing. The third term corresponds to
the direct resonant forcing. The next two monomials, 𝑧2

1𝑧4 and 𝑧1𝑧2𝑧3, correspond to nonlinear
parametric-like excitation terms. In the sequence, 𝑧1𝑧3𝑧4, is the trivially resonant monomial
already commented on in the previous section. Its coefficient 𝑓6 scales as O(𝜅2), like the next
monomial that introduces a second harmonic forcing through 𝑧2

3. Finally, the last coefficient 𝑓8
scales as O(𝜅3) and is a higher-order effect of the direct forcing.

These reduced dynamics are automatically derived in the context of the parametrisation
method up to high-order and are used to analyse the primary resonance of finite element models,
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see e.g. (Vizzaccaro et al. 2022; Opreni et al. 2023; Vizzaccaro et al. 2024; Jain and Haller 2022; Li
et al. 2022). The purpose here is to give some insights into these results, which are obtained using
high-order solutions that are realified with polar or cartesian representations, by analysing the
wealth of all the terms involved in the solution. Note that for obtaining the normal form given in
Equation (35), no specific assumptions on damping or forcing have been made and the solutions
are not stopped at first order for these two terms, as commonly assumed in perturbative solutions.
Hence the solution given by Equation (35) contains a priori more information.

To give more insights to Equation (35), polar coordinates are introduced as

𝑧1,2 =
𝜌

2 e±𝑖𝜃 , 𝑧3,4 = e±𝑖Ω𝑡 . (37)

An autonomous system can be derived for the amplitude 𝜌 and the phase𝜓 , defined as𝜓 = 𝜃 − 𝜙 ,
where 𝜙 = Ω𝑡 is introduced to make the system autonomous with ¤𝜙 = Ω. The resulting system
reads

¤𝜌 = 𝐴0 +𝐴𝑐
1 cos𝜓 +𝐴𝑠

1 sin𝜓 +𝐴𝑐
2 cos (2𝜓 ) +𝐴𝑠

2 sin (2𝜓 ), (38a)
𝜌 ¤𝜓 = 𝐵0 + 𝐵𝑐1 cos𝜓 + 𝐵𝑠1 sin𝜓 + 𝐵𝑐2 cos (2𝜓 ) + 𝐵𝑠2 sin (2𝜓 ) . (38b)

The coefficients in Equation (38) have explicit expressions as functions of the coefficients 𝑓𝑗
in Equation (35), which have been split into to their real part 𝑓 𝑅𝑗 and imaginary part 𝑓 𝐼𝑗 . The
expressions read:

𝐴0 = 𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅6 , 𝐵0 = 𝜌 𝑓 𝐼1 + 𝜌3

4 𝑓 𝐼2 + 𝜌 𝑓 𝐼6 − 𝜌Ω,

𝐴𝑐
1 = 2𝑓 𝑅3 + 𝜌2

2 𝑓 𝑅4 + 𝜌2

2 𝑓 𝑅5 + 2𝑓 𝑅8 , 𝐴𝑠
1 = 2𝑓 𝐼3 − 𝜌2

2 𝑓 𝐼4 + 𝜌2

2 𝑓 𝐼5 + 2𝑓 𝐼8 ,

𝐵𝑐1 = 2𝑓 𝐼3 + 𝜌2

2 𝑓 𝐼4 + 𝜌2

2 𝑓 𝐼5 + 2𝑓 𝐼8 , 𝐵𝑠1 = −2𝑓 𝑅3 + 𝜌2

2 𝑓 𝑅4 − 𝜌2

2 𝑓 𝑅5 − 2𝑓 𝑅8 ,

𝐴𝑐
2 = 𝜌 𝑓 𝑅7 , 𝐴𝑠

2 = 𝜌 𝑓 𝐼7 ,

𝐵𝑐2 = 𝜌 𝑓 𝐼7 , 𝐵𝑠2 = −𝜌 𝑓 𝑅7 .

(39)

Deriving a closed-form expression for the FRC from the fixed points of Equation (38) is
difficult because of the presence of the second harmonic excitation, which creates the terms with
arguments 2𝜓 . From the analysis of the monomials in Equation (35), the second harmonic terms
are only created by 𝑧2

3, such that the coefficients 𝐴𝑐
2, 𝐴𝑠

2, 𝐵𝑐2 and 𝐵𝑠2 are directly proportional to 𝑓7.
To simplify the analysis, the usual assumption that a small forcing is enough to lead to large
amplitude solutions in case of primary resonance can be made, such that one could neglect the
terms in 𝜅2 and 𝜅3 in Equation (35). With this assumption, which leads to disregarding 𝑓6, 𝑓7 and
𝑓8, and using sin2𝜓 + cos2𝜓 = 1, one can obtain the following relationship as an expression for
the frequency response curve:(

𝐴0
𝐴𝑠

1
+ 𝐴𝑐

1
𝐴𝑠

1

𝐴0𝐵
𝑠
1 −𝐴𝑠

1𝐵0

𝐴𝑠
1𝐵

𝑐
1 −𝐴𝑐

1𝐵
𝑠
1

)2
+

(
𝐴0𝐵

𝑠
1 −𝐴𝑠

1𝐵0

𝐴𝑠
1𝐵

𝑐
1 −𝐴𝑐

1𝐵
𝑠
1

)2
= 1. (40)

With this equation, it is still too cumbersome to derive an explicit expression for the
amplitude 𝜌 as a function of the excitation frequency Ω for direct comparisons with a perturbative
solution. To proceed, we assume that the damping 𝜉 is small, as it is usually done in a perturbative
scheme. Neglecting all high-order terms of the damping in the expressions of the coefficients 𝑓𝑗 ,
𝑗 = 1, . . . , 5; leads to these expressions:

𝑓 𝑅1 = −𝜉𝜔, 𝑓 𝐼1 = 𝜔, 𝑓 𝑅2 = 0, 𝑓 𝐼2 =
3ℎ
2𝜔 , 𝑓 𝑅3 = 0, (41a)

𝑓 𝐼3 = − 𝜅

4𝜔 , 𝑓 𝑅4 = 0, 𝑓 𝐼4 =
3ℎ𝜅
16𝜔3 , 𝑓 𝑅5 = 0, 𝑓 𝐼5 =

3ℎ𝜅
8𝜔3 , (41b)

such that an explicit expression for the FRC, with a small damping assumption, reads

𝜌Ω = 𝜌𝜔 + 𝜌3 3ℎ
8𝜔 ± 9ℎ𝜌2 − 16𝜔2

3ℎ𝜌2 − 16𝜔2

√︄(
3ℎ𝜌2 − 16𝜔2

32𝜔3 𝜅

)2
− 𝜌2𝜉2𝜔2. (42)
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This expression is still more complete than the one given by a first-order perturbative solution
like the method of multiple scales (MMS). In particular, it involves 𝑓4 and 𝑓5 coefficients, which
are linked to the monomials 𝑧2

1𝑧4 and 𝑧1𝑧2𝑧3 in Equation (35). Note that these two monomials
refer to a nonlinear parametric excitation that is generally overlooked. Neglecting these two
terms leads to considering only the first three monomials in Equation (35), and to the classical
first-order perturbative solution of the FRC, see e.g. (Nayfeh and Mook 1995), page 166. This
can be justified on the coefficients by assuming the same hypotheses as in the perturbative
solution. Namely that, additionally to 𝜅 and 𝜉 , the nonlinear coefficient ℎ is also small, such that
when expanding Equation (42) in power series and considering only the leading order terms, the
classical result is found:

Ω = 𝜔 + 𝜌2 3ℎ
8𝜔 ±

√︄
𝜅2

4𝜌2𝜔2 − 𝜉2𝜔2. (43)

This development shows the wealth of the automated high-order solution provided by the
complex normal form, which can be simplified in order to retrieve the results of the first-order
multiple scales expansion. Of course, higher-order perturbative expansions should give back the
same term, but the change of paradigm in the approach proposed here is to give automatically
high-order expansions that can then be analysed by introducing asymptotic and ordering between
the different terms, leading to explicit analytical expressions in the simplest cases.

Figure 4 illustrates the previous derivations by comparing analytical and numerical results.
Figure 4(a) first compares analytical expressions based on the different approximations. The first-
order multiple scales solution, Equation (43), is compared to the solution given by Equation (42),
for classical parameter values corresponding to usual assumptions: 𝜔 = 1.5, ℎ = 1, small damping
with 𝜉 = 0.02, and 𝜅 = 0.1, leading to a maximal vibration amplitude 𝜌 close to 1, in order to
see the effect of moderate amplitudes. It shows that neglecting the two monomials 𝑧2

1𝑧4 and
𝑧1𝑧2𝑧3 in Equation (35) has an important effect on the prediction of the maximum amplitude,
underlining that, when 𝜌 is close to 1, a first-order perturbative solution is not accurate enough.
The explicit expression Equation (42) is also compared to the implicit analytical expression given
by Equation (40) and with an implicit solution for the fixed points of Equation (38), computed
symbolically after replacing numerical values for the system parameters, showing that, at this
level of amplitude and for these parameter values, the assumptions leading to Equation (42) are
accurate enough.
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Figure 4 FRCs for the primary resonance of the damped cubic Duffing oscillator. Parameter values are𝜔 = 1.5, ℎ = 1,
𝜉 = 0.02 and 𝜅 = 0.1. (a) Comparison of the analytical FRCs given by Equations (40), (42) and (43) and one
obtained by symbolically solving for the fixed points of Equation (38) after replacing the numerical values
of the parameters. (b) Comparison of numerically computed FRCs, obtained from MORFE_Symbolic using
Matcont (Dhooge et al. 2004), with a reference solution, also obtained by continuation, and with the
first-order multiple scale solution given by Equation (43), denoted as MMS.

Figure 4(b) compares numerical solutions to show the convergence of the high-order normal
form, as well as the effect of the nonlinear mapping. For the sake of illustration, the first-order
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multiple scales solution is also shown. Whereas the amplitude reported in Figure 4(a) is that of
the normal coordinate 𝜌 , Figure 4(b) is given for the maximum displacement of the physical
coordinate 𝑢, denoted as 𝑢max. Note that, as compared to the calculations for the backbone curves
shown in Section 2.1, it is not possible here to recover an easy analytic expression relating 𝜌
to the physical displacement through the nonlinear mapping, because the forcing terms are
not in phase with the autonomous ones. It should be highlighted, however, that the analytical
expression (first-order perturbative solution) given by Equation (43) assumes (at first order),
𝑢max = 𝜌 . The numerical solutions are computed numerically with a continuation procedure
embedded in the package Matcont (Dhooge et al. 2004). Four different truncations of the normal
form expansion are shown. Following (Vizzaccaro et al. 2024), the selected truncation order is
denoted as O(𝑧𝑝 , 𝜀𝑞), meaning a maximal order 𝑝 in the 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) coordinate and 𝑞 for
the non-autonomous (𝑧3, 𝑧4) variables. In this example, the case 𝑝 = 𝑞 is selected for convenience,
and 𝑝 = 𝑞 = 3 corresponds to Equation (35). These results show that, for such level of amplitude,
the first-order multiple scales solution is far from the full-order solution. The order 3 expansion is
also not accurate enough, while convergence is almost achieved at order 9. Besides, the effect of
the nonlinear mapping is very important, as can be seen by comparing the order 3 solutions
when parameterised in amplitude by 𝜌 or the maximum displacement 𝑢max.

All this development underlines the wealth of the symbolic solution, which can be analysed
in order to produce, whenever possible, analytical expressions that can be more complete than
first-order perturbative solution. This also highlights the fact that, when amplitudes are close to 1,
one needs to resort to numerical approximations since low-order approximations are not accurate
enough.

3.2.3 Superharmonic resonance

In this section, the 3 : 1 superharmonic resonance of the Duffing oscillator is investigated thanks
to high-order normal form approximations and analytical expressions. Equation (29) is considered
as starting point and the forcing frequency Ω is such that Ω ≃ 𝜔/3. The complex normal
form (CNF) up to order three is obtained from MORFE_Symbolic, and the expansion point for
computing the parametrisation has been selected as Ω𝑝 = 𝜔/3. The choice Ω𝑝 = 𝛿𝜔/3 has not
been selected in this case since it does not yield substantial simplifications to the coefficients. It
reads:

¤𝑧1 = 𝜆1𝑧1 + i
3ℎ

2𝛿𝜔 𝑧2
1𝑧2 + 243𝑖ℎ𝜅2

16𝛿𝜔5 (9𝜉2 + 16)𝑧1𝑧3𝑧4 − 729ℎ𝜅3

128𝛿𝜔7(3𝜉 − 4𝑖)3𝑧
3
3, (44)

where the notations of the previous sections are used, and the second equation for 𝑧2 has
been omitted since it is the complex conjugate. The associated nonlinear mapping is given in
Appendix H for the sake of completeness. As compared to the primary resonance, Equation (44)
contains fewer terms. On the other hand, only one more resonant monomial as compared to the
non-resonant case shown in Equation (32), is present. The added monomial is 𝑧3

3, which is indeed
the resonant term due to 3 : 1 superharmonic resonance, since 𝑧3 = eiΩ𝑡 and Ω ≃ 𝜔/3.

At this order three of the development, no terms in the reduced dynamics involve powers
of the forcing coordinates, such as 𝑧2

3 that was for example in Equation (35) for the primary
resonance. Consequently, no higher harmonics of the forcing will appear in the solution, such
that analytical expressions for the frequency response curve could be easily derived at this order.
Using the polar coordinates, redefining the phase as𝜓 = 𝜃 − 3𝜙 in order to render the system
autonomous, and searching for fixed points such that ¤𝜌 = ¤𝜓 = 0, the following relationship is
derived:

𝐵𝑟 +𝐴𝑖 sin (𝜓 ) +𝐴𝑟 cos (𝜓 ) = 0, (45a)
𝐵𝑖 −𝐴𝑟 sin (𝜓 ) +𝐴𝑖 cos (𝜓 ) = 0, (45b)

where 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 have explicit expressions as functions of the coefficients of the normal
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dynamics Equation (44):

𝐴𝑟 =
6561ℎ𝜅3𝜉

(
16 − 3𝜉2)

64𝛿 (9𝜉2 + 16)3 𝜔7
, 𝐴𝑖 = − 729ℎ𝜅3 (

27 − 6𝛿2)
16𝛿 (9𝜉2 + 16)3 𝜔7

𝐵𝑟 = −𝜌𝜉𝜔, 𝐵𝑖 = 𝜌𝛿𝜔 − 3𝜌Ω + 𝜌3 3ℎ
8𝛿𝜔 + 𝜌

243ℎ𝜅2

16𝛿 (9𝜉2 + 16)𝜔5 .

(46)

Squaring each line of Equation (45), summing and using sin2𝜓 + cos2𝜓 = 1 in order to eliminate
the angle𝜓 leads to the following relationship that gives the frequency response function, i.e. the
amplitude 𝜌 as a function of the forcing frequency Ω:

𝐴2
𝑖 +𝐴2

𝑟 = 𝐵2
𝑖 + 𝐵2

𝑟 . (47)

From this last equation, an explicit expression for the frequency response curve is derived, and
the coefficients from Equation (46) are substituted to obtain:

3𝜌Ω = 𝜌𝛿𝜔 + 𝜌3 3ℎ
23𝛿𝜔

+ 𝜌
35ℎ𝜅2

24𝛿 (9𝜉2 + 16)𝜔5 ±
√︄

312ℎ2𝜅6

212𝛿2𝜔14 (9𝜉2 + 16)3 − 𝜌2𝜉2𝜔2. (48)

This expression for the FRC of the superharmonic case is very close to the one obtained using
a first-order multiple scales expansion. It is however more general since no small damping
assumption has been made yet. Using a first-order expansion on the damping term 𝜉 , following
the guideline used in the previous section, gives:

3𝜌Ω = 𝜌𝜔 + 𝜌3 3ℎ
23𝜔

+ 𝜌
35ℎ𝜅2

28𝜔5 ±
√︂

312ℎ2𝜅6

224𝜔14 − 𝜌2𝜉2𝜔2, (49)

this last expression being exactly equivalent to the one reported in (Nayfeh and Mook 1995) using
the first-order method of multiple scales (MMS). At this level of the asymptotic expansion (order
3), the normal form of the superharmonic solution is thus equivalent to a first-order perturbative
solution. This is logical because in the present situation, the amplitude 𝜅 can no longer be
considered small, an effect that is accounted for in the multiple scales solution by assuming that
the forcing appears at the order zero of the solution, since a secondary resonance is considered.

The terms which are outside the square root in Equation (48), represent a shift of the
traditional backbone curve with forcing amplitude. Interestingly, this dependence only comes
from the monomial 𝑧1𝑧3𝑧4. The expression that describes this curve is

3𝜔NL = 𝛿𝜔 + 𝜌2 3ℎ
23𝛿𝜔

+ 35ℎ𝜅2

24𝛿 (9𝜉2 + 16)𝜔5 . (50)

When 𝜅 = 0, this last equation recovers the backbone curve of the primary resonance (see
Equation (18b) truncated at the third-order), which is simply shifted and scaled to one-third of the
eigenfrequency. For a fixed value of 𝜅 ≠ 0, it aligns to a backbone passing through the maximum
of the FRC, as illustrated in Figure 5(a).

Additionally, it is possible to derive an expression for the curve that connects the maxima of
the superharmonic FRCs, which can be viewed as a generalised backbone curve for this resonance
scenario. It is obtained as a curve parameterised by 𝜅: for each forcing amplitude, there is a value
for 𝜌 such that the frequency in Equation (48) is single-valued, and a corresponding value of Ω:

𝜌 (𝜅) =

√︄
312ℎ2𝜅6

212𝛿2𝜔16𝜉2 (9𝜉2 + 16)3 ,

Ω(𝜅) =
𝛿𝜔

3 + 312ℎ3𝜅6

215𝛿3𝜔17𝜉2 (9𝜉2 + 16)3 + 33ℎ𝜅2

23𝛿 (9𝜉2 + 16)𝜔5 .

(51)

Equations (48) to (49) are used to plot the FRCs in Figure 5(a) for three different values of
forcing amplitude: 𝜅 ∈ {0.5, 0.7, 0.9}. The other parameters are fixed as 𝜔 = 1, 𝜉 = 0.2, ℎ = 3.
The figure also shows different shifted backbones for the problem. The generalized backbone
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Figure 5 FRCs for the 3:1 superharmonic resonance of the damped cubic Duffing oscillator. The results are obtained
using a complex normal form style, and parameter values are set as 𝜔 = 1, ℎ = 3, 𝜉 = 0.2. (a) FRCs in
the frequency-amplitude of the normal coordinate plane. Note how the forcing-dependent backbones
follow the shift of the curves with increasing 𝜅 . In the legend, the grey lines indicate which equation has
been used to calculate each curve, while different colors are associated with different 𝜅 values. For 𝜅 = 0
there is no FRC, only the forcing-dependent backbone. (b) Three-dimensional view of the FRCs and of
the frequency response manifold. The curve that unites the peaks of the FRCs is also shown as a red
dash-dotted line.

curve, following the peaks of the FRCs and given by Equation (51), is shown in red dash-dotted
line. In Figure 5(a), the two expressions for the FRC, respectively without assumption on the
damping, Equation (48), or assuming a first-order, Equation (49), are also shown, underlining
the minimal difference that is brought about by considering accurately the damping ratio as
compared to the first-order perturbative solution. Note that, for illustrative purpose, values of 𝜌
largely exceeding 1 have been selected. Furthermore, the range of frequencies shown is large and
exceeds the vicinity of the superharmonic resonance, with values approaching the region where
the primary resonance influences the response. Therefore, the illustrative character of Figure 5(a)
should be kept in mind, where parameter values such that a clear shift of the FRCs could be
observed were chosen purposefully.

The curves are also plotted in 3D space in Figure 5(b), by adding the forcing amplitude 𝜅 as
an additional coordinate. A frequency response manifold, given by Equation (47) is represented in
order to highlight the set on which the solutions are. The generalised backbone curve given by
Equation (51) is represented as the red dash-dotted line joining all the maxima of this surface.

Figure 6 completes the analysis for this case, presenting the FRCs in terms of physical
displacement amplitude, 𝑢max, and for higher orders of parametrisation. The curves therein are
obtained, such as in the primary resonance case, by numerical continuation with the package
Matcont (Dhooge et al. 2004), since it is not possible to find an analytical expression relating
𝑢max to 𝜌 . The figure also shows the multiple scales solution given by Nayfeh and Mook (1995, p.
176). It should be noted that, in contrast with the case of primary resonance, this solution does
not simply assume that 𝑢max = 𝜌 . Indeed, the time series of the displacement is given as

𝑢 = 𝜌 cos (3Ω𝑡 − 𝛾) + 𝜅

𝜔2 − Ω2 cos Ω𝑡, (52)

with 𝛾 being a phase defined in the reference, in the same page mentioned before. The curve
corresponding to this solution was found by calculating the maxima of this expression over a
period of oscillation for different values of 𝜌 . Note that, since the damping is small, the difference
between this curve and the one of the O(𝑧3, 𝜀3) parametrisation is only due to the nonlinear
mappings relating 𝑢 to 𝜌 . Consequently, even though the same FRC in terms of 𝜌 is found for
both of them, the approximation given by the normal form computation up to order 3 is more
accurate in this case, thanks to the correction brought about by the mapping. Nevertheless, an
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order three expansion is still not enough when compared to the response of the full system,
i.e. higher order terms need to be taken into account to converge to the exact solution, which
happens at order seven.
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Figure 6 FRCs for the 3:1 superharmonic resonance of the damped cubic Duffing oscillator. Parameter values
are 𝜔 = 1.5, ℎ = 1, 𝜉 = 0.002 and 𝜅 = 0.5. Comparison of numerically computed FRCs, obtained from
MORFE_Symbolic and solved using numerical continuation, with a reference solution, also obtained by
continuation but on the original equations, and with the first-order multiple scales solution (MMS).

At this point it is interesting to highlight that the solution obtained by the CNF converges to
the reference one only in the vicinity of the superharmonic resonance, but starts to show slight
discrepancies outside this region, see e.g. for Ω/𝜔 > 0.35 in Figure 6. This is inherent to the
local nature of the normal form solutions, that are developed for specific resonances, and which
should not be expected to converge for the whole range of forcing frequencies. Specifically,
the reference solution starts to be affected by the primary resonance when Ω/𝜔 > 0.35. This
effect is not captured by the normal form solution, no matter the maximal order chosen for the
parametrisation.

3.2.4 Subharmonic resonance

In this section, the 1 : 3 subharmonic resonance, where the excitation frequency is in the vicinity
of three times the natural frequency 𝜔 , is investigated, for the Duffing equation with cubic
nonlinearity, Equation (29). The complex normal form (CNF) up to the third order for both
autonomous and non-autonomous variables, with the expansion point for the parametrisation
being Ω𝑝 = 3𝜔 is

¤𝑧1 = 𝜆1𝑧1 + 3𝑖ℎ
2𝛿𝜔 𝑧2

1𝑧2 + 3𝑖ℎ𝜅2

16𝛿𝜔5 (16 + 9𝜉2)𝑧1𝑧3𝑧4 − 3ℎ𝜅 (3𝜉 − 4𝑖)
8𝛿𝜔3(16 + 9𝜉2)𝑧

2
2𝑧3. (53)

Again, the equation for 𝑧2 is not reported for the sake of brevity, being the complex conjugate.
The nonlinear mapping up to order 3 is reported in Appendix I. The normal form dynamics looks
similar to the superharmonic case, only the last monomial being changed, since now the resonant
monomial with the assumption Ω ≃ 3𝜔 is 𝑧2

2𝑧3. The term 𝑧2
1𝑧2 refers to the cubic nonlinearity,

while the second monomial 𝑧1𝑧3𝑧4 is the trivially resonant term, scaling as the square of the
forcing amplitude 𝜅2, and making clearly appear the hard non-resonant excitation that is key for
secondary resonances.

Proceeding similarly as in the superharmonic case to find an analytic expression for the FRC,
the system to solve can be put in the following form, this time with𝜓 = 3𝜃 − 𝜙 :

𝐵𝑟 +𝐴𝑖 sin (𝜓 ) +𝐴𝑟 cos (𝜓 ) = 0, (54)
𝐵𝑖 −𝐴𝑟 sin (𝜓 ) +𝐴𝑖 cos (𝜓 ) = 0, (55)

with:

𝐴𝑟 = −𝜌2 32ℎ𝜅𝜉

24𝛿𝜔3 (16 + 9𝜉2) , 𝐴𝑖 = 𝜌2 3ℎ𝜅
22𝛿𝜔3 (16 + 9𝜉2) , (56a)
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𝐵𝑟 = −𝜌𝜉𝜔, 𝐵𝑖 = 𝜌𝛿𝜔 − 𝜌
Ω

3 + 𝜌3 3ℎ
23𝛿𝜔

+ 𝜌
3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) . (56b)

Solving the system, it is possible to find the following expression for the FRC:

𝐴2
𝑖 +𝐴2

𝑟 = 𝐵2
𝑖 + 𝐵2

𝑟 . (57)

Substituting coefficients 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 into this expression yields a biquadratic equation
in 𝜌 . A peculiarity of the subharmonic resonance is to give rise to detached solution branches or
isola, that are not connected to the main solution branch (Nayfeh and Mook 1995). Consequently,
deriving the existence condition for such solutions is important in this context. The derivation of
this condition from the biquadratic equation is reported in Appendix J. Only the result is shown
here, the boundary for the region where solutions can exist being given by

Ω = 3𝛿𝜔 + 63ℎ𝜅2

27𝛿𝜔5 (16 + 9𝜉2) +
25𝛿𝜔𝜉2 (

16 + 9𝜉2)
ℎ𝜅2 . (58)

From Equation (57) it is also possible to derive an explicit expression for the FRC:

Ω

3 = 𝛿𝜔 + 3ℎ
23𝛿𝜔

𝜌2 + 3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) ±
√︄

32ℎ2𝜅2

28𝛿2𝜔6 (16 + 9𝜉2) 𝜌
2 − 𝜉2𝜔2. (59)

As in the superharmonic case, the terms outside the square root in Equation (59) can be
interpreted to understand the shift of the primary resonance backbone curve for this subharmonic
scenario, including the effect of the monomial 𝑧1𝑧3𝑧4. Its expression is given by

𝜔NL
3 = 𝛿𝜔 + 3ℎ

23𝛿𝜔
𝜌2 + 3ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) . (60)

Also, by requiring Equation (59) to be single-valued, a generalised backbone curve that
connects the minima of the FRCs’ isolas can be obtained as:

𝜌 (𝜅) =
24𝜔4𝛿𝜉

√︁
16 + 9𝜉2

3ℎ𝜅 ,

Ω(𝜅) = 3𝛿𝜔 + 25𝜔7𝛿𝜉2 (
16 + 9𝜉2)

ℎ𝜅2 + 32ℎ𝜅2

24𝛿𝜔5 (16 + 9𝜉2) .
(61)

The FRC can be further simplified by adopting a small damping hypothesis. Similarly to the
previous superharmonic case, this assumption allows us to recover exactly the solution given by
the first-order multiple scales development (Nayfeh and Mook 1995):

Ω

3 = 𝜔 + 3ℎ
23𝜔

𝜌2 + 3ℎ𝜅2

28𝜔5 ±
√︂

32ℎ2𝜅2

212𝛿2𝜔6 𝜌
2 − 𝜉2𝜔2. (62)

The small damping assumption allows for an additional simplification in the expression of
the boundary of the existence region, Equation (58), that also results in the same formula as the
one found with a first-order multiple scales solution:

Ω = 3𝜔 + 63ℎ𝜅2

211𝜔5 + 29𝜔7𝜉2

ℎ𝜅2 . (63)

It should be noted that Equation (63) is quite close to the second expression in Equation (61)
once it is simplified to retain only first-order terms in the damping:

Ω = 3𝜔 + 32ℎ𝜅2

28𝛿𝜔5 + 29𝜔7𝜉2

ℎ𝜅2 . (64)

The two curves have different interpretations, however. While Equation (63) gives the possible
combinations of parameters Ω and 𝜅 such that non-trivial solutions might exist, Equation (64)
only gives the frequency value at which the minimum of the FRC occurs as a function of 𝜅 . Both
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Figure 7 1:3 subharmonic resonance of the damped cubic Duffing oscillator. Results obtained using a complex
normal form style, with parameter values as 𝜔 = 1.5, ℎ = 1 and 𝜉 = 0.02. (a) Comparison of the existence
condition and the curve following the FRCs minima in (Ω, 𝜅2) space. (b) FRCs for 𝜅 = 5, 10, 15. The figure
also shows the shifted backbones and generalised backbone joining the FRCs minima. In the legend,
the grey lines indicate which equation has been used to calculate each curve, while different colors are
associated with different 𝜅 values. For 𝜅 = 0 there is no FRC, only the forcing-dependent backbone.

expressions are plotted in Figure 7(a), with parameter values fixed as 𝜔 = 1.5, ℎ = 1 and 𝜉 = 0.02.
It is worth mentioning that the curve defining the FRC minima lies inside the existence region
given by Equation (63), as should be expected.

Equations (59) to (62) are used to plot the FRCs in Figure 7(b). For the figure, the forcing
amplitude assumed three values: 𝜅 ∈ {5, 10, 15}, each of which is associated with blue, dark green
and light green curves, respectively, while the other parameters remained the same as in the
previous plot. The figure also shows the shifted backbones given by Equation (60) for the three
different forcing values; and for 𝜅 = 0. The generalised backbone that connects the minima of the
FRCs, whose expression is found in Equation (61), is also shown, in red dash-dotted line.

Numerical results are also presented for this situation in Figure 8, where the FRCs in terms of
physical displacement amplitude𝑢max are plotted. Once again, the numerical continuation package
Matcont (Dhooge et al. 2004) is employed to find the FRCs stemming from MORFE_Symbolic
and that of the full system. Additionally, a first-order multiple scales solution is also presented.
Its displacement time series is obtained from

𝑢 = 𝜌 cos 1
3 (Ω𝑡 − 𝛾) + 𝜅

𝜔2 − Ω2 cos Ω𝑡, (65)

with 𝛾 defined in (Nayfeh and Mook 1995), page 180. The difference between the multiple scales
solution and the one from the O(𝑧3, 𝜀3) parametrisation is even more pronounced in this case, as
compared to the superharmonic resonance scenario. Again, the nonlinear mappings arising from
the parametrisation method prove essential to obtain accurate approximations of the full system.
Comparing the curves from the Figure 8, it can be seen that convergence is more difficult to
reach. However, an order 9 parametrisation seems to be an acceptable approximation to the
reference curve in the displayed frequency range.

3.3 Parametric excitation
In this section, the case of a parametric excitation is considered. The starting point is a damped
cubic Duffing equation with a forcing on the right-hand side that depends on the displacement,
reading:

¥𝑢 + 2𝜉𝜔 ¤𝑢 + 𝜔2𝑢 + ℎ𝑢3 = 𝜅𝑢 cos Ω𝑡 . (66)

There exist several parametric instabilities for different values of the excitation frequency Ω, that
are generally reported in a so-called Strutt-Ince stability diagram, see e.g. (Nayfeh and Mook 1995;
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Figure 8 FRCs for the 1:3 subharmonic resonance of the damped cubic Duffing oscillator. Parameter values
are 𝜔 = 1.5, ℎ = 1, 𝜉 = 0.002 and 𝜅 = 1. Comparison of numerically computed FRCs, obtained from
MORFE_Symbolic with higher orders and solved by continuation, with a reference solution, also obtained
by continuation, and with the first-order multiple scales solution (MMS).

Grandi et al. 2021). Here, the analysis is restricted to the primary parametric resonance when the
excitation frequency is close to twice the eigenfrequency, Ω ≃ 2𝜔 . The package MORFE_Symbolic
relies on the generic treatment of non-autonomous terms proposed in (Vizzaccaro et al. 2024),
which can handle a first-order differential-algebraic equation (DAE). Also, the starting point
assumes that a quadratic recast of the equations of motion has been performed, by adding new
variables to express the initial problem with only quadratic nonlinearities (Guillot et al. 2019).
Equation (66) is thus rewritten as follows to be automatically treated by MORFE_Symbolic:

¤𝑢 = 𝑣, (67a)
¤𝑣 = −2𝜉𝜔𝑣 − 𝜔2𝑢 − ℎ𝑢𝑟1 + 𝑢𝑟2, (67b)
0 = 𝑟1 − 𝑢2, (67c)

0 = 𝑟2 − 𝜅

2 (𝑧3 + 𝑧4) , (67d)

¤𝑧3 = 𝑖Ω𝑧3, (67e)
¤𝑧4 = −𝑖Ω𝑧4. (67f)

The complex normal form (CNF), up to the third order, is given in the equation that follows. The
expansion point for the parametrisation is selected as Ω𝑝 = 2𝜔 .

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧2𝑧3 + 𝑓4𝑧1𝑧3𝑧4. (68)

Again, note that, as compared to the out-of-resonance scenario shown in Equation (34), the only
added monomial to be considered for the parametric excitation is 𝑧2𝑧3, which is indeed resonant
since Ω ≃ 2𝜔 . The coefficients 𝑓𝑗 , 𝑗 = 1, . . . , 4 in Equation (68) are

𝑓1 = 𝜆1 = −𝜉𝜔 + 𝑖𝜔𝛿, 𝑓2 = 𝑖
3ℎ

2𝛿𝜔 , (69a)

𝑓3 = −𝑖 𝜅

22𝛿𝜔
, 𝑓4 = 𝑖

𝜅2(𝛿 − 1)
25𝜔3𝜉2𝛿2 . (69b)

Note in particular that in the present case, 𝑓2, 𝑓3 and 𝑓4 are purely imaginary, which is a consequence
of the starting point Equation (66). However, in a more general context of parametrically excited
systems, these coefficients can have a non-vanishing real part. This is observed for example in the
case of continuous structures where an external forcing leads to a parametric excitation, as the
case studied for example in (Opreni et al. 2023) (beam with in-plane forcing where the parametric
excitation leads to transverse vibrations), and in (Frangi et al. 2025) (parametric excitation due to
electro-mechanical coupling). Hence, for the sake of generality, all the introduced coefficients are
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considered to be complex, with 𝑓𝑗 = 𝑓 𝑅𝑗 + 𝑖 𝑓 𝐼𝑗 to distinguish real and imaginary parts. This point
is further addressed in Section 4.2 where a parametrically excited two-dofs system is considered.
Note finally that 𝑓4 scales with 𝜅2, it is thus a second-order term with respect to the forcing,
which is neglected with first-order assumptions used in (Breunung and Haller 2018; Jain and
Haller 2022; Opreni et al. 2023), and also neglected in first-order perturbative solutions, such as
the MMS and the method of varying amplitude, as can be seen in (Benacchio et al. 2022).

Substituting 𝑧1 = 𝜌/2𝑒𝑖𝜃 and 𝑧2 = 𝜌/2𝑒−𝑖𝜃 , defining𝜓 = 2𝜃 −Ω𝑡 = 2𝜃 −𝜙 to make the system
autonomous, we obtain a first-order autonomous dynamical system

¤𝜌 = 𝐵𝑟 +𝐴𝑟 cos𝜓 +𝐴𝑖 sin𝜓, (70a)
𝜌

2
¤𝜓 = 𝐵𝑖 −𝐴𝑟 sin𝜓 +𝐴𝑖 cos𝜓 . (70b)

where the introduced coefficients are written as a function of the real and imaginary parts of the
𝑓𝑗 (respectively denoted as 𝑓 𝑅𝑗 and 𝑓 𝐼𝑗 ) as:

𝐴𝑟 = 𝜌 𝑓 𝑅3 , 𝐵𝑟 = 𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅4 , (71a)

𝐴𝑖 = 𝜌 𝑓 𝐼3 , 𝐵𝑖 = 𝜌 𝑓 𝐼1 − 𝜌
Ω

2 + 𝜌3

4 𝑓 𝐼2 + 𝜌 𝑓 𝐼4 . (71b)

Following the same procedure as in the previous superharmonic and subharmonic cases, an
implicit expression for the branches of solutions (FRC) is

𝐴2
𝑟 +𝐴2

𝑖 = 𝐵2
𝑟 + 𝐵2

𝑖 . (72)

Once the values of 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 are substituted, it is possible to factor out 𝜌 from all the
terms, resulting in an equation of the form 𝜌2 𝑓 (Ω, 𝜌) = 0. Thus, 𝜌 = 0 is always a fixed point of
the system, which is a known result in parametrically excited systems (Nayfeh and Mook 1995).
The non-zero solution for the amplitude 𝜌 , that yields an explicit expression for the bifurcated
solution branches, can be found by solving for 𝑓 (Ω, 𝜌) = 0, which gives

Ω2

4 − 𝑔𝐼 (𝜌)Ω + |𝑔(𝜌) |2 − |𝑓3 |2 = 0, (73)

where the complex 𝑔(𝜌) = 𝑔𝑅 (𝜌) + 𝑖𝑔𝐼 (𝜌) has been introduced as

𝑔(𝜌) = 𝑓 𝑅1 + 𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4 + 𝑖
(
𝑓 𝐼1 + 𝜌2

4 𝑓 𝐼2 + 𝑓 𝐼4

)
. (74)

The solutions to Equation (73) are

Ω = 2
(
𝑓 𝐼1 + 𝜌2

4 𝑓 𝐼2 + 𝑓 𝐼4

)
± 2

√︄
|𝑓3 |2 −

(
𝑓 𝑅1 + 𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4

)2
, (75)

which is an explicit expression for the FRC of the parametric excitation. In the present case for
the coefficients 𝑓𝑗 given in Equation (69), this equation is

Ω = 2𝜔𝛿
(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2 + 𝜅2(𝛿 − 1)

25𝜔4𝛿3𝜉2

)
± 2

√︂
𝜅2

24𝜔2𝛿2 − 𝜉2𝜔2. (76)

To simplify Equation (76), a first level of approximation can be found by neglecting high order
terms on the forcing, i.e. the third term that scales with 𝜅2 in the first bracket disappears. This
term comes from the monomial 𝑧1𝑧3𝑧4 and is a second-order term for the forcing, which is
neglected in usual perturbative solutions. With this assumption, the expression for the FRC
simplifies to

Ω = 2𝜔𝛿
(
1 + 3ℎ

23𝛿2𝜔2 𝜌
2
)
± 2

√︂
𝜅2

24𝜔2𝛿2 − 𝜉2𝜔2. (77)
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Figure 9 Parametric excitation with parameter values set as 𝜔 = 1 and ℎ = 1, and a complex normal form analysis.
(a) Marginal stability curves or Floquet tongues for 𝜉 = 0, 0.05, 0.1, 0.2. (b) FRCs for different levels of
approximation. The damping factor is set as 𝜉 = 0.2 and the forcing amplitude as 𝜅 = 1.

Following that, the solution given by a first-order multiple scales development can be retrieved
by further imposing a small damping assumption, where only the leading order term in 𝜉 is kept
and 𝛿 = 1 is set. The FRC is then

Ω = 2𝜔
(
1 + 3ℎ

23𝜔2 𝜌
2
)
± 2

√︂
𝜅2

24𝜔2 − 𝜉2𝜔2. (78)

The bifurcation points from which the non-zero solution emerges are found by letting 𝜌 = 0
in Equation (76). Let us call Ω𝑎,𝑏 these two period-doubling points, where a Hopf bifurcation
occurs since a fixed point loses stability and a limit cycle emerges. They read, for the simple case
of Equation (66)

Ω𝑎,𝑏 = 2𝜔𝛿
(
1 + 𝜅2(𝛿 − 1)

25𝜔4𝛿3𝜉2

)
± 2

√︂
𝜅2

24𝜔2𝛿2 − 𝜉2𝜔2. (79)

These two equations can be represented as a function of the forcing amplitude 𝜅 and give the
marginal stability curves (or Floquet tongues) where the parametric excitation gives rise to
non-zero solutions. They are presented in Figure 9(a) for different values of 𝜉 , and retrieve the
usual result where the minimum of these tongues increases with the damping ratio. Interestingly,
the curves are not symmetric, a feature already reported with MMS solutions, see e.g. (Thomsen
2003), such that their shapes in the low-frequency range lead to crossing points, see Figure 9(a).
About the bifurcated branches, their stability can be analyzed through a linear stability analysis.
The detailed calculations for this case are presented in Appendix K.

A further level of refinement of the solution can be obtained by pushing the normal form
development up to order four. In this case, the expression for the FRC becomes more complicated,
but has the same form as Equation (40). For the sake of conciseness, the explicit expressions are
not reported here, but are compared to the solutions given by Equations (76) to (78) in Figure 9(b),
where the stability calculations developed in Appendix K are also included by indicating the
unstable sections of the FRC with dashed lines. In the Figure 9(b), the influence of different terms
on the FRC expression can be appreciated. While passing from the multiple scales solution to the
complete order three normal form development, the effect of not considering small damping
(𝛿2 ≈ 1) is responsible for displacing the bifurcation points, see Figure 9(b). Additionally, the
effect of the 𝑧1𝑧3𝑧4 monomial is given by a shift in the midpoint between the two bifurcation
points, generated by the term proportional to 𝜅2 inside the bracket in Equation (78). Interestingly,
the two bifurcated branches of the FRC do not close with a third-order approximation in the
normal form. This can be easily seen from the equations since the term under the square root is
constant, see also Figure 9(b). This result is however particular to the starting point used in this
study and the fact that the 𝑓𝑗 coefficients reported in Equation (69) are purely imaginary. A case
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Figure 10 FRCs for the parametric resonance of the damped cubic, parametrically excited Duffing oscillator. Common
parameters for both figures are 𝜔 = 1 and ℎ = 1. Comparison of numerically computed FRCs, obtained
from MORFE_Symbolic, with a reference solution obtained by numerical continuation. (a) Backbones for
small levels of forcing and damping, with 𝜉 = 0.01 and 𝜅 = 0.043. (a) Backbones for higher levels of forcing
and damping, with 𝜉 = 0.2 and 𝜅 = 0.9.

with non-vanishing real parts is shown in Section 4.2 to extend the analysis. Note that, in the
presented first-order perturbative solution, the solution branches are closing by using the actual
forcing frequency Ω in the equations, as done for example in (Thomsen 2003) for the MMS and
in (Benacchio et al. 2022) for the method of varying amplitude, a particular feature of these
methods. In the present formulation, where the expansion is centered around fixed frequency Ω𝑝 ,
a fourth-order normal form needs to be computed in order to recover the expected solution with
closing bifurcated branches.

This resonance scenario is also studied numerically in Figure 10. The FRCs for the physical
maximal displacement 𝑢max are obtained from the output of MORFE_Symbolic, which is then
solved numerically with a continuation procedure using the package Matcont (Dhooge et al.
2004). They are compared to the full system solutions, taken as reference, and obtained by
numerical continuation directly on the initial problem. Two sets of parameter values are selected
to highlight different features of the solutions. In Figure 10(a), parameter values are set as 𝜔 = 1,
ℎ = 1, 𝜉 = 0.02 and 𝜅 = 0.043. In this case, the order 3 solution is omitted, since its bifurcated
branches do not close. Full convergence is obtained for an order 11 development. In Figure 10(b),
the values of both the forcing and damping are severely increased to 𝜅 = 0.9 and 𝜉 = 0.2, while
keeping 𝜔 = 1 and ℎ = 1. This choice has been selected in order to better underline their effect
on the bifurcation point and illustrate how these particular features are retrieved by the CNF
solution. The numerical results show that the prediction of the bifurcation point given by the
CNF is confirmed. MMS solutions and order three developments completely overpredict the
maximum amplitude, such that higher orders are mandatorily needed. Note, however, that, with
this choice of parameters, the CNF does not converge to the exact solution. Even though all
the features are correctly retrieved, an underestimation in the maximum amplitude persists,
underlining that the validity limits of the method have been reached. Also, a small shift in the
bifurcation points that could not be captured by the CNF is visible.

4 Theoretical results, high-order developments on two-dof systems

This section aims to illustrate, with simple examples involving a two-degrees-of-freedom system,
how the presence of a slave mode can modify the dynamics of the master mode. Three different
cases with a master reduced dynamics considering a single NNM are considered. First, a generic
two-dof system without internal resonance is considered in order to highlight the effects of the
linear and nonlinear characteristics of the slave mode on the dynamics of the master mode. Then,
a parametrically excited two-dof system is considered. Finally, a mechanical system that serves as
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an illustrative example is used to highlight the previous findings.

4.1 Case without internal resonance
A conservative two-dof system with quadratic and cubic nonlinearities is considered as the
starting point:

¥𝑢1 + 𝜔2
1𝑢1 + 𝑔1

11𝑢
2
1 + 𝑔1

12𝑢1𝑢2 + 𝑔1
22𝑢

2
2 + ℎ1

111𝑢
3
1 + ℎ1

112𝑢
2
1𝑢2 + ℎ1

122𝑢1𝑢
2
2 + ℎ1

222𝑢
3
2 = 0, (80a)

¥𝑢2 + 𝜔2
2𝑢2 + 𝑔2

11𝑢
2
1 + 𝑔2

12𝑢1𝑢2 + 𝑔2
22𝑢

2
2 + ℎ2

111𝑢
3
1 + ℎ2

112𝑢
2
1𝑢2 + ℎ2

122𝑢1𝑢
2
2 + ℎ2

222𝑢
3
2 = 0. (80b)

Note that, when needed, modal damping of the form 2𝜉 𝑗𝜔 𝑗 ¤𝑢 𝑗 , for 𝑗 = 1, 2, can be added to
take losses into account. Also, external forcing can be appended to the right-hand sides. Since
the internal forces of mechanical systems are generally derived from a potential energy, some
symmetry relationships exist between the quadratic and cubic coefficients, see e.g. Appendix A
in (Touzé et al. 2021) for a general discussion. In the present case, the quadratic coefficients
satisfy

𝑔1
12 = 2𝑔2

11, and 𝑔2
12 = 2𝑔1

22, (81)

meaning that only four free coefficients are at hand for quadratic terms. Of the 8 possible cubic
nonlinear coefficients, only 5 are free since the following three relationships are fulfilled:

ℎ1
112 = 3ℎ2

111, ℎ1
122 = ℎ2

112, and ℎ2
122 = 3ℎ1

222. (82)

Assume that mode 1 is the master mode, and that no internal resonance exists between 𝜔1 and
𝜔2. In that case, the reduced dynamics contains a single pair of master coordinates, (𝑧1, 𝑧2). Since
the analytical expressions become too lengthy for an easy interpretation, we begin with the case
of a system with only cubic nonlinearities, such that all 𝑔𝑝𝑖 𝑗 coefficients vanish, for 𝑝, 𝑖, 𝑗 = 1, 2.
The reduced dynamics, up to order 5 is then

¤𝑧1 = i𝜔1𝑧1 + i
3ℎ1

111
2𝜔1

𝑧2
1𝑧2 + 3i

(
(41𝜔2

1 − 5𝜔2
2)

(
ℎ2

111
)2

𝜔1(9𝜔2
1 − 𝜔2

2) (𝜔2
1 − 𝜔2

2)
− 17

(
ℎ1

111
)2

16𝜔3
1

)
𝑧3

1𝑧
2
2 . (83)

This result has been obtained with MORFE_Symbolic using the complex normal form style, and
the assumptions given by Equation (82) have been taken into account. The nonlinear mappings
that relate the original coordinates (𝑢1, 𝑣1, 𝑢2, 𝑣2) to the normal complex master variables (𝑧1, 𝑧2),
are reported in Appendix L.

It is interesting to observe that only two cubic coefficients appear in the reduced dynamics:
ℎ1

111 and ℎ2
111. While ℎ1

111 refers only to the cubic term in 𝑢1 and logically appears in Equation (83),
the other cubic coefficient which plays a role is ℎ2

111. Because of the symmetry relationship Equa-
tion (82), this coefficient is related to two different monomials: the invariant-breaking term 𝑢3

1 in
the second equation, and 𝑢2

1𝑢2 in the first equation. The invariant-breaking term is the only
one (in such two-dofs scenario) responsible for the loss of invariance of the linear eigenspace.
Consequently, only ℎ2

111 is responsible for the curvatures of the invariant manifold in phase
space. This is also evident in the equations governing the geometry of the manifolds, which are
contained in the nonlinear mappings reported in Appendix L. Notice that enforcing ℎ2

111 = 0
in Equation (L.1) leads to 𝑢2 = 𝑣2 = 0, showing that the manifold has no extra curvatures in
the direction of the second mode. Finally, looking in detail into the analytical equations of the
nonlinear mappings shown in Appendix L, one can see that these expressions only depend
on ℎ1

111, ℎ2
111, and ℎ1

122. Again, it appears logical that ℎ1
122 is involved since it is linked in the

first equation to the second trivially resonant monomial 𝑢1𝑢
2
2 (but also to monomial 𝑢2

1𝑢2 in the
second equation due to symmetry), following the terminology introduced in (Touzé et al. 2004;
Touzé 2014; Touzé et al. 2021). Interestingly, the present calculations underline that up to order
5 this term has an effect only on the nonlinear mappings, but not on the reduced dynamics.
However, once higher-order developments are pursued, the other missing coefficients start to
appear, first in the nonlinear mappings and then in the reduced dynamics equations. As a final
remark on higher orders, we highlight that the monomials present in the reduced dynamics are
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the same as the ones examined for the Duffing equation, due to the simple rule of construction of
the resonance. In the present case, only terms of the form 𝑧

𝑝+1
1 𝑧

𝑝
2 , with 𝑝 ⩾ 1, will stay in the

reduced dynamics, while the coefficients are modified by the presence of the second oscillator.
Thanks to the property of the CNF already underlined in Section 2.1, the backbone curve is

analytic up to the desired order. Since the coefficients are lengthy for orders higher than 5, only
the fifth-order is shown here, but of course, closed-form expressions are readily available for
high-order terms:

𝜔NL
𝜔1

= 1 + 3
8
ℎ1

111
𝜔2

1
𝜌2 + 3

16

(
41𝜔2

1 − 5𝜔2
2

(9𝜔2
1 − 𝜔2

2) (𝜔2
1 − 𝜔2

2)

(
ℎ2

111
𝜔2

1

)2

− 17
16

(
ℎ1

111
𝜔2

1

)2)
𝜌4. (84)

Interestingly, the coefficient ℎ2
111 which appears in the cubic term might have an effect on the

hardening/softening behaviour at large amplitude. If the first-order term is unequivocally dictated
by the value of ℎ1

111, one can see that the next order depends in a complicated manner also on
ℎ2

111, 𝜔1 and 𝜔2. This is illustrated in Figure 11(a) where three different scenarios have been
tested. In each case, a high-order backbone curve is computed from the expressions obtained
with the parametrisation method up to order 25, and is compared to a reference solution obtained
by a numerical continuation technique.
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Figure 11 Backbones up to order 25 for the 2-dofs system without internal resonance. The curves were obtained
using a complex normal form style, and parameter values were fixed as 𝜔1 = 1, ℎ1

111 = 1, ℎ2
111, 𝑔1

11 and
𝑔2

11 varying, and all other nonlinear stiffness coefficients zero (other than the ones fixed by symmetry
conditions). The backbones given by the parametrisation method are compared with reference solutions
obtained using the numerical continuation package Matcont (Dhooge et al. 2004). (a) Oscillator with
only cubic coefficients. (b) Oscillator with quadratic and cubic coefficients. Additional parameters fixed:
𝜔2 = 1.57, ℎ2

111 = 1.

The first case is where the invariant-breaking term vanishes, i.e. ℎ2
111 = 0. In such a case, the

backbone follows that of a single-dof Duffing equation. Then two other cases are selected, using
ℎ2

111 = 1, 𝜔1 = 1, and either 𝜔2 = 1.57, or 𝜔2 = 0.637. The slave mode’s eigenfrequencies were
purposefully selected such that no low-order resonance relationships are verified. Figure 11(a)
shows the obtained results. When 𝜔2 = 1.57, some terms in the quintic coefficient shown in
Equation (84) are negative, such that the hardening behaviour turns back to softening at higher
amplitudes. This effect is correctly captured by the asymptotic solution to order 25 which is close
to the numerical solution up to amplitudes around 0.65. In this case, the validity limit of the
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asymptotic approach seems to decrease as compared to the case ℎ2
111 = 0. On the other hand,

when the slave mode has the lowest eigenfrequency with 𝜔2 = 0.637, the hardening behaviour is
enhanced by the higher-order terms. In this case, the validity limit seems to be even smaller since
the order 25 solution departs from the reference from amplitudes around 0.45.

We now consider the effect of the quadratic terms by considering all quadratic and cubic
coefficients in Equation (80). Since the full analytical expressions begin to be lengthy, only the
third-order reduced dynamics with CNF is reported to see how the quadratic coefficients aggregate
to form the third-order coefficient in the normal form that dictates the hardening/softening
behaviour. It reads:

¤𝑧1 = i𝜔1𝑧1 + i𝜔1

(
3
2
ℎ1

111
𝜔2

1
− 5

3

(
𝑔1

11
𝜔2

1

)2

− 8𝜔2
1 − 3𝜔2

2
4𝜔2

1 − 𝜔2
2

(
𝑔2

11
𝜔1𝜔2

)2)
𝑧2

1𝑧2. (85)

Notice that, at this order, two quadratic coefficients are of special interest. First, the “self-
quadratic” one, 𝑔1

11, which is present in a single-dof Duffing analysis, see Section 3.1. Second, the
invariant-breaking quadratic coefficient 𝑔2

11. Also note that the denominator of the invariant
breaking term vanishes when a 2:1 internal resonance such that 𝜔2 = 2𝜔1 is met, a feature
already discussed in (Touzé et al. 2004; Touzé and Thomas 2006).

Figure 11(b) illustrates this effect of the quadratic terms by considering the increase of both
𝑔1

11 and 𝑔2
11 with the same trend, by imposing 𝑔1

11 = 𝑔2
11, and increasing them from 0.5 to 1.5.

As expected, the quadratic nonlinearity favours the softening behaviour, and one can see that
the types of behaviour ranged by this choice are various and generally well reproduced by the
normal form analysis, up to a certain amplitude that should correspond to the validity limit of the
asymptotic development.

4.2 Parametrically excited system
This section considers a simplified two-dofs system which is representative of a flat structure
that is externally excited with an in-plane force, which leads to transverse vibrations through a
parametric excitation. In such a case, studied numerically with a cantilever beam in (Opreni et al.
2023), the external forcing transforms to a parametric excitation in the reduced dynamics. The
simplest system that can reproduce such an effect needs to contain a quadratic coupling between
master and slave modes, as is the case in beam structures, for example, (Vizzaccaro et al. 2020;
Givois et al. 2019). The model introduced in (Vizzaccaro, Salles, et al. 2021) is thus selected here,
i.e.

¥𝑢1 + 2𝜉 ¤𝑢1 + 𝑢1 + 2𝑔𝑢1𝑢2 + ℎ𝑢3
1 = 0, (86a)

¥𝑢2 + 2𝜉𝜔2 ¤𝑢2 + 𝜔2
2𝑢2 + 𝑔𝑢2

1 = 𝜅 cos Ω𝑡, (86b)

where the forcing frequency Ω is selected in the vicinity of twice the eigenfrequency of the master
mode (normalized at 1 here), Ω ≈ 2, in order to activate the principal parametric resonance.
Additionally, a small damping assumption is introduced to simplify the coefficients. In this case,
the reduced dynamics up to the third order, with a parametrisation computed with the choice
Ω𝑝 = 2, is

¤𝑧1 = 𝑓1𝑧1 + 𝑓2𝑧
2
1𝑧2 + 𝑓3𝑧2𝑧3 + 𝑓4𝑧1𝑧3𝑧4, (87)

with the coefficients

𝑓1 = i − 𝜉, 𝑓3 =
𝑔𝜅 (i − 𝜉)

2 (i𝜉 + 1) (𝜔2 − 2) (4i𝜉 + 𝜔2 + 2) , 𝑓4 = −𝑔
2𝜅2 (2i − 7𝜉)
32(𝜔2

2 − 4)2

𝑓2 =
(i − 𝜉) (−16𝑔2i𝜉𝜔2 + 32𝑔2i𝜉 − 6𝑔2𝜔2

2 + 16𝑔2 − 12ℎi𝜉𝜔3
2 + 24ℎi𝜉𝜔2

2 − 3ℎ𝜔4
2 + 12ℎ𝜔2

2
)

2𝜔2
2 (i𝜉 + 1) (𝜔2 − 2) (4i𝜉 + 𝜔2 + 2) .

(88)

The reduced dynamics equation is, as expected, the same as the one shown in Equation (68).
In this situation, however, the coefficients 𝑓𝑗 , and in particular 𝑓2, have non-vanishing real parts.
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Figure 12 Externally forced 2-dofs system leading to a parametric resonance, Equation (86). Comparison of the
results obtained with a third-order complex normal form style and the method of multiple scales (MMS).
Parameter values set as 𝜔2 = 1.57, 𝜉 = 0.2, ℎ = 0.5, 𝑔 = 5 and 𝜅 = 0.2.

As a consequence, the term under the square root in Equation (75) depends on 𝜌 and the FRC
closes at order three. This situation is illustrated in Figure 12.

From the figure, note that for the selected parameter values the bifurcated branches of the
FRC display a softening behaviour. Inspecting Equation (75) shows that the hardening/softening
behaviour is governed by the imaginary part 𝑓 𝐼2 of the coefficient 𝑓2. In the present case, it can be
written explicitly as:

𝑓 𝐼2 = 𝑔2 3𝜔2
2 − 8

𝜔2
2
(
4 − 𝜔2

2
) − 3ℎ

2 . (89)

Consequently, the hardening/softening transition occurs for this specific case when 𝑓 𝐼2 vanishes,
and a hardening behaviour is obtained for ℎ < 𝑔2(6𝜔2

2 − 16)/(3𝜔2
2 (4 −𝜔2

2)). Again, the wealth of
the proposed ROMs can be here underlined since they provide physical insights and predictive
interpretations that can be directly checked on the numerical results. Otherwise, the same
comments made in Section 3.3 also apply here. The slight shift of the bifurcation points between
the multiple scales solution and the order 3 normal form development is also retrieved and is
illustrated in Figure 12. A stability analysis similar to the one given in Appendix K could also be
applied here, but is not done for concision, and therefore not reported in the figure.

4.3 Illustrative example: a mass connected to two nonlinear springs
This last section aims at illustrating some of the results presented in the paper to the case of a
2 dof system consisting of a mass connected to two elastic nonlinear springs. This example
has been introduced in (Touzé et al. 2004) and then used in several articles as a benchmark
study (Touzé and Amabili 2006; C.-H. Lamarque et al. 2012; Breunung and Haller 2018; Liu and
Wagg 2019). The equations of motion read:

¥𝑢1 + 𝜔2
1𝑢1 +

𝜔2
1

2
(
3𝑢2

1 + 𝑢2
2
) + 𝜔2

2𝑢1𝑢2 +
𝜔2

1 + 𝜔2
2

2 𝑢1
(
𝑢2

1 + 𝑢2
2
)
= 0 (90a)

¥𝑢2 + 𝜔2
2𝑢2 +

𝜔2
2

2
(
3𝑢2

2 + 𝑢2
1
) + 𝜔2

1𝑢1𝑢2 +
𝜔2

1 + 𝜔2
2

2 𝑢2
(
𝑢2

1 + 𝑢2
2
)
= 0. (90b)

It should be highlighted that the nonlinear stiffness coefficients can be written as a function of
the eigenfrequencies of the system, leading to simplified expressions for the coefficients that
appear in the high-order normal forms. Up to order 5, using again the CNF and showing only the
equation for 𝑧1, we obtain

¤𝑧1 = i𝜔1𝑧1 + i
4𝜔1

(−3𝜔2
1 + 𝜔2

2
)

4𝜔2
1 − 𝜔2

2
𝑧2

1𝑧2
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+ i
𝜔1

(−9072𝜔10
1 + 27180𝜔8

1𝜔
2
2 − 19624𝜔6

1𝜔
4
2 + 5835𝜔4

1𝜔
6
2 − 754𝜔2

1𝜔
8
2 + 35𝜔10

2
)

576𝜔10
1 − 1072𝜔8

1𝜔
2
2 + 652𝜔6

1𝜔
4
2 − 177𝜔4

1𝜔
6
2 + 22𝜔2

1𝜔
8
2 − 𝜔10

2
𝑧3

1𝑧
2
2 . (91)

Furthermore, using polar realification, an analytic expression for the backbone can be found
as

𝜔NL = 𝜔1 +
−3𝜔3

1 + 𝜔1𝜔
2
2

4𝜔2
1 − 𝜔2

2
𝜌2

1

+ −9072𝜔11
1 + 27180𝜔9

1𝜔
2
2 − 19624𝜔7

1𝜔
4
2 + 5835𝜔5

1𝜔
6
2 − 754𝜔3

1𝜔
8
2 + 35𝜔1𝜔

10
2

16(4𝜔2
1 − 𝜔2

2)3(9𝜔2
1 − 𝜔2

2) (𝜔2
1 − 𝜔2

2)
𝜌4

1 .

(92)

We denote as 𝑓 (𝑝) the coefficient of the monomial of order 𝑝 in the normal form. The third-order
term, which governs the first curvature of the backbone curve and the hardening/softening
behaviour, has already been analysed in (Touzé et al. 2004) with the oscillator normal form,
leading to the same coefficient as 𝑓 (3) reported here with the CNF. Thanks to the high-order
expansions, the analysis can be pushed further by considering the variations of 𝑓 (5) , whose
expression is stated in Equation (91), and 𝑓 (7) , not shown here for the sake of brevity, whose
variations are represented in Figure 13 for 𝜔1 = 1 and varying 𝜔2.
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Figure 13 Behaviour of the normal form coefficients 𝑓 (3) , 𝑓 (5) and 𝑓 (7) for the two-dofs system given in Equation (90)
as a function of 𝜔2, with 𝜔1 = 1.

From the figure, it is straightforward to predict the type of nonlinearity for the order 7
backbone curve. Taking for instance 𝜔2 = 1.5, the system shows a softening behaviour, since all
three coefficients 𝑓 (3) , 𝑓 (5) , and 𝑓 (7) , are negative. On the contrary, for 𝜔2 = 2.5, since 𝑓 (3) and
𝑓 (5) are positive, the backbone will first display a hardening behaviour, turning to softening for
large amplitudes since 𝑓 (7) is highly negative and will dominate.

Figure 13 also illustrates that the coefficients have a singular behaviour when internal
resonances are crossed, a typical feature resulting from the small denominator problem. The
third-order coefficient 𝑓 (3) displays a singularity when a 1 : 2 internal resonance 𝜔2 = 2𝜔1
appears, a behaviour already analysed e.g. in (Rega et al. 2000; Touzé et al. 2004; Touzé and
Thomas 2006; Arafat and Nayfeh 2003). Interestingly, the order five coefficient 𝑓 (5) shows
in addition a singularity for the first third-order resonances, namely the 1 : 1 and the 1 : 3
resonances defined by 𝜔2 = 𝜔1 and 𝜔2 = 3𝜔1. This is a direct consequence that the order five
coefficient is built from the elimination of the cubic terms. Continuing further, the order seven
coefficient 𝑓 (7) has an additional singularity at the 1 : 4 resonance 𝜔2 = 4𝜔1, following the
cancellation of the quartic terms in the normal form. Finally, it is also possible to notice that for
𝜔2 > 4 the values of the coefficients remain virtually constant, and the backbone behaviour is
hardening at low amplitudes followed by softening at high amplitudes.

Whereas most of the reported analyses have been focused on FRCs, this section closes with
numerous illustrative examples highlighting the behaviour of the invariant manifold serving as a
reduced-order subspace in the method. First, the convergence in terms of the geometry and the
effect of higher-order terms on the computed curvatures are illustrated.
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Figure 14 Phase space representation for the two-dofs system given by Equation (90). (a) Comparison of periodic
orbits calculated with an order 20 parametrisation and the invariant manifold obtained by numerical
continuation for 𝜔1 = 1 and 𝜔2 = 1.57. (b) Comparison of the manifolds of order 3 and 15, in blue and
orange respectively, obtained by the parametrisation method with the one found by continuation, in pink,
for 𝜔1 =

√
0.5 and 𝜔2 =

√
6. The black point represents the origin. (c-d) Cross-sections at 𝑣1 = 0.1 and

𝑢1 = −0.2, respectively, obtained from case (b). Solutions of order 3, 5, 7 and 15 are compared to the
numerical continuation reference.

Figure 14(a) compares the exact shape of the invariant manifold, which has been computed
by numerical continuation, to periodic orbits calculated using an order 20 parametrisation, with
𝜔1 = 1 and 𝜔2 = 1.57. It can be seen that the orbits show an almost perfect agreement with
the manifold in a region surrounding the fixed point located at the origin. In the same spirit,
Figure 14(b) compares the numerical manifold obtained by continuation for 𝜔1 =

√
0.5 and

𝜔2 =
√

6, depicted in blue, to different orders of the asymptotic expansions: order 3 in orange, and
order 15, in pink. It clearly highlights that, with increasing orders, the asymptotically computed
manifolds can retrieve the complex curvatures of the exact solution. To aid the visualisation,
section cuts of Figure 14(b) are presented in Figures 14(c) and 14(d), where orders 5 and 7
solutions are also included to better appreciate the convergence. Note that Figure 14(d) shows a
cross-section at 𝑢1 = −0.2 which is quite far from the origin, hence explaining the observed
discrepancies.

The next case illustrates how the linear viscous damping terms might affect the shape of the
invariant manifolds, thus highlighting the difference between a conservative and a damped
manifold. Viscous damping of the form 2𝜉𝑖𝜔𝑖 , 𝑖 ∈ {1, 2}, is appended to Equation (90). Figure 15
shows the invariant manifolds computed by the parametrisation method with CNF, with system’s
parameters fixed as 𝜔1 =

√
0.5, 𝜔2 =

√
6 and 𝜉1 = 𝜉2 = 0.1. In Figure 15(a) the damped manifold,

in blue, is compared with the one obtained without damping, in yellow. It is possible to notice
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Figure 15 Influence of damping on the invariant manifolds for the mass connected to two springs. (a) Comparison of
the order 15 damped (blue) and undamped (yellow) manifolds obtained by the parametrisation method
with CNF style, for 𝜔1 =

√
0.5, 𝜔2 =

√
6 and 𝜉1 = 𝜉2 = 0.1. Two periodic orbits, in red, are also shown

for the full conservative system as well as a damped orbit of the full system, in blue. The black point
represents the origin. (b-c) Cuts at 𝑣1 = 0 and 𝑢1 = −0.2, respectively, obtained from (a).

that in the dissipative case, the curvatures of the manifold are importantly attenuated, which can
be better appreciated by inspecting Figures 15(b) to 15(c), which show cross-sections of the
manifolds.

Lastly, the effect of the external forcing on the manifolds is examined in Figure 16, to illustrate
the behaviour of time-dependent invariant manifolds in the context of model order reduction.
Two different orders of truncations relative to the forcing term are considered. A first case
where a first-order assumption on the forcing is adopted, following (Opreni et al. 2023; Jain and
Haller 2022) (first column, Figures 16(a) to 16(e), O(𝑧3, 𝜀1) truncation). In the second case, an
O(𝑧3, 𝜀3) truncation is shown, highlighting the higher-order effects of the non-autonomous
terms computed thanks to the development shown in (Vizzaccaro et al. 2024) (second column,
Figures 16(b) to 16(f)).

Additionally, three cases relative to the forcing configuration are examined. In these situations,
a non-autonomous right-hand side is added to the equations of motion:

¥𝑢1 + 2𝜉1𝜔1 ¤𝑢1 + 𝜔2
1𝑢1 +

𝜔2
1

2
(
3𝑢2

1 + 𝑢2
2
) + 𝜔2

2𝑢1𝑢2 +
𝜔2

1 + 𝜔2
2

2 𝑢1
(
𝑢2

1 + 𝑢2
2
)
= 𝜅1 cos Ω𝑡 (93a)

¥𝑢2 + 2𝜉2𝜔2 ¤𝑢2 + 𝜔2
2𝑢2 +

𝜔2
2

2
(
3𝑢2

2 + 𝑢2
1
) + 𝜔2

1𝑢1𝑢2 +
𝜔2

1 + 𝜔2
2

2 𝑢2
(
𝑢2

1 + 𝑢2
2
)
= 𝜅2 cos Ω𝑡 . (93b)

In all scenarios, the forcing is considered resonant to the first (master) mode, such that Ω ≈ 𝜔1.
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(a) (b)

(c) (d)

(e) (f)

Figure 16 Influence of forcing on the invariant manifolds for the mass connected to two springs. In all figures,
parameter values are fixed as 𝜔1 = 1, 𝜔2 = 1.57 and 𝜉1 = 𝜉2 = 0.01, and a primary resonance situation is
considered. For figures (a), (c) and (e), 𝜅 = 1 and an O(𝑧3, 𝜀1) truncation is chosen, while for figures (b), (d)
and (f), 𝜅 = 0.2 and an O(𝑧3, 𝜀3) is adopted. The path of the fixed point in phase space over time is also
represented: (a-b) Forcing perfectly aligned with the master mode. (c-d) Forcing perfectly orthogonal to
the master mode. (e-f) Forcing in both master and slave modes.
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In the first of them, corresponding to Figures 16(a) to 16(b), the forcing is perfectly aligned with
the master eigenspace. This case is obtained by setting a harmonic forcing only on Equation (93a),
i.e. 𝜅1 = 𝜅, 𝜅2 = 0. In this situation, when the development of the nonautonomous terms stops at
order 1, the manifolds exhibit a rigid body rotation along a path that remains on the master
eigenplane, as shown in (Opreni et al. 2023) and illustrated in Figure 16(a). Once high-order
forcing terms are considered, however, the rotation of the fixed point shows slight deviations from
the linear eigenplane due to the higher-order effects. Additionally, the motion of the manifold is
no longer a rigid body one, and shows important deformations, as can be seen in Figure 16(b).

The second case corresponds to a forcing that is now orthogonal to the master eigenspace,
obtained by setting a harmonic forcing only on Equation (93b), i.e. 𝜅1 = 0, 𝜅2 = 𝜅 . The first-order
development for the non-autonomous part predicts a rigid body motion of the manifold along a
circular motion on the slave eigenplane (Opreni et al. 2023), which when projected into the
adopted representation space corresponds to a straight vertical line, as seen in Figure 16(c).
With the inclusion of the high-order forcing terms once again the manifold deforms, and the
motion path along the phase space is no longer circular. Its projection to the representation space,
nevertheless, still remains a straight line, as can be seen in Figure 16(d), which indicates that it is
entirely contained in the slave eigenspace.

Finally, Figures 16(e) to 16(f) showcase the general case where the forcing is neither orthogonal
nor parallel to the master eigenspace. In this situation we chose 𝜅1 = 𝜅2 = 𝜅 and, as can be
observed from the figures, the motion of the manifolds is a combination of the two previous
situations.

5 Conclusion
High-order, automated solutions for nonlinear vibrations, have been derived and analysed thanks
to a symbolic version of the parametrisation method for invariant manifold, implemented in the
package MORFE_Symbolic. The contribution aims to show how this general method can be
used efficiently to derive several useful results to understand the reduced dynamics of large
dimensional systems. It also underlines the existing continuity between low-order analytical
perturbative solutions and high-order numerical solutions. When the solutions are analytically
tractable, we have shown how they can easily reduce to known results obtained with perturbative
methods, and how they extend by considering more effects with fewer assumptions. Indeed, a key
feature of the parametrisation method is to offer high-order expansions with a single assumption
on the smallness of the amplitudes. This is in contrast with perturbative solutions where a scaling
of the different terms (nonlinearity, forcing, damping) needs to be introduced with an 𝜀 parameter
at the first step. This is not needed here and comes automatically from the analysis.

Most of the analyses we perform here use the complex normal form (CNF), after having
introduced the differences between three variants of normal forms that have been derived in
the nonlinear vibration literature. The symbolic package also allows derivations of solutions
with the so-called graph style, a feature that has not been investigated here but which can be
automatically computed to compare with normal form style. Analysis on primary, secondary and
parametric resonance have been exhibited, and the scope has been limited to cases where the
master dynamics contains a single master mode. We highlight that the results can be extended
and take into account many more scenarios.

In the course of the developments, the wealth of the computed solutions has been regularly
commented on, showing how they generalize previously known results limited to first orders,
and how they can converge to the exact solution by considering the effects of the higher
orders. We believe that systematically using the complex normal form, in combination with
the parametrisation method, defines a new powerful grammar for solving nonlinear vibration
problems, from low-order analytical solutions to high-order numerical solutions. Besides, normal
forms can be used for system identification since providing the skeleton of the dynamics and the
simplest dynamical system reproducing a given resonance scenario.

The only limitation of the approach is the validity limit in terms of amplitude, which has been
commented on throughout the text while analysing the results. Future work will thus consider
extending the presented results to other resonance scenarios, to build a dictionary of reference
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solutions. As an example, general solutions for 1 : 2 internal resonance could be derived to
generalise the results shown in (Gobat et al. 2021), and resonant phase lags could also be obtained
with high-order solutions to generalise the results shown in (Volvert and Kerschen 2022). Finally,
the question of accurately estimating the validity limits of the method in terms of amplitudes
should be tackled to provide the analyst with a priori and a posteriori amplitude bounds.

A Short presentation of MORFE_Symbolic.jl
This appendix gives a brief introduction to the use and output possibilities of MORFE_Symbolic.
The code is available as a repository on version control platform github, under the MORFE project,
and is accessible via the link github.com/MORFEproject/MORFE_Symbolic. Instructions on how
to download and run the code are given there. Additionally, the code presents descriptions to all
its functions, making their inputs and outputs explicit for the interested user.

MORFE_Symbolic treats dynamical systems written in first-order format, and deals only
with quadratic nonlinearities. In such a way, quadratic recast (Guillot et al. 2019) has to be applied
as an intermediate step in case arbitrary nonlinear functions should be considered, such as is
exemplified in Section 3.3 for the parametric excitation case. At present, the code only supports
cases with mono-harmonic excitation.

Since most of the examples of interest to the authors are mechanical systems, auxiliary
functions allowing for an easier treatment in such cases, i.e. the construction of the system of
equations from stiffness, mass and damping matrices and the quick assembly of such matrices
for specific cases, have been devised. The reader is referred to the code repository, where the
examples treated in this contribution are available, in the folder test, and showcase all of the
present code capabilities.

Other than defining the equations of motion, inputs concerning the parametrisation method
also need to be given to the code, such as the number of autonomous and non-autonomous
variables considered in the parametrisation (i.e. the number of master modes), the maximum
expansion order and a symbolic list of algebraic relationships between the master modes’
eigenvalues, used to determine the resonance relationships. As an example, consider the case of
an autonomous lightly damped mechanical system with two master modes in a 1 : 2 internal
resonance. If the eigenvalues are {𝜆1, 𝜆2, 𝜆3, 𝜆4}, and such that 𝜆1 and 𝜆2 refer to the first mode
and 𝜆3 and 𝜆4 to the second mode, the relationships 𝜆1 ≈ −𝜆2, 𝜆3 ≈ −𝜆4 and 𝜆1 ≈ 2𝜆3 need to be
given in a specific list of resonance conditions as an input.

The code also presents functions capable of performing polar realification, restricted to
some specific cases where it is advantageous, and cartesian realification. Furthermore, dedicated
functions to the output of the reduced dynamics, nonlinear mappings, backbone curve, nonlinear
damping and physical amplitudes in LATEX form are available. For cases where more powerful
symbolic capabilities than those of the Julia language are required, a function that writes output
files for use in Mathematica environment is also present, making it possible to export all of the
necessary variables for post-treatment in the software.

B Nonlinear change of coordinates for the CNF of the Duffing equa-
tion
In this appendix, the nonlinear mappings used to compute the complex normal form of the
conservative Duffing equation with only cubic nonlinearity, are given, for the sake of completeness.
The normal form up to order 11 is given in the main text as Equation (8). The nonlinear mapping
allowing one to get from Equation (3) to the normal form, up to order order 11, reads:

𝑢 = (𝑧1 + 𝑧2) +
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(B.1b)

Note that the relationship ¤𝑢 = 𝑣 is preserved by the nonlinear change of coordinates. Indeed,
taking the derivative of Equation (B.1a) with respect to time and eliminating the time dependence
with the reduced dynamics given by Equation (8), yields Equation (B.1b). This holds in general
and can be verified in each of the treated examples, independent of the normal form style. It is a
direct consequence of the fact that the initial problem is second-order in time, such that the
velocity mapping can be expressed as a function of the displacement mapping, see e.g. (Vizzaccaro
et al. 2022; Opreni et al. 2023; Vizzaccaro et al. 2024) for general discussions related to this point.

It is also possible to obtain the nonlinear mappings relating normal and modal coordinates,
which are here given for the sake of completeness:
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Note that the symbolic code MORFE_Symbolic allows producing these equations up to an
arbitrary order, shown here up to order 11.

C Additional results for the real normal form of the Duffing oscillator

In this appendix, more details on the real normal form (RNF) are given. First, for the sake of
completeness and in order to draw out comparisons with CNF, the nonlinear mapping between
the original and normal coordinates is given up to order 5:

𝑢 = (𝑧1 + 𝑧2) +
(
ℎ

8𝜔2 𝑧
3
1 +

ℎ

8𝜔2 𝑧
3
2

)
+

(
ℎ2

64𝜔4 𝑧
5
1 −

21ℎ2

64𝜔4 𝑧
4
1𝑧2 − 21ℎ2

64𝜔4 𝑧1𝑧
4
2 +

ℎ2

64𝜔4 𝑧
5
2

)
(C.1a)

𝑣 = (i𝜔𝑧1 − i𝜔𝑧2) +
(
i
3ℎ
8𝜔 𝑧3

1 − i
3ℎ
8𝜔 𝑧3

2

)
+

(
i

5ℎ2

64𝜔3 𝑧
5
1 − i

27ℎ2

64𝜔3 𝑧
4
1𝑧2 + i

27ℎ2

64𝜔3 𝑧1𝑧
4
2 − i

5ℎ2

64𝜔3 𝑧
5
2

)
(C.1b)

These equations can be directly compared to those of the CNF in Equation (B.1). Since more
monomials have been considered resonant and kept in the normal form for the RNF as compared
to the CNF, the immediate consequence is that the nonlinear mapping for the CNF contains fewer
terms.

Next, we present some calculations and approximations in order to derive an analytical
backbone curve. To that purpose, the idea is to use assumptions and calculation procedures used
in (Neild and Wagg 2011; Neild et al. 2015), that have been reinterpreted and reworked from the
formalism derived in the present paper. The two main ideas used in (Neild and Wagg 2011;
Neild et al. 2015) consist of using a mixed formulation with the initial coordinates (𝑢, 𝑣) and
the normal coordinates (𝑧1, 𝑧2), and then to introduce a small bookkeeping parameter 𝜀 and
asymptotic expansions to solve for the backbone curve order by order. Another key point is also
to re-introduce oscillator-like equations with second-order derivatives in time. To that purpose,
Equation (C.1b) up to order 5 can be differentiated with respect to time, yielding

¤𝑣 = ¥𝑢 = 𝑖𝜔 ( ¤𝑧1 − ¤𝑧2) + 𝑖 9ℎ
8𝜔

(
𝑧2

1 ¤𝑧1 − 𝑧2
2 ¤𝑧2

)
+𝑖 ℎ2

64𝜔3
(
25𝑧4

1 ¤𝑧1 − 108𝑧3
1𝑧2 ¤𝑧1 − 27𝑧4

1 ¤𝑧2 + 27𝑧4
2 ¤𝑧2 + 108𝑧1𝑧

3
2 ¤𝑧2 − 25𝑧4

2 ¤𝑧2
)
.

(C.2)

Then, considering that the reduced dynamics up to order 5 is given by

¤𝑧1 = i𝜔𝑧1 + i
3ℎ
2𝜔

(
𝑧2

1𝑧2 + 𝑧1𝑧
2
2
) − 𝑖

3ℎ2

16𝜔3
(
5𝑧3

1𝑧
2
2 + 2𝑧2

1𝑧
3
2
)

(C.3a)

¤𝑧2 = −i𝜔𝑧2 − i
3ℎ
2𝜔

(
𝑧2

1𝑧2 + 𝑧1𝑧
2
2
) + 𝑖 3ℎ2

16𝜔3
(
2𝑧3

1𝑧
2
2 + 5𝑧2

1𝑧
3
2
)
, (C.3b)

and introducing it on the previous equation while neglecting terms of order higher than 5, the
following relationship can be found:
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¥𝑢 = −𝜔2
[
𝑧1 + 𝑧2 + ℎ

8𝜔2
(
𝑧3

1 + 𝑧3
2
) + ℎ3

64𝜔4
(
𝑧5

1 − 21𝑧4
1𝑧2 − 21𝑧1𝑧

4
2 + 𝑧5

2
) ]

− ℎ

[
𝑧3

1 + 3𝑧2
1𝑧2 + 3𝑧1𝑧

3
2 + 𝑧3

2 +
3ℎ

8𝜔2
(
𝑧5

1 + 2𝑧4
1𝑧2 + 𝑧3

1𝑧
2
2 + 𝑧2

1𝑧
3
2 + 2𝑧1𝑧

4
2 + 𝑧5

2
) ]

. (C.4)

In this last equation, the first term in bracket is exactly equal to 𝑢 while the second to 𝑢3,
meaning that this equation is a rewriting of the original problem (Duffing equation) where the
nonlinear mapping between the initial and normal coordinates has been made explicit. In order
to derive an analytical backbone curve, polar coordinates can be introduced as 𝑧1 = 𝜌/2𝑒𝑖𝜔NL𝑡

and 𝑧2 = 𝜌/2𝑒−𝑖𝜔NL𝑡 , with 𝜌 and 𝜔NL constant in time, and where the phase of the harmonics is
taken to be zero. Additionally, in the spirit of perturbation methods, a bookkeeping parameter 𝜀
is introduced, in order to scale different orders of magnitude. Specifically, it is assumed that 𝜌 is
of O(𝜀), while 𝜔2

NL can be decomposed in the spirit of a perturbative solution as

𝜔2
NL = 𝜔2

1,0 + 𝜀𝜔2
1,1 + 𝜀2𝜔2

1,2 + 𝜀3𝜔2
1,3 + 𝜀4𝜔2

1,4 + O(𝜀5) . (C.5)

Inserting these assumptions into Equation (C.1a) and taking two time derivatives yields

𝑢 = 𝜀
𝜌

2
(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

) + 𝜀3 ℎ𝜌3

64𝜔2
(
𝑒3𝑖𝜔NL𝑡 + 𝑒−3𝑖𝜔NL𝑡

)
+ 𝜀5 ℎ2𝜌5

2048𝜔4
(
𝑒5𝑖𝜔NL𝑡 − 21𝑒3𝑖𝜔NL𝑡 − 21𝑒−3𝑖𝜔NL𝑡 + 𝑒−5𝑖𝜔NL𝑡

)
, (C.6)

and

¥𝑢 = − 𝜀
𝜌

2𝜔
2
1,0

(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

) − 𝜀2 𝜌

2𝜔
2
1,1

(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

)
− 𝜀3

[
𝜌

2𝜔
2
1,2

(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

) + 9ℎ𝜌3

64𝜔2𝜔
2
1,0

(
𝑒3𝑖𝜔NL𝑡 + 𝑒−3𝑖𝜔NL𝑡

) ]
− 𝜀4

[
𝜌

2𝜔
2
1,3

(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

) + 9ℎ𝜌3

64𝜔2𝜔
2
1,1

(
𝑒3𝑖𝜔NL𝑡 + 𝑒−3𝑖𝜔NL𝑡

) ]
− 𝜀5

[
𝜌

2𝜔
2
1,4

(
𝑒𝑖𝜔NL𝑡 + 𝑒−𝑖𝜔NL𝑡

) + (
9ℎ2𝜌3

64𝜔2 𝜔
2
1,2 +

189ℎ2𝜌5

2048𝜔4 𝜔
2
1,0

)
× (

𝑒3𝑖𝜔NL𝑡 + 𝑒−3𝑖𝜔NL𝑡
) + 25ℎ2𝜌5

2048𝜔4𝜔
2
1,0

(
𝑒5𝑖𝜔NL𝑡 + 𝑒−5𝑖𝜔NL𝑡

) ]
. (C.7)

These expressions can be inserted, together with the polar representation of the normal
variables, into Equation (C.4). Equating the different orders of 𝜀 gives

𝜀 : 𝜔2
1,0 = 𝜔2 (C.8)

𝜀2 : 𝜔2
1,1 = 0 (C.9)

𝜀3 : 𝜔2
1,2 =

3ℎ
4 𝜌2 (C.10)

𝜀4 : 𝜔2
1,3 = 0 (C.11)

𝜀5 : 𝜔2
1,4 =

3ℎ2

128𝜔2 𝜌
4 (C.12)

A direct solution to these equations yields the following backbone curve:

𝜔2
NL = 𝜔2 + 3ℎ

4 𝜌2 + 3ℎ2

128𝜔2 𝜌
4. (C.13)

This expression coincides with the one given in (Neild et al. 2015). Interestingly, this solving
procedure yields a backbone curve that is directly expressed with the square of the radian
eigenfrequencies, a distinctive feature from other perturbative techniques, which appears to stem
directly from the treatment of the second-order time derivative and the choice of the RNF. Also,
in comparison to the backbone curve given by the CNF shown in Equation (11), where each new
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order appears with alternate signs, here only positive coefficients are present, meaning that
another approximation seems to be given. Note, however, that the procedure to compute the
backbone with the RNF is tedious and difficult to automatise, as compared to the analytical
solution provided with the CNF. Hence a complete comparison of both methods at arbitrary order
is not pushed further here.

D Nonlinearmapping, complex normal form for the Duffing oscillator
with quadratic and cubic terms
For the sake of completeness, the nonlinear mapping for the Duffing equation with quadratic and
cubic nonlinearity, Equation (25), is here reported, up to order 5. Higher order terms can be
derived automatically and symbolically with MORFE_Symbolic.

𝑢 = (𝑧1 + 𝑧2) +
(
𝑔

3𝜔2𝑧
2
1 −

2𝑔
𝜔2𝑧1𝑧2 + 𝑔

3𝜔2𝑧
2
2

)
+

(
2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧3
1 +

10𝑔2 − 9ℎ𝜔2

12𝜔4 𝑧2
1𝑧2

+10𝑔2 − 9ℎ𝜔2

12𝜔4 𝑧1𝑧
2
2 +

2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧3
2

)
+

(
2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧4
1 +

178𝑔3 − 333𝑔ℎ𝜔2

108𝜔6 𝑧3
1𝑧2

+ −68𝑔3 + 117𝑔ℎ𝜔2

9𝜔6 𝑧2
1𝑧

2
2 +

178𝑔3 − 333𝑔ℎ𝜔2

108𝜔6 𝑧1𝑧
3
2 +

2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧4
2

)
+

(
20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧5
1 +

436𝑔4 − 444𝑔2ℎ𝜔2 − 351ℎ2𝜔4

576𝜔8 𝑧4
1𝑧2

+ 3740𝑔4 − 9468𝑔2ℎ𝜔2 + 1863ℎ2𝜔4

864𝜔8 𝑧3
1𝑧

2
2 +

3740𝑔4 − 9468𝑔2ℎ𝜔2 + 1863ℎ2𝜔4

864𝜔8 𝑧2
1𝑧

3
2

+436𝑔4 − 444𝑔2ℎ𝜔2 − 351ℎ2𝜔4

576𝜔8 𝑧1𝑧
4
2 +

20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧5
2

)
(D.1a)

𝑣 = (i𝜔𝑧1 − i𝜔𝑧2) +
(
i
2𝑔
3𝜔𝑧2

1 − i
2𝑔
3𝜔𝑧2

2

)
+

(
2i𝑔2 + 3iℎ𝜔2

8𝜔3 𝑧3
1 +

−10i𝑔2 + 9iℎ𝜔2

12𝜔3 𝑧2
1𝑧2

+ 10i𝑔2 − 9iℎ𝜔2

12𝜔3 𝑧1𝑧
2
2 +

−2i𝑔2 − 3iℎ𝜔2

8𝜔3 𝑧3
2

)
+

(
2i𝑔3 + 9i𝑔ℎ𝜔2

27𝜔5 𝑧4
1 +

118i𝑔3 − 279i𝑔ℎ𝜔2

54𝜔5 𝑧3
1𝑧2

+ −118i𝑔3 + 279i𝑔ℎ𝜔2

54𝜔5 𝑧1𝑧
3
2 +

−2i𝑔3 − 9i𝑔ℎ𝜔2

27𝜔5 𝑧4
2

)
+

(
100i𝑔4 + 900i𝑔2ℎ𝜔2 + 405iℎ2𝜔4

5184𝜔7 𝑧5
1

+ 356i𝑔4 − 492i𝑔2ℎ𝜔2 − 243iℎ2𝜔4

192𝜔7 𝑧4
1𝑧2 + −3740i𝑔4 + 9468i𝑔2ℎ𝜔2 − 1863iℎ2𝜔4

864𝜔7 𝑧3
1𝑧

2
2

+ 3740i𝑔4 − 9468i𝑔2ℎ𝜔2 + 1863iℎ2𝜔4

864𝜔7 𝑧2
1𝑧

3
2 +

−356i𝑔4 + 492i𝑔2ℎ𝜔2 + 243iℎ2𝜔4

192𝜔7 𝑧1𝑧
4
2

+−100i𝑔4 − 900i𝑔2ℎ𝜔2 − 405iℎ2𝜔4

5184𝜔7 𝑧5
2

)
(D.1b)

Comparing these equations to Equation (B.1), one can see how the quadratic term complexifies
the result in terms of the nonlinear mapping, which now contains all even and odd powers. Also,
letting 𝑔 = 0 in Equation (D.1), one directly retrieves Equation (B.1) as expected.

E RNF andONFdevelopments for theDuffing oscillatorwith quadratic
and cubic terms
This appendix completes the analysis as of the Duffing oscillator with quadratic and cubic terms,
Equation (25), by providing the results for both real normal form (RNF) and oscillator normal
form (ONF). The case of the RNF is considered first, and the reduced dynamics up to order 5 reads:

¤𝑧1 = i𝜔𝑧1 + i
−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧2
1𝑧2 + i

−10𝑔2 + 9ℎ𝜔2

6𝜔3 𝑧1𝑧
2
2

+ i
−1940𝑔4 + 6228𝑔2ℎ𝜔2 − 405ℎ2𝜔4

432𝜔7 𝑧3
1𝑧

2
2
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+ i
−1060𝑔4 + 3060𝑔2ℎ𝜔2 − 81ℎ2𝜔4

216𝜔7 𝑧2
1𝑧

3
2, (E.1)

with the second one being its complex conjugate. Additionally, the nonlinear mapping for the
displacement is

𝑢 = (𝑧1 + 𝑧2) +
(
𝑔

3𝜔2𝑧
2
1 −

2𝑔
𝜔2𝑧1𝑧2 + 𝑔

3𝜔2𝑧
2
2

)
+

(
2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧3
1 +

2𝑔2 + 3ℎ𝜔2

24𝜔4 𝑧3
2

)
+

(
2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧4
1

358𝑔3 − 495𝑔ℎ𝜔2

108𝜔6 𝑧3
1𝑧2 + −26𝑔3 + 42𝑔ℎ𝜔2

3𝜔6 𝑧2
1𝑧

2
2 +

358𝑔3 − 495𝑔ℎ𝜔2

108𝜔6 𝑧1𝑧
3
2

+2𝑔3 + 9𝑔ℎ𝜔2

108𝜔6 𝑧4
2

)
+

(
20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧5
1 +

212𝑔4 − 268𝑔2ℎ𝜔2 − 63ℎ2𝜔4

192𝜔8 𝑧4
1𝑧2

+212𝑔4 − 268𝑔2ℎ𝜔2 − 63ℎ2𝜔4

192𝜔8 𝑧1𝑧
4
2 +

20𝑔4 + 180𝑔2ℎ𝜔2 + 81ℎ2𝜔4

5184𝜔8 𝑧5
2

)
, (E.2)

while the one for the velocity is simply its time derivative.
As compared to the results given by the CNF reported in Section 3.1, one can observe that the

cubic coefficient for both CNF and RNF has the same expression, such that the prediction of the
transition hardening/softening behaviour shall happen for 𝑔2 = 9ℎ𝜔2/10. However, for the next
order, note that in Equation (E.1) the two quintic coefficients in front of 𝑧3

1𝑧
2
2 and 𝑧2

1𝑧
3
2 are not the

same. Combined with the fact that deriving an explicit analytical backbone curve for the RNF
for arbitrary order requires further assumptions, see the analysis reported in Appendix C, we
conclude that it is more difficult to analyse the successive sign change of the different coefficients
to infer the trend of the backbone curve in the RNF as compared to CNF.

For the ONF, the result reported here is limited to the third-order because its automation
appears cumbersome and has therefore not been implemented in MORFE_Symbolic. Indeed,
attempts to compute higher orders even in simple cases have shown that the processing of the
term is more complex, see e.g. (Shami et al. 2022) for an example of processing the cubic terms
with a second-order internal resonance. On the other hand, calculations up to order three have
global analytical expressions reported in (Touzé et al. 2004; Touzé and Amabili 2006). Using these
general formulae, we obtain the nonlinear change of coordinates

𝑢 = 𝑈 − 𝑔/(3𝜔2)𝑈 2 − 2𝑔/(3𝜔4)𝑉 2, (E.3)

for Equation (25), while the second equation of the nonlinear mapping for 𝑣 is not reported for
the sake of brevity, since it can be easily recovered using 𝑣 = ¤𝑢. The dynamics in the normal
coordinates (𝑈 ,𝑉 ) up to order three is

¥𝑈 + 𝜔2𝑈 + (
ℎ − 2𝑔2/(3𝜔2))𝑈 3 − 4𝑔2/(3𝜔4)𝑈𝑉 2 = 0. (E.4)

Since oscillator equations are enforced by the method, twomonomials are present in Equation (E.4),
𝑈 3 and𝑈𝑉 2. A backbone curve for Equation (E.4) can be derived with a first-order perturbative
method, yielding the nonlinear oscillation frequency 𝜔NL as a function of the amplitude 𝑎
as (Touzé et al. 2004):

𝜔NL = 𝜔 (1 + Γ𝑎2), (E.5)

where Γ combines the two coefficients of the cubic monomials and reads:

Γ = (−10𝑔2 + 9ℎ𝜔2)/(24𝜔4) . (E.6)

The prediction of hardening/softening behaviour transition point for the first-order term of the
backbone curve is thus also predicted with ONF to occur at 𝑔2 = 9ℎ𝜔2/10.

F Nonlinear mapping, complex normal form for the forced-damped
cubic Duffing oscillator: primary resonance
This appendix gives the nonlinear mappings for the forced cubic Duffing oscillator in a situa-
tion of primary resonance. The parametrisation is pushed to order 3 only, but higher order
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parametrisations can be easily obtained with MORFE_Symbolic.

𝑢 =

(
𝑧1 + 𝑧2 + 𝑖𝜅

4𝜉𝛿𝜔2 + 8𝑖𝛿2𝜔2𝑧3 − 𝑖𝜅

4𝜉𝛿𝜔2 − 8𝑖𝛿2𝜔2𝑧4

)
+

(
− ℎ

4 (𝜉2𝜔2 − 2𝛿2𝜔2 − 3𝑖𝜉𝛿𝜔2)𝑧
3
1

+ 3𝑖ℎ
4𝜉𝛿𝜔2 − 4𝑖𝛿2𝜔2𝑧

2
1𝑧2 + 3ℎ𝜅 (10𝛿𝜔 + 𝑖𝜉𝜔)

16𝛿𝜔 (−𝜉4𝜔4 + 16𝛿4𝜔4 + 20𝑖𝜉𝛿3𝜔4 + 5𝑖𝜉3𝛿𝜔4)𝑧
2
1𝑧3

+ 3ℎ𝜅𝜉
16𝛿2𝜔 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2𝑧

2
1𝑧4 − 3𝑖ℎ

4𝜉𝛿𝜔2 + 4𝑖𝛿2𝜔2𝑧1𝑧
2
2

− 3ℎ𝜅 (𝜉𝜔 − 4𝑖𝛿𝜔)
8𝛿2𝜔2 (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉2𝜔2 + 2𝛿2𝜔2 + 𝑖𝜉𝛿𝜔2)𝑧1𝑧2𝑧3

− 3ℎ𝜅 (𝜉𝜔 + 4𝑖𝛿𝜔)
8𝛿2𝜔2 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)𝑧1𝑧2𝑧4

+ 9ℎ𝜅2 (𝜉𝜔 − 10𝑖𝛿𝜔)
64𝛿2𝜔2 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2 (𝜉2𝜔2 − 8𝛿2𝜔2 − 6𝑖𝜉𝛿𝜔2)𝑧1𝑧

2
3

+ 3𝑖ℎ𝜅2

32𝛿3𝜔3 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2𝑧1𝑧3𝑧4

+ 3𝑖ℎ𝜅2 (𝜉𝜔 + 10𝑖𝛿𝜔)
64𝛿3𝜔3 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉𝜔 + 2𝑖𝛿𝜔)𝑧1𝑧

2
4 −

ℎ

4 (𝜉2𝜔2 − 2𝛿2𝜔2 + 3𝑖𝜉𝛿𝜔2)𝑧
3
2

+ 3ℎ𝜅𝜉
16𝛿2𝜔 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧

2
2𝑧3

+ 3𝑖ℎ𝜅 (𝜉𝜔 + 10𝑖𝛿𝜔)
16𝛿𝜔 (𝜉4𝜔4 − 16𝛿4𝜔4 + 20𝑖𝜉𝛿3𝜔4 + 5𝑖𝜉3𝛿𝜔4)𝑧

2
2𝑧4

− 3𝑖ℎ𝜅2 (𝜉𝜔 − 10𝑖𝛿𝜔)
64𝛿3𝜔3 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧2𝑧

2
3

− 3𝑖ℎ𝜅2

32𝛿3𝜔3 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧2𝑧3𝑧4

+ 9ℎ𝜅2 (𝜉𝜔 + 10𝑖𝛿𝜔)
64𝛿2𝜔2 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉2𝜔2 − 8𝛿2𝜔2 + 6𝑖𝜉𝛿𝜔2)𝑧2𝑧

2
4

+ ℎ𝜅3 (
7𝑖𝜉3𝜔3 − 872𝛿3𝜔3 + 340𝑖𝜉𝛿2𝜔3 + 10𝜉2𝛿𝜔3)

256𝛿3𝜔3 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)4 (𝜉𝜔 + 4𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 − 6𝑖𝜉𝛿𝜔2)𝑧
3
3

− 3ℎ𝜅3 (
𝜉2𝜔2 − 24𝛿2𝜔2 + 2𝑖𝜉𝛿𝜔2)

256𝛿4𝜔4 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉𝜔 + 2𝑖𝛿𝜔)3𝑧
2
3𝑧4

− 3ℎ𝜅3 (
𝜉2𝜔2 − 24𝛿2𝜔2 − 2𝑖𝜉𝛿𝜔2)

256𝛿4𝜔4 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)3 (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧3𝑧
2
4

+ ℎ𝜅3 (−7𝑖𝜉3𝜔3 − 872𝛿3𝜔3 − 340𝑖𝜉𝛿2𝜔3 + 10𝜉2𝛿𝜔3)
256𝛿3𝜔3 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)4 (𝜉𝜔 − 4𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 + 6𝑖𝜉𝛿𝜔2)𝑧

3
4

)
(F.1)

𝑣 =

(
(−𝜉𝜔 + 𝑖𝛿𝜔)𝑧1 + (−𝜉𝜔 − 𝑖𝛿𝜔)𝑧2 + 𝜅 (𝛿𝜔 − 𝑖𝜉𝜔)

4𝛿𝜔 (𝜉𝜔 + 2𝑖𝛿𝜔)𝑧3 + 𝜅𝛿𝜔 + 𝑖𝜅𝜉𝜔
4𝜉𝛿𝜔2 − 8𝑖𝛿2𝜔2𝑧4

)
+

(
3ℎ

4𝜉𝜔 − 8𝑖𝛿𝜔 𝑧3
1 +

3ℎ (𝜉𝜔 + 𝑖𝛿𝜔)
4𝛿𝜔 (𝛿𝜔 + 𝑖𝜉𝜔)𝑧

2
1𝑧2

+ 3ℎ𝜅 (22𝛿𝜔 + 3𝑖𝜉𝜔)
16𝛿𝜔 (𝜉𝜔 + 2𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 − 6𝑖𝜉𝛿𝜔2)𝑧

2
1𝑧3

− 3ℎ𝜅𝜉 (𝜉𝜔 + 𝑖𝛿𝜔)
16𝛿2𝜔 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2𝑧

2
1𝑧4 + 3ℎ (𝛿𝜔 + 𝑖𝜉𝜔)

4𝛿𝜔 (𝜉𝜔 + 𝑖𝛿𝜔)𝑧1𝑧
2
2

+ 3ℎ𝜅 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 4𝑖𝛿𝜔)
8𝛿2𝜔2 (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉2𝜔2 + 2𝛿2𝜔2 + 𝑖𝜉𝛿𝜔2)𝑧1𝑧2𝑧3

+ 3ℎ𝜅 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 + 4𝑖𝛿𝜔)
8𝛿2𝜔2 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)𝑧1𝑧2𝑧4
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− 15ℎ𝜅2 (𝜉𝜔 − 10𝑖𝛿𝜔)
64𝛿2𝜔2 (𝜉𝜔 + 2𝑖𝛿𝜔)2 (𝜉2𝜔2 − 8𝛿2𝜔2 − 6𝑖𝜉𝛿𝜔2)𝑧1𝑧

2
3

+ 3ℎ𝜅2 (𝛿𝜔 − 𝑖𝜉𝜔)
32𝛿4𝜔3 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2𝑧1𝑧3𝑧4

+ 3ℎ𝜅2 (𝜉𝜔 − 𝑖𝛿𝜔) (10𝛿𝜔 − 𝑖𝜉𝜔)
64𝛿4𝜔3 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉𝜔 + 2𝑖𝛿𝜔)𝑧1𝑧

2
4 +

3ℎ
4𝜉𝜔 + 8𝑖𝛿𝜔 𝑧3

2

− 3ℎ𝜅𝜉 (𝜉𝜔 − 𝑖𝛿𝜔)
16𝛿2𝜔 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧

2
2𝑧3

+ 3ℎ𝜅 (22𝛿𝜔 − 3𝑖𝜉𝜔)
16𝛿𝜔 (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 + 6𝑖𝜉𝛿𝜔2)𝑧

2
2𝑧4

+ 3ℎ𝜅2 (𝜉𝜔 + 𝑖𝛿𝜔) (10𝛿𝜔 + 𝑖𝜉𝜔)
64𝛿4𝜔3 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧2𝑧

2
3

+ 3ℎ𝜅2 (𝛿𝜔 + 𝑖𝜉𝜔)
32𝛿4𝜔3 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧2𝑧3𝑧4

− 15ℎ𝜅2 (𝜉𝜔 + 10𝑖𝛿𝜔)
64𝛿2𝜔2 (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉2𝜔2 − 8𝛿2𝜔2 + 6𝑖𝜉𝛿𝜔2)𝑧2𝑧

2
4

+ 3ℎ𝜅3 (−3𝑖𝜉3𝜔3 + 392𝛿4𝜔3 − 180𝑖𝜉𝛿2𝜔3 − 10𝜉2𝛿𝜔3)
256𝛿4𝜔3 (𝜉𝜔 + 2𝑖𝛿𝜔)4 (𝜉𝜔 + 4𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 − 6𝑖𝜉𝛿𝜔2)𝑧

3
3

+ 3ℎ𝜅3 (𝜉𝜔 + 𝑖𝛿𝜔) (
𝜉2𝜔2 − 24𝛿2𝜔2 + 2𝑖𝜉𝛿𝜔2)

256𝛿4𝜔4 (𝜉𝜔 − 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)2 (𝜉𝜔 + 2𝑖𝛿𝜔)3𝑧
2
3𝑧4

+ 3ℎ𝜅3 (𝜉𝜔 − 𝑖𝛿𝜔) (
𝜉2𝜔2 − 24𝛿2𝜔2 − 2𝑖𝜉𝛿𝜔2)

256𝛿4𝜔4 (𝜉𝜔 + 𝑖𝛿𝜔) (𝜉𝜔 − 2𝑖𝛿𝜔)3 (𝜉𝜔 + 2𝑖𝛿𝜔)2𝑧3𝑧
2
4

+ 3ℎ𝜅3 (
3𝑖𝜉3𝜔3 + 392𝛿4𝜔3 + 180𝑖𝜉𝛿2𝜔3 − 10𝜉2𝛿𝜔3)

256𝛿4𝜔3 (𝜉𝜔 − 2𝑖𝛿𝜔)4 (𝜉𝜔 − 4𝑖𝛿𝜔) (𝜉2𝜔2 − 8𝛿2𝜔2 + 6𝑖𝜉𝛿𝜔2)𝑧
3
4

)
(F.2)

G Reduced dynamics coefficients, complex normal form for the
forced-damped cubic Duffing oscillator at primary resonance
computed for Ω𝑝 = 𝜔

This appendix gives coefficients of the complex normal form (CNF) of the forced-damped cubic
Duffing oscillator in a primary resonance scenario. Differently from the main text where the
parametrisation has been computed at the value Ω𝑝 = 𝛿𝜔 , here we show the analytical obtained
result when the parametrisation is computed for Ω𝑝 = 𝜔 . The eight coefficients of the resonant
monomials shown in Equation (35) are then

𝑓1 = 𝜆1, 𝑓2 = 𝑖
3ℎ

2𝛿𝜔 , 𝑓3 = −𝑖 𝜅

4𝛿𝜔 , 𝑓4 =
3ℎ𝜅 (1 − 𝛿 + 𝑖𝜉)

16𝜉𝛿2𝜔3

𝑓5 = −3ℎ𝜅 (1 − 𝛿 − 𝑖𝜉)
8𝜉𝛿2𝜔3 , 𝑓6 =

3𝑖ℎ𝜅2 (1 − 𝛿)
32𝜉2𝛿3𝜔5 ,

𝑓7 = −3𝑖ℎ𝜅2 (−𝜉2 + 𝑖𝛿𝜉 − 𝛿 − 𝑖𝜉 + 1
)

64𝜉2𝛿3𝜔5 , 𝑓8 =
3ℎ𝜅3 (

𝜉2 − 𝑖𝛿𝜉 + 2𝛿 + 𝑖𝜉 − 2
)

512𝜉3𝛿4𝜔7 .

(G.1)

Note that considering a small damping hypothesis, these coefficients are equivalent to those
given by Equation (36). However, in the general case, the expressions differ slightly and are
longer in the present case.

H Nonlinear mapping, complex normal form for the forced cubic
Duffing oscillator for the 3:1 superharmonic resonance
This appendix gives the nonlinear displacement mapping for the forced cubic Duffing oscillator
when a 3:1 superharmonic forcing is considered. The parametrisation is pushed to order 3 only,
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but higher order parametrisations can be easily obtained with MORFE_Symbolic. The velocity
mapping can be obtained as the derivative of the displacement.

𝑢 =

(
𝑧1 + 𝑧2 − 9𝑖𝜅

4(3𝜉 − 4𝑖)𝜔2𝑧3 + 9𝑖𝜅
4(3𝜉 + 4𝑖)𝜔2𝑧4

)
+

(
ℎ

4 (3𝜉 (𝑖𝛿 − 𝜉) + 2)𝜔2𝑧
3
1

− 3ℎ
4 (𝜉 (𝑖𝛿 − 𝜉) + 1)𝜔2𝑧

2
1𝑧2 + 243𝑖ℎ𝜅

8(3𝜉 − 4𝑖) (3𝜉 (−6𝑖𝛿 + 6𝜉 − 𝑖) − 6𝛿 − 14)𝜔4𝑧
2
1𝑧3

− 243𝑖ℎ𝜅
8(3𝜉 + 4𝑖) (3𝜉 (−6𝑖𝛿 + 6𝜉 + 𝑖) + 6𝛿 − 14)𝜔4𝑧

2
1𝑧4 + 3ℎ (𝜉 − 𝑖𝛿)

4𝑖𝛿𝜔2 𝑧1𝑧
2
2

− 243ℎ𝜅
4 (9𝜉2 + 16)𝜔4𝑧1𝑧2𝑧3 − 243ℎ𝜅

4 (9𝜉2 + 16)𝜔4𝑧1𝑧2𝑧4 − 2187𝑖ℎ𝜅2

64(−3𝜉 + 4𝑖)2 (3𝑖𝛿 + 𝑖)𝜔6𝑧1𝑧
2
3

+ 243ℎ𝜅2

32 (9𝜉4 + 7𝜉2 − 16)𝜔6𝑧1𝑧3𝑧4 + 2187𝑖ℎ𝜅2

64(3𝜉 + 4𝑖)2 (3𝑖𝛿 − 𝑖)𝜔6𝑧1𝑧
2
4 −

ℎ

4 (3𝜉 (𝑖𝛿 + 𝜉) − 2)𝜔2𝑧
3
2

+ 243𝑖ℎ𝜅
8(3𝜉 − 4𝑖) (3𝜉 (6𝑖𝛿 + 6𝜉 − 𝑖) + 6𝛿 − 14)𝜔4𝑧

2
2𝑧3

− 243𝑖ℎ𝜅
8(3𝜉 + 4𝑖) (3𝜉 (6𝑖𝛿 + 6𝜉 + 𝑖) − 6𝛿 − 14)𝜔4𝑧

2
2𝑧4

+ 2187𝑖ℎ𝜅2

64(−3𝜉 + 4𝑖)2 (3𝑖𝛿 − 𝑖)𝜔6𝑧2𝑧
2
3 +

243ℎ𝜅2

32 (9𝜉4 + 7𝜉2 − 16)𝜔6𝑧2𝑧3𝑧4

− 2187𝑖ℎ𝜅2

64(3𝜉 + 4𝑖)2 (3𝑖𝛿 + 𝑖)𝜔6𝑧2𝑧
2
4 +

729𝑖ℎ𝜅3

128(3𝜉 − 4𝑖)3 (𝜉 (𝑖𝛿 + 𝜉) − 𝛿 − 1)𝜔8𝑧
3
3

+ 19683ℎ𝜅3

128(3𝜉 − 4𝑖)3(3𝜉 + 4𝑖)𝜔8𝑧
2
3𝑧4 + 19683ℎ𝜅3

128(3𝜉 − 4𝑖) (3𝜉 + 4𝑖)3𝜔8𝑧3𝑧
2
4

− 729ℎ𝜅3 (𝑖𝛿 + 𝜉 − 𝑖)
256𝜉 (3𝜉 + 4𝑖)3𝑖𝛿𝜔8𝑧

3
4

)
(H.1)

I Nonlinear mapping, complex normal form for the forced cubic
Duffing oscillator for the 1:3 subharmonic resonance
This appendix gives the nonlinear displacement mapping for the forced cubic Duffing oscillator
when a 1:3 subharmonic forcing is considered. The parametrisation is pushed to order 3 only, but
higher order parametrisations can be easily obtained with MORFE_Symbolic. The velocity
mapping can be obtained as the derivative of the displacement.

𝑢 =

(
𝑧1 + 𝑧2 − 𝑖𝜅

4(3𝜉 + 4𝑖)𝜔2𝑧3 + 𝑖𝜅

4(3𝜉 − 4𝑖)𝜔2𝑧4

)
+

(
ℎ

4 (3𝜉 (𝑖𝛿 − 𝜉) + 2)𝜔2𝑧
3
1

− 3ℎ
4 (𝜉 (𝑖𝛿 − 𝜉) + 1)𝜔2𝑧

2
1𝑧2 + 3𝑖ℎ𝜅

8(3𝜉 + 4𝑖) (𝜉 (−2𝑖𝛿 + 2𝜉 − 3𝑖) − 6𝛿 − 6)𝜔4𝑧
2
1𝑧3

+ 3ℎ𝜅 (𝜉 (𝑖𝛿 + 𝜉) − 3𝛿 − 1)
16 (9𝜉4 + 7𝜉2 − 16)𝜔4 𝑧2

1𝑧4 + 3ℎ (𝜉 − 𝑖𝛿)
4𝑖𝛿𝜔2 𝑧1𝑧

2
2

− 3ℎ𝜅
4 (9𝜉2 + 16)𝜔4𝑧1𝑧2𝑧3 − 3ℎ𝜅

4 (9𝜉2 + 16)𝜔4𝑧1𝑧2𝑧4 − 𝑖ℎ𝜅2

64(3𝜉 + 4𝑖)2 (𝑖𝛿 + 3𝑖)𝜔6𝑧1𝑧
2
3

+ 3ℎ𝜅2

32 (9𝜉4 + 7𝜉2 − 16)𝜔6𝑧1𝑧3𝑧4 + 𝑖ℎ𝜅2

64(−3𝜉 + 4𝑖)2 (𝑖𝛿 − 3𝑖)𝜔6𝑧1𝑧
2
4

− ℎ

4 (3𝜉 (𝑖𝛿 + 𝜉) − 2)𝜔2𝑧
3
2 +

3𝑖ℎ𝜅
8(3𝜉 + 4𝑖) (𝜉 (𝑖𝛿 + 𝜉) + 3𝛿 − 1)𝜔4𝑧

2
2𝑧3

− 3𝑖ℎ𝜅
8(3𝜉 − 4𝑖) (𝜉 (2𝑖𝛿 + 2𝜉 + 3𝑖) − 6𝛿 − 6)𝜔4𝑧

2
2𝑧4

+ 𝑖ℎ𝜅2

64(3𝜉 + 4𝑖)2 (𝑖𝛿 − 3𝑖)𝜔6𝑧2𝑧
2
3 +

3ℎ𝜅2

32 (9𝜉4 + 7𝜉2 − 16)𝜔6𝑧2𝑧3𝑧4

− 𝑖ℎ𝜅2

64(−3𝜉 + 4𝑖)2 (𝑖𝛿 + 3𝑖)𝜔6𝑧2𝑧
2
4 −

ℎ𝜅3

128(3𝜉 + 4𝑖)3(9𝜉 + 40𝑖)𝜔8𝑧
3
3
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+ 3ℎ𝜅3

128(3𝜉 − 4𝑖) (3𝜉 + 4𝑖)3𝜔8𝑧
2
3𝑧4 + 3ℎ𝜅3

128(3𝜉 − 4𝑖)3(3𝜉 + 4𝑖)𝜔8𝑧3𝑧
2
4

− ℎ𝜅3

128(3𝜉 − 4𝑖)3(9𝜉 − 40𝑖)𝜔8𝑧
3
4

)
(I.1)

J Detailed calculation of the existence region for the 1:3 subharmonic
resonance
This appendix is concerned with the derivation of the expression that gives the boundary of the
region such that nontrivial solutions exist for the 1:3 subharmonic resonance of the cubic Duffing
oscillator. The starting point is Equation (57). Upon substitution of coefficients 𝐴𝑟 , 𝐴𝑖 , 𝐵𝑟 and 𝐵𝑖 ,
it is possible to find a biquadratic equation in 𝜌 :

9ℎ2

64𝛿2𝜔2︸  ︷︷  ︸
𝑎

𝜌4 +
[

3ℎ
4𝛿𝜔

(
𝛿𝜔 − Ω

3

)
+ 27ℎ2𝜅2

256𝛿2𝜔6 (16 + 9𝜉2)

]
︸                                               ︷︷                                               ︸

𝑏

𝜌2

+
(
𝛿𝜔 − Ω

3

)2
+ 9ℎ2𝜅4

256𝛿2𝜔10 (16 + 9𝜉2)2 + 3ℎ𝜅2

8𝛿𝜔5 (16 + 9𝜉2)

(
𝛿𝜔 − Ω

3

)
+ 𝜉2𝜔2︸                                                                                           ︷︷                                                                                           ︸

𝑐

= 0.
(J.1)

For the existence of real solutions, two conditions have to be satisfied, namely 𝑏 < 0 and
Δ = 𝑏2 − 4𝑎𝑐 ⩾ 0. After algebraic manipulations, the first condition yields

Ω > 3𝛿𝜔 + 27ℎ𝜅2

64𝛿𝜔5 (16 + 9𝜉2) , (J.2)

while the second gives

63ℎ2

2048𝛿2𝜔10 (16 + 9𝜉2)2𝜅
4 − ℎ (Ω − 3𝛿𝜔)

16𝛿𝜔5 (16 + 9𝜉2)𝜅
2 + 2𝜉2𝜔2 ⩽ 0, (J.3)

which is in itself a biquadratic inequality in 𝜅 . The above expression is negative if 𝜅2 is between
its two roots, such that the boundaries of the existence region are given by

63ℎ𝜅2

64𝛿𝜉𝜔6 (16 + 9𝜉2) =
Ω − 3𝛿𝜔

𝜉𝜔
±

√︄
(Ω − 3𝛿𝜔)2

𝜉2𝜔2 − 63. (J.4)

Explicitly isolating Ω gives the sought expression for existence condition of subharmonic
resonance as:

Ω = 3𝛿𝜔 + 63ℎ𝜅2

128𝛿𝜔5 (16 + 9𝜉2) +
32𝛿𝜔7𝜉2 (

16 + 9𝜉2)
ℎ𝜅2 . (J.5)

Note that Equation (J.5) automatically guarantees that Equation (J.2) is verified.

K Linear stability analysis for the parametrically excited oscillator
This Appendix is concerned with the linear stability analysis of the bifurcated branches for
the case of parametric excitation, see Equation (66) in Section 3.3. The dynamical system from
Equation (70) serves as the starting point. Assuming 𝜌 ≠ 0, substituting the coefficients from
Equation (71), and considering the fixed points ¤𝜌 = ¤𝜓 = 0, it can be rewritten as

𝜌 𝑓 𝑅1 + 𝜌3

4 𝑓 𝑅2 + 𝜌 𝑓 𝑅4 + 𝜌 𝑓 𝑅3 cos𝜓 + 𝜌 𝑓 𝐼3 sin𝜓 = 0 (K.1a)

2𝑓 𝐼1 − Ω + 𝜌2

2 𝑓 𝐼2 + 2𝑓 𝐼4 − 2𝑓 𝑅3 sin𝜓 + 2𝑓 𝐼3 cos𝜓 = 0. (K.1b)
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Then, in order to perform the linear stability analysis, the Jacobian

J =

[
𝑓 𝑅1 + 3𝜌2

4 𝑓 𝑅2 + 𝑓 𝑅4 + 𝑓 𝑅3 cos𝜓 + 𝑓 𝐼3 sin𝜓 −𝜌 𝑓 𝑅3 sin𝜓 + 𝜌 𝑓 𝐼3 cos𝜓

𝜌𝑓 𝐼2 −2𝑓 𝑅3 cos𝜓 − 2𝑓 𝐼3 sin𝜓

]
(K.2a)

=

[
0 𝜌

(
Ω
2 − 𝛿𝜔 − 𝜌2 3ℎ

8𝛿𝜔 − 𝜅2 (𝛿−1)
32𝜔3𝜉2𝛿2

)
𝜌 3ℎ

2𝛿𝜔 −2𝜉𝜔

]
, (K.2b)

of the vector field of the dynamical system from Equation (70) is calculated, where the coefficient
expressions from Equation (69) have been substituted and Equation (K.1) has been used in order
to simplify the Jacobian. Then, calculating its eigenvalues corresponds to solving the following
two quadratic equations in 𝜆:

𝜆2 + 2𝜉𝜔𝜆 ± 𝜌2 3ℎ
2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2 − 𝜉2𝜔2 = 0, (K.3)

which has been obtained from det(J − 𝜆I) = 0 by substituting Ω from Equation (76). If the plus
sign is considered first, one has

𝜆 = −𝜉𝜔 ±
√︄
𝜉2𝜔2 + 𝜌2 3ℎ

2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2 − 𝜉2𝜔2. (K.4)

In this case, the real part of at least one eigenvalue is always positive, since the term under the
square root is larger than 𝜉𝜔 . Thus, the right branch of the FRC, corresponding to the plus sign
in Equation (76), is unstable. Analogously, for the minus sign case, the eigenvalues are

𝜆 = −𝜉𝜔 ±
√︄
𝜉2𝜔2 − 𝜌2 3ℎ

2𝛿𝜔

√︂
𝜅2

16𝜔2𝛿2 − 𝜉2𝜔2. (K.5)

Therefore, using a similar argument, the left branch of the FRC is stable. From the stability of the
bifurcated branches, the one from the main branch can be deduced due to the topology of the
attractors in phase space: it is unstable between the bifurcation points and stable outside them.
Note that the above analysis assumes a hardening Duffing oscillator with ℎ > 0. In the softening
case with ℎ < 0, the FRC is bent to the left, and the analysis before has just to be changed: the
unstable branch corresponds to the left bifurcation point, with smaller frequency, while the stable
branch corresponds to the right point with higher frequency.

L Nonlinear mappings for the two dofs system, free of internal
resonance
The nonlinear mappings for the two dofs system with only cubic coefficients and no internal
resonance are given below. Calculations were pursued up to order 5, and only displacement
mappings are given since velocity ones can be obtained as their time derivatives.

𝑢1 = (𝑧1 + 𝑧2) +
(
ℎ1

111
8𝜔2

1
𝑧3

1 −
3ℎ1

111
4𝜔2

1
𝑧2

1𝑧2 −
3ℎ1

111
4𝜔2

1
𝑧1𝑧

2
2 +

ℎ1
111

8𝜔2
1
𝑧3

2

)
+

(
8ℎ2

111
2
𝜔2

1 + 9ℎ1
111

2
𝜔2

1 − ℎ1
111

2
𝜔2

2
576𝜔6

1 − 64𝜔4
1𝜔

2
2

𝑧5
1

+ 696ℎ2
111

2
𝜔4

1 − 120ℎ2
111

2
𝜔2

1𝜔
2
2 − 351ℎ1

111
2
𝜔4

1 + 390ℎ1
111

2
𝜔2

1𝜔
2
2 − 39ℎ1

111
2
𝜔4

2
576𝜔8

1 − 640𝜔6
1𝜔

2
2 + 64𝜔4

1𝜔
4
2

𝑧4
1𝑧2

+ −1968ℎ2
111

2
𝜔4

1 + 240ℎ2
111

2
𝜔2

1𝜔
2
2 + 621ℎ1

111
2
𝜔4

1 − 690ℎ1
111

2
𝜔2

1𝜔
2
2 + 69ℎ1

111
2
𝜔4

2
288𝜔8

1 − 320𝜔6
1𝜔

2
2 + 32𝜔4

1𝜔
4
2

𝑧3
1𝑧

2
2

+ −1968ℎ2
111

2
𝜔4

1 + 240ℎ2
111

2
𝜔2

1𝜔
2
2 + 621ℎ1

111
2
𝜔4

1 − 690ℎ1
111

2
𝜔2

1𝜔
2
2 + 69ℎ1

111
2
𝜔4

2
288𝜔8

1 − 320𝜔6
1𝜔

2
2 + 32𝜔4

1𝜔
4
2

𝑧2
1𝑧

3
2
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+ 696ℎ2
111

2
𝜔4

1 − 120ℎ2
111

2
𝜔2

1𝜔
2
2 − 351ℎ1

111
2
𝜔4

1 + 390ℎ1
111

2
𝜔2

1𝜔
2
2 − 39ℎ1

111
2
𝜔4

2
576𝜔8

1 − 640𝜔6
1𝜔

2
2 + 64𝜔4

1𝜔
4
2

𝑧1𝑧
4
2

+ 8ℎ2
111

2
𝜔2

1 + 9ℎ1
111

2
𝜔2

1 − ℎ1
111

2
𝜔2

2
576𝜔6

1 − 64𝜔4
1𝜔

2
2

𝑧5
2

)
(L.1a)

𝑢2 =

(
ℎ2

111
9𝜔2

1 − 𝜔2
2
𝑧3

1 +
3ℎ2

111
𝜔2

1 − 𝜔2
2
𝑧2

1𝑧2 +
3ℎ2

111
𝜔2

1 − 𝜔2
2
𝑧1𝑧

2
2 +

ℎ2
111

9𝜔2
1 − 𝜔2

2
𝑧3

2

)
+

(27ℎ2
111ℎ

1
111𝜔

2
1 − 3ℎ2

111ℎ
1
111𝜔

2
2 + 8ℎ2

111ℎ
1

122𝜔
2
1

1800𝜔6
1 − 272𝜔4

1𝜔
2
2 + 8𝜔2

1𝜔
4
2

𝑧5
1

+ 𝐶1

162𝜔8
1 − 198𝜔6

1𝜔
2
2 + 38𝜔4

1𝜔
4
2 − 2𝜔2

1𝜔
6
2
𝑧4

1𝑧2
𝐶2

72𝜔8
1 − 152𝜔6

1𝜔
2
2 + 88𝜔4

1𝜔
4
2 − 8𝜔2

1𝜔
6
2
𝑧3

1𝑧
2
2

+ 𝐶2

72𝜔8
1 − 152𝜔6

1𝜔
2
2 + 88𝜔4

1𝜔
4
2 − 8𝜔2

1𝜔
6
2
𝑧2

1𝑧
3
2 +

𝐶1

162𝜔8
1 − 198𝜔6

1𝜔
2
2 + 38𝜔4

1𝜔
4
2 − 2𝜔2

1𝜔
6
2
𝑧1𝑧

4
2

+ 27ℎ2
111ℎ

1
111𝜔

2
1 − 3ℎ2

111ℎ
1
111𝜔

2
2 + 8ℎ2

111ℎ
1

122𝜔
2
1

1800𝜔6
1 − 272𝜔4

1𝜔
2
2 + 8𝜔2

1𝜔
4
2

𝑧5
2

)
(L.1b)

With the coefficients on the numerators given by:

𝐶1 = −81ℎ2
111ℎ

1
111𝜔

4
1 + 84ℎ2

111ℎ
1
111𝜔

2
1𝜔

2
2 − 3ℎ2

111ℎ
1
111𝜔

4
2 + 58ℎ2

111ℎ
1

122𝜔
4
1

− 10ℎ2
111ℎ

1
122𝜔

2
1𝜔

2
2 (L.2)

𝐶2 = −1107ℎ2
111ℎ

1
111𝜔

4
1 + 582ℎ2

111ℎ
1
111𝜔

2
1𝜔

2
2 − 51ℎ2

111ℎ
1
111𝜔

4
2 + 656ℎ2

111ℎ
1

122𝜔
4
1

− 80ℎ2
111ℎ

1
122𝜔

2
1𝜔

2
2 (L.3)
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