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This paper focuses on the stability analysis of multilayer thin shells using the asymptotic numerical

method (ANM) combined with Padé approximants. This technique is highly effective for solving nonlinear

problems due to its high-order algorithm that ensures accurate computation of singular points along

nonlinear solution branches. We present various methods for detecting bifurcation points. The first

technique uses a bifurcation indicator integrated into the nonlinear problem as a scalar function. This

function represents the intensity of a fictitious perturbation force, evaluated along the equilibrium branch

and vanishing exactly at singular points. The second method employs Padé approximants as a bifurcation

indicator by analyzing the denominator of rational fractions. The third method identifies singular points

by combining buckling and linear vibrations, examining the evolution of natural frequencies along

the equilibrium path. The paper evaluates these three bifurcation detection techniques for multilayer

composite structures. It also analyses the impact of the solution representation by power series or Padé

approximants, the truncation order, and the accuracy parameter on the solution path.

Keywords: Asymptotic numerical method, instability, bifurcation, Padé approximants, thin multilayer structures

1 Introduction

Numerical modeling of structural problems has become an indispensable tool since the develop-

ment of the finite element method, allowing a better understanding of the phenomena that occur

during deformation. For reasons of cost and competitiveness, manufacturers tend to use light

materials and complex structures such as auxetic mechanical metamaterials (Zhao and Fu 2023;

Zhou et al. 2023; Wang et al. 2020; Zhao et al. 2023). Multilayer composite shell structures have

been widely employed in civil engineering, aerospace, automotive, energy and many others (for

example: thermal protection of satellite launch tanks (Toor 2018), printed circuit boards (Wang

et al. 2006; Kim et al. 2015), morphing airfoils (Diaconu et al. 2008)). However, these structures are

very sensitive to instabilities (e.g. buckling) (Ramm 2012; Kumar Yadav and Gerasimidis 2019), and

are subjected to a drastic reduction of the critical load in the presence of geometrical or material

defects. This instability often presents complex mechanical behaviors with large deformation,

strong nonlinearity, multiple bifurcation points and multiple equilibrium paths. In the context of

multilayer materials, the instability is very sensitive to the geometry, the number of layers in the

thickness, their orientations and the anisotropic material properties (Brunetti et al. 2018; Finot

and Suresh 1996). In order to have a better understanding of the complex instability phenomena

in various materials, numerous experimental studies as well as analytical and numerical models

have been developed (El Chebair et al. 1989; Frulloni et al. 2007; Fu et al. 2021). One application of

these numerical models is the design of stacking sequences to obtain multi-stable structures, i.e.

structures having several stable states for the same loads. The corresponding load-displacement

curves are highly nonlinear with many bifurcations and stability changes, see (Kuang et al. 2021).

Nonlinear problems in structural mechanics are usually solved by iterative methods based on

the predictor-corrector process. The principle is to follow the nonlinear solution branch of the
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problem point by point in two steps. The first step is to linearize the initial nonlinear problem and

predict a solution, and the second step is to correct the residual by successive iterations to reach

the equilibrium. This method is widely used in finite element codes. However, the computation

time remains a major obstacle of this method. For instability problems, these algorithms require

an appropriate path-following strategy to follow complex response branches. A second approach

to solve nonlinear problems is the perturbation technique. Here, the solution branch is established

as a power series with respect to a parameter 𝑎, which can be defined similarly to the control

parameters in classical iterative algorithms. This method is based on an analytical development

and the applications were limited to particular problems with simple geometry.

The asymptotic numerical method (ANM) based on the perturbation technique presents an

alternative (Damil and Potier-Ferry 1990). It solves nonlinear problems by combining asymptotic

developments and numerical methods. The unknowns of the problem are developed in power

series. ANM transforms the nonlinear problem into a succession of linear problems admitting

the same tangent stiffness operator. Then, these problems are solved by a numerical method

such as the finite element method (FEM). The ANM allows to compute a large part of the

nonlinear branch with only one decomposition of the stiffness matrix per step (Cochelin 1994;

Zahrouni et al. 1999). Many studies have been presented in the literature to compare the number

of matrix decompositions required for a given solution path using the asymptotic numerical

method or more classical approaches. The ANM has been the most efficient compared to the

Newton-Raphson methods (Zahrouni et al. 1999). Since power series have a limited convergence

radius, a continuation technique has been proposed to obtain the whole solution branch. Each

end of step will serve as the starting point of the next step and the step length is computed a

posteriori, requiring that the relative difference between solutions at two consecutive orders is

less than a user-defined accuracy parameter. The automatic determination of the step lengths

based on series terms and according to the local nonlinearity of the response curve is the key

point for the efficiency and robustness of these methods compared to classical iterative methods.

ANM has been successfully applied in many fields: plastic beams (Abichou et al. 2002; Assidi et al.

2009), Navier-Stockes equation (Cadou et al. 2001), contact mechanics (Elhage-Hussein et al.

2000), instability of fiber reinforced composites (Xu et al. 2019) and many others.

The use of a rational representation (Padé approximants (Baker and Graves-Morris 1981))

instead of a polynomial representation improves the validity range of the solution (Elhage-Hussein

et al. 2000). Najah et 𝑎𝑙 . (Najah et al. 1998) have shown the efficiency of the Padé approximants

over the power series representation and the Rayleigh-Ritz technique (Najah et al. 1998; Noor and

Peters 1980). Using rational fractions with a common denominator can help minimize the number

of poles. This can be particularly useful in the context of numerical methods, where a large

number of poles can lead to computational inefficiencies.

Within ANM framework, bifurcation indicators have been proposed to identify critical points.

A first indicator is a scalar function computed by introducing a fictitious perturbation force in the

equilibrium problem (Boutyour et al. 2004). The indicator can be determined explicitly along

the equilibrium branch by the perturbation technique. The roots of this function characterize

the singular points (Tri et al. 2014). The second indicator consists in analyzing the poles of the

rational representation. Overall, the bifurcation point corresponds to the smallest real pole

of the Padé approximant (Boutyour et al. 2004). A third technique for identifying singular

points combines buckling and vibration analysis. The method starts with the calculation of the

equilibrium branch. Then, we proceed to the determination of the eigenfrequencies with the

corresponding vibration modes around this branch. In this method, natural frequencies are used

as bifurcation indicator. Several studies show that the natural frequencies decrease when the

applied load increases and their roots correspond to critical points (bifurcation points or limit

points) (Boutyour et al. 2006).

This paper examines the application of three previously discussed bifurcation detection

methods to multilayer composite shells. The aim is to assess the reliability of these techniques in

the context of strong geometrical nonlinearities. The results are not limited to the first bifurcation

point, which is the most critical, but allow the detection of all possible bifurcation points of a

shell structure, which constitutes an improvement regarding the state of the art. We also analyze

the influence of solution representation (polynomial or rational), truncation order, and accuracy
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parameter on the equilibrium path.

In what follows, Section 2 presents the shell formulation and the asymptotic numerical

algorithm for solving the resulting nonlinear problem. Section 3 gives details about the three

techniques used to detect bifurcation points. Section 4 presents some numerical results and

Section 5 concludes our study.

2 Static shell formulation and resolution algorithm

2.1 Geometric and kinematic description

In this paper, we consider perfectly bonded multilayer thin structures. The behavior of each layer

is orthotropic elastic. While this limits the practical applications to small deformations, it does

allow large rotations to occur. A shell formulation, adapted for large displacements and rotations,

using only displacement variables is used (Büchter et al. 1994). Figure 1 shows the geometry and

kinematics of the proposed shell in the reference and deformed configuration. The position

Figure 1 Geometric and kinematic description of the shell.

vector of an arbitrary material point in the initial configuration is

𝒙 (𝜃1, 𝜃2, 𝜃3) = 𝒓 (𝜃1, 𝜃2) + 𝜃3𝒂3(𝜃1, 𝜃2) (1)

where 𝒓 is the projection of this point on the mid-surface, 𝒂3 the shell director vector and

(𝜃1, 𝜃2, 𝜃3) the curvilinear coordinates. Then, the covariant basis vectors in the undeformed

configuration 𝒈𝒊 are expressed as

𝒈𝛼 =

𝜕𝒙

𝜕𝜃𝛼
= 𝒓 ,𝛼 +𝜃3𝒂3,𝛼 , 𝛼 = 1, 2

𝒈3 =
𝜕𝒙

𝜕𝜃3
= 𝒂3

(2)

where ,𝛼 =
𝜕

𝜕𝜃𝛼
.

Assuming a linear variation of the displacement in the thickness direction, the displacement

field corresponding to the deformed configuration can be written as

𝒖 (𝜃1, 𝜃2, 𝜃3) = 𝒗 (𝜃1, 𝜃2) + 𝜃3𝒘 (𝜃1, 𝜃2) (3)

where 𝒗 and𝒘 represent, respectively, the mid-surface displacement and the difference vector

between the undeformed and deformed shell director vectors. In this formulation, six degrees of

freedom can be distinguished, (𝑣1, 𝑣2, 𝑣3) are relative to the translation of the mid-surface and

(𝑤1,𝑤2,𝑤3) updating the director vector. Thus, the position vector of the deformed shell can be

defined as

𝒙 = (𝒓 + 𝒗) + 𝜃3(𝒂3 +𝒘) = 𝒓 + 𝜃3𝒂3. (4)
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Similar to Equation (2), the covariant basis vectors in the deformed configuration 𝒈𝒊 are

𝒈𝛼 =

𝜕𝒙

𝜕𝜃𝛼
= 𝒓 ,𝛼 +𝜃3𝒂3,𝛼 , 𝛼 = 1, 2

𝒈3 =
𝜕𝒙

𝜕𝜃3
= 𝒂3.

(5)

For more details on this formulation, please refer to the work by Büchter et al. (1994).

2.2 Strain and stress equations

The Green-Lagrange strain tensor is written in the contravariant basis:

𝜸 =

1

2
(𝒈𝑖 𝑗 − 𝒈𝑖 𝑗 )𝒈

𝑖 ⊗ 𝒈 𝑗 with 𝒈𝑖 𝑗 = 𝒈𝑖 · 𝒈𝑗 (6)

where 𝒈𝑖 𝑗 and 𝒈𝑖 𝑗 are the covariant components of the metric tensors in the reference and

deformed configurations, respectively, and 𝒈𝑖 denotes the contravariant basis vectors. The

contravariant basis vectors can be defined by the orthogonality condition 𝒈𝑖 · 𝒈𝑗 = 𝜹𝑖
𝑗 .

From Equations (2) and (5), the components of the Green-Lagrange strain can be written as

𝜸𝑖 𝑗 = 𝜶𝑖 𝑗 + 𝜷𝑖 𝑗𝜃3 + 𝑸𝑖 𝑗 (𝜃3)
2 (7)

with 𝜶𝑖 𝑗 =
1
2
(𝒂𝑖𝒂 𝑗 − 𝒂𝑖𝒂 𝑗 ), 𝜷𝛼𝛽 =

1
2
(𝒂3,𝛼𝒂𝛽 + 𝒂3,𝛽𝒂𝛼 − 𝒂3,𝛼𝒂𝛽 − 𝒂3,𝛽𝒂𝛼 ), 𝜷𝛼3 =

1
2
(𝒂3,𝛼𝒂3 − 𝒂3,𝛼𝒂3),

𝑸𝛼𝛽 =
1
2
(𝒂3,𝛼𝒂3,𝛽 − 𝒂3,𝛼𝒂3,𝛽 ), and 𝜷33 = 𝑸𝛼3 = 𝑸33 = 0.

To avoid numerical locking in shell modeling, the EAS (Enhanced Assumed Strain) concept

proposed by Simo and Rifai (1990) will be used. This method consists in introducing an additional

strain field𝜸 incompatible with the displacement and which is chosen, by construction, orthogonal

to the stress field 𝑺𝑚 of each layer𝑚. Let us underline that the orthogonality condition has

no physical meaning. This is only a manner to establish a consistent transition 3𝐷 → 2𝐷 or

3𝐷 → shell. This additional variable allows to use a complete 3D constitutive law without

condensation. Since no inter-element continuity is required, the additional deformation is

eliminated at the elementary level, thus preserving the formal structure of a 6-parameter shell

theory. The incompatible strain field 𝜸 reads

𝜸 = 𝜃3𝛽33𝒈
3 ⊗ 𝒈3 (8)

and the orthogonality condition is

∫

Ω

(𝑡𝑺𝑚 : 𝜸 )𝑑Ω = 0. (9)

The term 𝛽33 provides a linear variation of the strain field through the thickness. Thus, the total

strain field 𝜸 and the stress field (second Piola-Kirchhoff stress tensor) in each layer 𝑺𝑚 read

𝜸 = 𝜸𝑢 +𝜸 = (𝜸𝑙 (𝒖) +𝜸𝑛𝑙 (𝒖, 𝒖)) +𝜸 (10)

𝑺𝑚 = 𝑫𝑚 : 𝜸 (11)

in which 𝜸𝑙 (𝒖) and 𝜸𝑛𝑙 (𝒖, 𝒖) denote the linear and nonlinear parts of the compatible strain field,

respectively, and 𝑫𝑚
= 𝐷𝑖 𝑗𝑘𝑙 (𝑚)𝒈𝑖 ⊗ 𝒈𝑗 ⊗ 𝒈𝑘 ⊗ 𝒈𝑙 refers to the fourth-order elasticity tensor of

the𝑚th layer. As the elasticity tensor is often obtained in Cartesian coordinates, a transformation

to curvilinear coordinates is used in the numerical implementation and formulated as

𝐷𝑖 𝑗𝑘𝑙 (𝑚)
= 𝐶𝑝𝑞𝑟𝑠 (𝑚) (𝒆𝑝 · 𝒈

𝑖) (𝒆𝑞 · 𝒈
𝑗 ) (𝒆𝑟 · 𝒈

𝑘 ) (𝒆𝑠 · 𝒈
𝑙 ) (12)

where 𝑪𝑝𝑞𝑟𝑠 (𝑚) presents the components of elasticity tensor in Cartesian coordinates.
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2.3 A three-field variational formulation

Let us consider a material domain Ω which will consist in a shell structure. The shell formulation

considered in the present study is based on a three-dimensional formulation. The unknowns are

the displacement field 𝒖, the Green-Lagrange strain 𝜸 and the second Piola-Kirchhoff stress

tensor in the𝑚th layer 𝑺𝑚 . A consistent functional framework can be obtained by considering

Sobolev spaces: 𝑢𝑖 ∈𝑊
1,4(Ω), 𝛾𝑖 𝑗 ∈ 𝐿2(Ω) and 𝑆𝑚𝑖 𝑗 ∈ 𝐿2(Ω). The equations of the problem are

equivalent to the stationarity of the Hu-Washizu functional, which is written

𝝅HW(𝒖,𝜸 , 𝑺𝑚) =

𝑁∑︁

𝑚=1

∫

Ω

{
1
2
𝑡𝜸 : 𝑫𝑚 : 𝜸 − 𝑡𝑺𝑚 : (𝜸 −𝜸𝑢)

}
𝑑Ω − 𝜆𝑷𝑒 (𝒖) (13)

where 𝑁 refers to the number of layers of laminated shells and 𝜆𝑷𝑒 (𝒖) is the work of the external

forces (𝜆 is a scalar load parameter). Considering the orthogonality condition (9) between the

stress field in the m𝑡ℎ layer 𝑺𝑚 and the additional strain field 𝛾 , Equation (13) becomes

𝝅EAS(𝒖,𝜸 ) =

𝑁∑︁

𝑚=1

∫

Ω

1
2
𝑡 (𝜸𝑢 +𝜸 ) : 𝑫𝑚 : (𝜸𝑢 +𝜸 ) 𝑑Ω − 𝜆𝑷𝑒 (𝒖) . (14)

Thus, the variational problem is

𝜹𝝅EAS(𝒖,𝜸 ) =

𝑁∑︁

𝑚=1

∫

Ω

𝑡 (𝜹𝜸𝑢 + 𝜹𝜸 ) : 𝑫𝑚 : (𝜸𝑢 +𝜸 ) 𝑑Ω − 𝜆𝑷𝑒 (𝜹𝒖) . (15)

This formulation is not the optimal one for applying the perturbation technique because the

equilibrium equation is cubic with respect to the displacement field 𝒖. High efficiency can be

achieved by employing a variational formulation within a quadratic framework, which is easily

accomplished by reintroducing the stress field and the constitutive law, as detailed in (Azrar et al.

1993). Thus, the variational problem leads to the equilibrium equation, the compatibility equation

which is equivalent to the orthogonality condition and the constitutive equation

𝑁∑︁

𝑚=1

∫

Ω

𝜹𝜸𝑢 : 𝑺𝑚𝑑Ω − 𝜆𝑷𝑒 (𝜹𝒖) = 0 (16)

𝑁∑︁

𝑚=1

∫

Ω

𝜹𝜸 : 𝑺𝑚𝑑Ω = 0 (17)

with 𝑺𝑚 = 𝑫𝑚 : (𝜸𝒖 +𝜸 ). Equations (16) and (17) are quadratic with respect to the unknowns

and can be expressed in the general form (Cochelin et al. 2007)

𝑹 (𝑼 , 𝜆) = 𝑳(𝑼 ) + 𝑸 (𝑼 , 𝑼 ) − 𝜆𝑭 = 0 (18)

where 𝑼 = (𝒖,𝜸 , 𝑺𝑚) is a unknown vector, 𝑳(·) a linear operator, 𝑸 (·, ·) a quadratic one, 𝑭 the

external load vector and 𝑹 the residual vector. Thus, the problem is to find the mixed variable 𝑼

and the loading parameter 𝜆 verifying Equation (18).

2.4 Asymptotic numerical algorithm

We propose to solve Equation (18) by the Asymptotic Numerical Method (Büchter et al. 1994).

First, we use the perturbation technique to transform the nonlinear problem into a succession of

linear ones all admitting the same tangent operator. The resulting problems up to order 𝑝 are

discretized and solved by the finite element method. Thus, we analytically obtain a part of the

solution path with only one stiffness matrix decomposition. Compared to the predictorścorrector

method such as Riks method, this approach is automatic and more efficient (Najah et al. 1998).

Starting from an initially known solution (𝑼0, 𝜆0), the perturbation technique consists in

searching the solution path of the nonlinear problem under an asymptotic expansion form with

respect to a path parameter 𝑎:

𝑼 (𝑎) = 𝑼0 + 𝑎𝑼1 + 𝑎2𝑼2 + . . . + 𝑎𝑛𝑼𝑛

𝜆(𝑎) = 𝜆0 + 𝑎𝜆1 + 𝑎2𝜆2 + . . . + 𝑎𝑛𝜆𝑛
(19)
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in which 𝑼𝑝 are mixed unknown vectors, 𝜆𝑝 the unknown coefficients at order 𝑝 , and 𝑛 is

the truncation order of the series. By analogy with arc-length iterative methods, the control

parameter 𝑎 is chosen as the projection of the displacement increment (𝒖 − 𝒖0) and the load

increment (𝜆 − 𝜆0) on the tangent direction (𝒖1, 𝜆1), where ⟨·, ·⟩ is the Euclidean scalar product

𝑎 = ⟨𝒖 − 𝒖0, 𝒖1⟩ + (𝜆 − 𝜆0)𝜆1. (20)

By substituting Equation (19) into Equations (18) and (20) and identifying the terms according to

the power of 𝑎, we obtain a recurrent sequence of linear mixed problems admitting the same

tangent operator.

· Order 1:

𝑳0𝑡 (𝑼1) = 𝜆1𝑭

⟨𝒖1, 𝒖1⟩ + 𝜆21 = 1
(21)

· Order 2:

𝑳0𝑡 (𝑼2) = 𝜆2𝑭 − 𝑸 (𝑼1, 𝑼1)

⟨𝒖2, 𝒖1⟩ + 𝜆2𝜆1 = 0
(22)

· Order 𝑝:

𝑳0𝑡 (𝑼𝑝) = 𝜆𝑝𝑭 −

𝑝−1∑︁

𝑟=1

𝑸 (𝑼𝑟 , 𝑼𝑝−𝑟 )

⟨𝒖𝑝 , 𝒖1⟩ + 𝜆𝑝𝜆1 = 0
(23)

The tangent operator 𝑳0𝑡 depends only on the initial solution and is defined by:

𝑳0𝑡 (·) = 𝑳(·) + 𝑸 (𝑼0, ·) + 𝑸 (·, 𝑼0) (24)

The linear problems above are solved using the finite element method. For discretization, we use

the eight node shell element with reduced integration as described in (Zahrouni et al. 1999). The

finite element discretisation is described in Appendix A. The discretized form of the problem at

order 𝑝 (𝑝 ⩾ 2) is given by

[𝑲0
𝑡 ]{𝒒𝑝 } = 𝜆𝑝 {𝑭 } + {𝑭 nl

𝑝 }

𝑡 {𝒒𝑝 }{𝒒1} + 𝜆𝑝𝜆1 = 0
(25)

where [𝑲0
𝑡 ] is the classical tangent stiffness matrix at the starting point (𝑼0, 𝜆0), {𝑭 } is the

external force vector, {𝒒𝑝 } and 𝜆𝑝 are respectively the discretized form of the displacement

𝒖𝑝 and the loading parameter at order 𝑝 . The second member {𝑭 nl
𝑝 } depends on the solutions

computed at the previous (𝑝 − 1) orders.

In the ANM, the variables are expressed as power series expansions. These series have a

validity range that depends on the problem to be solved, the truncated orders of the series, and

the required accuracy. A simple continuation procedure consists of considering that the relative

difference between the displacement series at two successive orders must remain small with

respect to a critical value 𝛿1 (Cochelin 1994). Thus, the maximal value of the path parameter is

𝑎max =

(
𝛿1

∥ 𝒖1 ∥

∥ 𝒖𝑛 ∥

) 1
𝑛−1

(26)

with 𝛿1 a user-defined accuracy parameter and ∥ · ∥, the Euclidean norm of the vector. The

solution branch is obtained step by step by considering each end of step as the starting point of

the next step. One of the originalities of this procedure is that the step length is determined a

posteriori according to the characteristics of the computed series. This criterion avoids the user

intervention to define the step length (which is often the case in commercial finite element

software). Thus, this continuation algorithm is automatic, more robust and easier to use for

predicting complex shell behaviors. We would also like to mention that the step length is

automatically adaptive to the nonlinearity of the problem.
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2.5 Convergence improvement by Padé approximants

In the previous section, we presented a continuation method based on the polynomial represen-

tation. The solution path is represented by truncated power series. Several tests have shown

the efficiency and reliability of this algorithm (thin shells in Lagrangian formulation (Cochelin

1994; Cochelin et al. 1994), viscous fluid mechanics and plastic structures (Zahrouni et al. 1999)).

In addition, the use of the rational representation, called Padé approximants, instead of the

polynomial representation allows to increase the range of validity of the solution. For a more

detailed study on Padé approximants, we refer the reader to (Baker and Graves-Morris 1981).

We denote 𝑃𝑛 the representation by rational fractions of the displacement 𝒖 and the loading

parameter 𝜆 for a truncation order 𝑛:

𝑃𝑛 (𝒖 (𝑎)) = 𝒖0 + 𝑎
𝐷𝑛−2

𝐷𝑛−1
𝒖1 + 𝑎2

𝐷𝑛−3

𝐷𝑛−1
𝒖2 + . . . + 𝑎𝑛−1

1

𝐷𝑛−1
𝒖𝑛−1

𝑃𝑛 (𝜆(𝑎)) = 𝜆0 + 𝑎
𝐷𝑛−2

𝐷𝑛−1
𝜆1 + 𝑎2

𝐷𝑛−3

𝐷𝑛−1
𝜆2 + . . . + 𝑎𝑛−1

1

𝐷𝑛−1
𝜆𝑛−1

(27)

where 𝐷𝑖 (𝑎) = 1 + 𝑎𝑑1 + 𝑎2𝑑2 + . . . + 𝑎𝑖𝑑𝑖 are polynomials of degree 𝑖 with real coefficients 𝑑𝑖 ,

see (Elhage-Hussein et al. 2000).

These rational approximants have a common denominator to limit the number of poles of the

representation. Using the same criterion of the polynomial representation based on displacement,

we can define a range of validity (𝑎max𝑝 ) of the rational representation (27). In this case, we must

require that the difference between two rational solutions at consecutive orders remains small at

the end of the step. This can be expressed by

∥𝑃𝑛 (𝒖 (𝑎max𝑝 )) − 𝑃𝑛−1(𝒖 (𝑎max𝑝 ))∥

∥𝑃𝑛 (𝒖 (𝑎max𝑝 )) − 𝑃0∥
= 𝛿2. (28)

where 𝛿2 is a new accuracy parameter.

The range of validity 𝑎max𝑝 is searched in the interval [𝑎max; 𝛽𝑎max] by the bisection method

using the criterion in Equation (28), where 𝛽 > 1 is a user-defined parameter. The Padé

approximants are computed by a simple Gram-Schmidt orthogonalization, which does not require

too much computational time compared to the representation by series. Various examples have

shown the efficiency and robustness of the Padé algorithm (Elhage-Hussein et al. 2000).

3 Bifurcation detection methods

3.1 Bifurcation indicator

The goal of this section is to develop a reliable algorithm, based on ANM, for the determination

of bifurcation points. These points are detected by evaluating, along the equilibrium branch, a

scalar function called bifurcation indicator. This scalar is obtained by introducing a fictitious

perturbation force in the equilibrium problem, and which vanishes at the singular points. Several

examples are presented to evaluate the efficiency of the proposed method (Boutyour et al. 2004).

Let Δ𝜇𝒇 be a fictitious perturbation force applied to the structure in a deformed state (𝑼 , 𝜆).

Δ𝜇 represents the intensity of the force and 𝚫𝑼 = (𝚫𝒖,𝚫𝜸 ,𝚫𝑺𝑚) its associated response. Under

these conditions, the perturbed equilibrium equation is

𝑳(𝑼 + 𝚫𝑼 ) + 𝑸 (𝑼 + 𝚫𝑼 , 𝑼 + 𝚫𝑼 ) = 𝜆𝑭 + Δ𝜇𝒇 . (29)

Considering the equilibrium equation (18) and neglecting the quadratic terms, the perturbed

problem is written:

𝑳𝑡 (𝚫𝑼 ) = Δ𝜇𝒇 (30)

where 𝑳𝑡 (·) = 𝑳(·) + 𝑸 (𝑼 , ·) + 𝑸 (·, 𝑼 ) is the tangent operator taken at the equilibrium point

(𝑼 , 𝜆). An additional condition based on the displacement is prescribed:

⟨𝑳0𝑡 (𝚫𝑼 ) − 𝚫𝑼0,𝚫𝑼0⟩ = 0 (31)
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where 𝑳0𝑡 is the tangent operator at the starting point (𝑼0, 𝜆0).

Equations (30) and (31) will be solved by the asymptotic numerical method and the unknowns

𝚫𝑼 and Δ𝜇 are written as power series:

𝚫𝑼 (𝑎) = 𝚫𝑼0 + 𝑎𝚫𝑼1 + 𝑎2𝚫𝑼2 + . . . + 𝑎𝑛𝚫𝑼𝑛

Δ𝜇 (𝑎) = Δ𝜇0 + 𝑎Δ𝜇1 + 𝑎2Δ𝜇2 + . . . + 𝑎𝑛Δ𝜇𝑛
(32)

In the same way as the fundamental branch and by substituting Equation (32) in Equations (30)

and (31), we obtain a sequence of linear problems.

· Order 0:

𝑳0𝑡 (𝚫𝑼0) = Δ𝜇0𝒇 (33)

𝚫𝑼0 is computed by imposing Δ𝜇0 = 1.

· Order 𝑝 ⩾ 1:

𝑳0𝑡 (𝚫𝑼𝑝) = Δ𝜇𝑝𝒇 −

𝑝∑︁

𝑟=1

(𝑸 (𝑼𝑟 ,𝚫𝑼𝑝−𝑟 ) + 𝑸 (𝚫𝑼𝑝−𝑟 , 𝑼𝑟 ))

⟨𝚫𝑼𝑝 ,𝒇 ⟩ = 0.
(34)

The vectors 𝑼𝑟 correspond exactly to those determined during the computation of the equilibrium

branch. The application of the ANM requires the computation of a second series at each step.

Nevertheless, the corresponding computation time remains less important, because the stiffness

matrix used for the calculation of the equilibrium branch is the same for the bifurcation indicator.

Such as the equilibrium branch, the expansion terms of the series are determined by the finite

element method after a condensation step. The discretization of the problem at order 𝑝 leads to

[𝑲0
𝑡 ]{𝚫𝒒𝑝 } = Δ𝜇𝑝 {𝒇 } + {𝚫𝑭 nl

𝑝 }

𝑡 {𝚫𝒒𝑝 }[𝑲𝑡 ]{𝚫𝒒0} = 0
(35)

where [𝑲0
𝑡 ] denotes the tangent stiffness matrix at the starting point, {𝚫𝒒0} and {𝚫𝒒𝑝 } are

respectively the nodal displacement vectors at orders 0 and 𝑝 associated to the perturbation force

{𝒇 }. The vector {𝚫𝑭 nl
𝑝 } depends on the solutions 𝑼 up to order 𝑝 and 𝚫𝑼 up to order (𝑝 − 1).

Thus, Equation (35) yields

Δ𝜇𝑝 = −
⟨𝚫𝑭 nl

𝑝 ,𝚫𝒒0⟩

⟨𝒇 ,𝚫𝒒0⟩
. (36)

From the terms Δ𝜇𝑝 (1 ⩽ 𝑝 ⩽ 𝑛), we can construct the series development of Δ𝜇 and study its

sign along the equilibrium branch in order to detect the bifurcation.

3.2 Poles of the Padé approximants

Another simple method to detect bifurcation points is the analysis of the poles of the Padé

approximants. The bifurcation points correspond to the real roots of the rational fraction

denominator (Boutyour et al. 2004; Tri et al. 2014). We note here another interest of the rational

representation with respect to the polynomial representation.

3.3 Natural frequency of vibration

Buckling and vibration are instability phenomena that can coexist and induce large displacements

generally causing damage in structural mechanics. The knowledge of the natural frequencies and

the critical load with their corresponding mode shapes allows to predict the resonance and

instability regions. A classical technique to combine vibration and buckling analysis is to start

first with the computation of the equilibrium branch. The frequencies with the corresponding

vibration modes around this branch are then determined. Several studies show that the natural

frequencies decrease as the applied load increases and exactly cancel at the critical points

(bifurcation points or limit points) (Boutyour et al. 2006). We use the asymptotic numerical

method to solve equilibrium and linear vibration problems. The unknowns of the problem
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(solution branch, frequency and eigenmode) are determined by a perturbation technique whose

terms are calculated by the finite element method.

For a given applied load, the structure is assumed to oscillate around a static state 𝑼 . These

oscillations are described by the time-dependent mixed vector 𝑽 (𝜃1, 𝜃2, 𝜃3, 𝑡), so the global

response is written 𝑼 (𝜃1, 𝜃2, 𝜃3) + 𝑽 (𝜃1, 𝜃2, 𝜃3, 𝑡). The oscillations of the structure around a static

equilibrium state are described by

𝑴 ( ¥𝑽 ) + 𝑳(𝑼 + 𝑽 ) + 𝑸 (𝑼 + 𝑽 , 𝑼 + 𝑽 ) = 𝜆𝑭 (37)

with

⟨𝑴 ¥𝑽 , 𝜹𝑼 ⟩ =

∫

Ω

𝜌 ( ¥𝒗1𝜹𝒖1 + ¥𝒗2𝜹𝒖2 + ¥𝒗3𝜹𝒖3)𝑑Ω (38)

where ¥𝑽 is the second derivative with respect to time of 𝑽 and the 𝑣𝑖 are the components of the

displacement 𝑽 , 𝑴 is the mass matrix and 𝜌 is the density. Neglecting the quadratic term in 𝑽

through 𝑸 (𝑽 , 𝑽 ), Equation (37) becomes

𝑳𝑡 (𝑽 ) +𝑴 ( ¥𝑽 ) = 0 (39)

where 𝑳𝑡 = 𝑳(·) + 𝑸 (𝑼 , ·) + 𝑸 (·, 𝑼 ) is the tangent operator at a static deformed state 𝑼 . The

general solution to Equation (39) is expressed as 𝑽 = 𝑿𝑒𝑖𝜔𝑡 , and upon insertion into Equation (39)

yields the linear eigenvalue problem

𝑳𝑡 (𝑿 ) − 𝜔2𝑴 (𝑿 ) = 0. (40)

To study the eigenfrequencies 𝜔 and their associated modes 𝑿 in pre-buckling and post-buckling

ranges, we need to solve the following coupled problem

𝑳(𝑼 ) + 𝑸 (𝑼 , 𝑼 ) = 𝜆𝑭 (41)

𝑳𝑡 (𝑿 ) = 𝜔2𝑴 (𝑿 ). (42)

Equation (41) corresponds to the static displacement load solution. The obtained displacement 𝑼

is used to compute the tangent operator 𝑳𝑡 . Note that, if the static equilibrium 𝑼 (𝜆) is stable,

all the eigenvalues of Equation (42) are positive and𝑤 represents the natural frequencies. On

the other hand, if 𝑼 (𝜆) is unstable, Equation (42) has negative eigenvalues. The critical points

correspond to the load value for which 𝜔 = 0. This criterion will be used to detect the bifurcation

points.

The static problem (41) has been solved using the ANM in Section 2.4. The same technique

will be used to solve the dynamic problem (42). The idea is to determine analytically in power

series form the unknowns (𝑿 , 𝜔)

𝑿 = 𝑿0 + 𝑎𝑿1 + 𝑎2𝑿2 + . . . + 𝑎𝑛𝑿𝑛

𝜔2
= 𝜔2

0 + 𝑎𝜔1 + 𝑎2𝜔2 + . . . + 𝑎𝑛𝜔𝑛

(43)

where (𝑿0, 𝜔
2
0) is the solution of the eigenvalue problem at the starting equilibrium point (𝑼0, 𝜆0),

𝑿𝑟 = (𝑢𝑥𝑟 , 𝛾𝑥𝑟 , 𝑆𝑥𝑟 ) is a mixed vector, and 𝜔𝑟 is a scalar parameter. The parameter 𝑎 is the same

as in Equation (32). Substituting Equation (43) into Equation (42) and identifying the terms

according to the power of 𝑎, we obtain a sequence of linear problems.

· Order 1:

𝑳0𝑡 (𝑿1) − 𝜔2
0𝑴𝑿1 = 𝜔1𝑴𝑿0 − 𝑸 (𝑼1,𝑿0) − 𝑸 (𝑿0, 𝑼1) (44)

· Order 𝑟 :

𝑳0𝑡 (𝑿𝑟 ) − 𝜔2
0𝑴𝑿𝑟 = 𝜔𝑟𝑴𝑿0 +

𝑟−1∑︁

𝑗=1

𝜔 𝑗𝑴𝑿𝑟− 𝑗 −

𝑟∑︁

𝑗=1

(𝑸 (𝑼 𝑗 ,𝑿𝑟− 𝑗 ) + 𝑸 (𝑿𝑟− 𝑗 , 𝑼 𝑗 )). (45)
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Again, they all share the same linear operator 𝑳0𝑡 − 𝜔2
0𝑴 which must be decomposed only once

for all 𝑿𝑟 (𝑟 = 0, 1, . . . , 𝑛). The projection of Equations (44) and (45) onto the vibration mode 𝑿0

gives:

· Order 1:

𝜔1 =
⟨𝑿0,𝑸 (𝑼1,𝑿0)⟩ + ⟨𝑿0,𝑸 (𝑿0, 𝑼1)⟩

⟨𝑴𝑿0,𝑿0⟩
(46)

· Order 𝑟 :

𝜔𝑟 =

∑𝑟
𝑗=1

(
⟨𝑿0,𝑸 (𝑼 𝑗 ,𝑿𝑟− 𝑗 )⟩ + ⟨𝑿0,𝑸 (𝑿𝑟− 𝑗 , 𝑼 𝑗 )⟩

)
−

∑𝑟−1
𝑗=1 𝜔 𝑗 ⟨𝑿0,𝑴𝑿𝑟− 𝑗 ⟩

⟨𝑴𝑿0,𝑿0⟩
(47)

The finite element discretization of the vibration problem gives:

· Order 1:

𝜔1 =

𝑡 {𝒙0}{𝑭1}
𝑡 {𝒙0}[𝑴]{𝒙0}

([𝑲0
𝑡 ] − 𝜔2

0 [𝑴]){𝒙1} = 𝜔1 [𝑴]{𝑿0} + {𝑭1}

(48)

· Order 𝑟 :

𝜔𝑟 =

𝑡 {𝒙0}{𝑭𝑟 } −
∑𝑟−1

𝑗=1 𝜔 𝑗
𝑡 {𝒙0}[𝑴]{𝒙𝑟− 𝑗 }

𝑡 {𝒙0}[𝑴]{𝒙0}

([𝑲0
𝑡 ] − 𝜔2

0 [𝑴]){𝒙𝑟 } = 𝜔𝑟 [𝑴]{𝑿0} +

𝑟−1∑︁

𝑗=1

𝜔 𝑗 [𝑴]{𝒙𝑟− 𝑗 } + {𝑭𝑟 }

(49)

where {𝒙𝑟 } is the discretized form of 𝒖𝑥𝑟 and the vectors {𝑭𝑟 } depend only on the solutions up to

order (𝑟 − 1).

4 Numerical applications

In this section, a bifurcation analysis is conducted for a multilayer structure with nonlinear

pre-buckling to evaluate the efficiency and robustness of bifurcation detection algorithms. We

consider a cylindrical laminated roof composed of three orthotropic layers, see Figure 2. The

thickness of each layer is the same. The top and bottom layers are oriented at 45◦ and the middle

layer at 0◦ (45◦/0◦/45◦). The material characteristics are given in Table 1. The roof is pinned on

the two straight edges and free on the two others edges and subjected to point loading at its

center. After a convergence study, the structure is discretized using 36 shell elements presented

in Section 2.

𝑎 (mm) 𝑅 (mm) ℎ (mm) 𝛼 (rad)

508 2540 6 0.2

Figure 2 Geometrical parameters of the cylindrical roof.

The response curve of the structure using the rational representation is given in Figure 3.

Figure 4 shows the evolution of the structure’s deformation along the equilibrium path of Figure 3.

To reach a vertical displacement of the load application point of 30 mm, the ANM requires 35

steps (35 matrix decompositions) for truncation order 𝑛 = 15 and accuracy parameter 𝛿 = 10−6
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Table 1 Mechanical properties of each roof layer.
𝐸 (MPa) 𝜇 𝐺 (MPa)

𝐸1 3300 𝜇12 0.25 𝐺12 660

𝐸2 1100 𝜇23 0.25 𝐺23 440

𝐸3 1100 𝜇13 0.25 𝐺13 660

(the maximum residual of the solution path is equal to log10(Res) = −2.32). A summary of

the number of steps to have (𝑢 ≈ 30mm) according to 𝑛 and 𝛿 is given in Table 2. The same

problem is simulated using Abaqus with Newton Raphson algorithm and Riks control. The

mesh is the same as the one used for the ANM with an eight node shell element S8R available in

Abaqus/Standard. A displacement of 30mm from the load application point requires 124 steps

with 374 matrix decompositions using a fixed increment equal to 0.05 (or 62 steps with 203 matrix

decompositions by using 0.1). This comparison shows the efficiency of the ANM.

Figure 3 Load-vertical displacement of the load

application point (𝑛 = 15 and 𝛿 = 10−6).

Black line represents the response given by

ANM with Padé approximation, circles are

relative to the end of each ANM-Padé step

and triangles represent 10 points of

Abaqus-Riks response. Total number of

steps: 124.
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Depending on the parameters 𝑛 and 𝛿 and the technique used to represent the solution

(polynomial or rational), the asymptotic numerical method allows us to observe different

Figure 4 Deformations of the structure at steps (a) 20, (b) 50, (c) 90, and (d) 120 in Figure 3.
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Table 2 Summary of the number of ANM-Padé steps to obtain

a vertical displacement of the load application point of

30 mm as a function of the truncation order 𝑛 and the

accuracy 𝛿 . The symbol (-) indicates that the corresponding

parameters 𝑛 and 𝛿 do not give the same equilibrium path

described in Figure 3.

𝑛

𝛿
10−6 10−8 10−10 10−12

15 35 47 − −

20 − 36 52 −

25 − − 44 −

30 − − 32 48

equilibrium paths, as shown in Figure 5. For𝑛 = 15 and 𝛿 = 10−6 with a polynomial representation,

we notice a deviation of the curve at point C, followed by another deviation at point B, both of

which are bifurcation points. The curve continues to follow the same path between C and B.

Keeping the same representation, another equilibrium path is observed with 𝑛 = 20 and 𝛿 = 10−8.

Points A and F are also bifurcation points for the structure. Two other bifurcation points (points

D and E) appear with a rational representation with parameters 𝑛 = 15 and 𝛿 = 10−10. Therefore,

a total of six bifurcation points can be identified using the three techniques described in Section 3.

It should be noted that when the structure reaches these bifurcation points, it becomes unstable

and significant changes in its shape may occur.
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Figure 5 Equilibrium paths of the structure as a function of representation type, truncation order 𝑛 and accuracy

parameter 𝛿 : (a) 𝑛 = 15, 𝛿 = 10−6, series representation; (b) 𝑛 = 20, 𝛿 = 10−8, series representation; (c)

𝑛 = 15, 𝛿 = 10−10, Padé representation; (d) zoom of Figure 5(c) (𝑢 ∈ [10; 20] and 𝜆 ∈ [−0.3; 0]).

The bifurcation indicator detects the six bifurcation points (Figure 6). It becomes zero exactly

at the critical points. Table 3 shows the critical loading, detection step and residual at the end of

the step for each bifurcation point, respectively. The residual remains quite small along the

Bifurcation point A B C D E F

critical loading 𝜆𝑐 0.252 0.273 −0.054 −0.184 −0.199 −0.111

Step 2 4 9 23 26 34

log10 (Res) −4.683 −4.448 −3.923 −4.383 −4.421 −2.319

Table 3 Critical loading, detection step, and relative residual Res = ∥𝐹int − 𝐹ext∥/∥𝐹ext∥ at each bifurcation point.

equilibrium branch.

The second technique for the detection bifurcation points is the pole analysis of the Padé

approximants. Table 4 presents the real roots of the denominator of the Padé fractions in the
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Figure 6 Bifurcation indicator, along the equilibrium branch, as a function of the loading parameter for 𝑛 = 15 and

𝛿 = 10−6 (Padé). Points A, B, C, D, E and F are the six bifurcation points of the structure.

vicinity of the bifurcation points for different truncation order 𝑛 and accuracy parameter 𝛿 . The

poles shown are those belonging to the loading interval, and the three configurations analyzed

give the same response as shown in Figure 3. We notice that the bifurcation points detected

by the bifurcation indicator are among the poles. Taking the example of 𝑛 = 15 and 𝛿 = 10−6,

the second step gives us a single pole (𝑝2 = 0.252) that belongs to the loading interval and

coincides exactly with the critical loading relative to the bifurcation point A. The same analysis

for the fourth step leads to point B. Nevertheless, in step 9, we find two poles (𝑝91 = −0.032) and

(𝑝92 = −0.054 = 𝜆𝑐 (𝐶)). This can be attributed to defects in the rational representation because

the pole 𝑝91 no longer appears by changing 𝑛 and 𝛿 . The same observation appears in the other

situations where we find more than one pole. Thus, Padé approximants offer a useful tool for

identifying bifurcation points without incurring any additional computational costs. To obtain

reliable results, it is recommended to explore multiple configurations.

The third bifurcation analysis technique consists of tracking natural frequencies along the

equilibrium path. Figure 7 shows the evolution of the relative frequency 𝛽 for the first vibration

mode as a function of the loading parameter 𝜆. As with the bifurcation indicator, 𝛽 is zero at the

critical points and accurately detects the six bifurcation points.

In multilayer structures, the bifurcation points depend on the number of layers, orientation,

thickness and mechanical properties of each layer. Thus, we tested two other roof configurations

by changing the thickness (ℎ = 9 mm) and then the orientation of the layers while keeping the

other parameters constant. Figure 8 shows the response curves for the two configurations as

well as the bifurcation points, obtained using the techniques discussed previously, with the
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Step 2 4 9 23 26 34

Loading [0.221; 0.282] [0.212; 0.306] [−0.061;−0.026] [−0.191;−0.182] [−0.199;−0.197] [−0.165;−0.001]

𝜆𝑐 0.252 0.273 −0.032 −0.184 −0.199 −0.111

−0.054

Step 2 5 13 30 39 49

Loading [0.185; 0.274] [0.263; 0.299] [−0.055;−0.049] [−0.186;−0.184] [−0.199;−0.182] [−0.197;−0.077]

𝜆𝑐 0.252 0.273 −0.054 −0.184 −0.184 −0.111

−0.199 −0.130

Step 2 6 18 33 37 46

Loading [0.206; 0.265] [0.273; 0.278] [−0.056;−0.047] [−0.189;−0.183] [−0.199;−0.193] [−0.203;−0.049]

𝜆𝑐 0.252 0.273 −0.054 −0.184 −0.199 −0.111

0.274 −0.198

Table 4 Poles of the Padé approximants for three pairs of (𝑛, 𝛿) in the vicinity of the bifurcation points. [top] (𝑛 =

15, 𝛿 = 10−6), [middle] (𝑛 = 20, 𝛿 = 10−10), [bottom] (𝑛 = 30, 𝛿 = 10−12).
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Figure 7 Relative natural frequency 𝛽 = 𝜔2/𝜔2
0 , along the equilibrium branch of Figure 3, as a function of the

loading 𝜆 for the first vibration mode (𝑛 = 15 and 𝛿 = 10−6 with Padé representation). Points A, B, C, D, E

and F are the six bifurcation points of the structure.

corresponding critical loads. These tests confirm the effectiveness of our algorithms for following

equilibrium paths and detecting bifurcations.

Journal of Theoretical, Computational and Applied Mechanics
�� February 2025

�� jtcam.episciences.org 14
�� 18

https://jtcam.episciences.org


Hamza Azzayani et al. On the bifurcation analysis of thin multilayer structures by the Asymptotic Numerical Method

0 5 10 15 20 25 30

u

-0.4

-0.2

0

0.2

0.4

0.6

0.8

  

  

  

G

H

I

(a)  ANMPadé

End of step

0 5 10 15 20 25

u

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

    

  
  

J

L
M

(b)ANMPadé

End of step
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Bifurcation point G H I J K L M

𝜆𝑐 0.520 −0.012 −0.260 0.354 0.366 −0.102 −0.151

Figure 8 Response curve for two different roof configurations by changing (a) the thickness (ℎ = 9mm) and (b)

the orientation of the layers (0◦/90◦/0◦). The green points represent the bifurcation points and the

corresponding table shows the critical loads.

5 Conclusion

In this work, we have presented a bifurcation analysis for multilayer structures using the

asymptotic numerical method. Three bifurcation detection techniques have been discussed,

enabling a comprehensive study of the instability of thin shell structures. The first technique is

based on the bifurcation indicator, computed along the equilibrium branch, which vanishes exactly

at critical points. By using a rational representation (Padé approximants) instead of a polynomial

representation (Taylor series), the validity range of the solution is improved and bifurcations are

detected by analyzing the roots of the denominators. The third technique combines buckling and

vibration, where natural vibration frequencies detect bifurcations. According to the numerical

tests conducted, all three techniques are highly accurate in detecting critical points, whatever the

truncation order (15 ⩽ 𝑛 ⩽ 30) and the parameter (10−12 ⩽ 𝛿 ⩽ 10−6). The ANM proves to be a

highly efficient algorithm for studying instabilities and detecting bifurcation points in nonlinear

prebuckling branches.

A Finite element discretization

The fields 𝒗 and𝒘 , which represent respectively the displacement and director difference, are

interpolated via the shape functions of the classical eight node quadrilateral. By collecting

the nodal values of 𝒗 and𝒘 in the vector {𝒒}, the displacement {𝒖}, its virtual part {𝜹𝒖} and

its gradient {𝜽 (𝒖)} are related to nodal displacements {𝒒} and {𝜹𝒒} through {𝒖} = [𝑵 ]{𝒒},

{𝜹𝒖} = [𝑵 ]{𝜹𝒒} and {𝜽 (𝒖)} = [𝑮]{𝒒} where [𝑵 ] is the shape function matrix and [𝑮] is their

gradient matrix.

The Green-Lagrange strain (compatible part) is expressed in the covariant basis as:

𝜸𝑖 𝑗 (𝒖) =
1
2

( 𝜕𝒖
𝜕𝜃 𝑖

𝒈𝑗 +
𝜕𝒖

𝜕𝜃 𝑗
𝒈𝑖 +

𝜕𝒖

𝜕𝜃 𝑖
𝜕𝒖

𝜕𝜃 𝑗

)
(A.1)

where 𝒈𝒊 represents the covariant basis vectors. 𝜸𝑢 can be decomposed into a linear part 𝜸𝑙 (𝒖)

and a nonlinear part 𝜸𝑛𝑙 (𝒖, 𝒖), that is 𝜸𝑢 = 𝜸𝑙 (𝒖) +𝜸𝑛𝑙 (𝒖, 𝒖) with

𝜸𝑙 = [𝑹]{𝜽 (𝒒)} = [𝑹] [𝑮]{𝒒} and 𝜸𝑛𝑙 =
1
2
[𝑨(𝒒)]{𝜽 (𝒒)} = 1

2
[𝑨(𝒒)] [𝑮]{𝒒}. (A.2)

The virtual strain then reads

𝜹𝜸 = ( [𝑹] + [𝑨(𝒒)]) [𝑮]{𝜹𝒒} = [𝑩]{𝜹𝒒} (A.3)

with [𝑩] = ( [𝑹] + [𝑨(𝒒)]) [𝑮] where [𝑹] and [𝑨(𝒒)] represent the component matrix of the

covariant basis and the displacement gradient matrix, respectively.
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For the enhanced assumed strain 𝜸 = 𝜃3𝛽33𝒈
3 ⊗ 𝒈3, the component 𝛽33 does not require any

inter-element continuity. Thus, it is discretized as a bilinear polynomial 𝛽33 = 𝛼1 + 𝛼2𝜉 + 𝛼3𝜂 + 𝛼4𝜉𝜂

where 𝜉 and 𝜂 represent the isoparametric coordinates. The unknown parameters 𝛼1, 𝛼2, 𝛼3
and 𝛼4 can be eliminated at the elementary level (Büchter et al. 1994). Thus, the additional

deformation is written in the matrix form

{𝜸 } = [𝑩𝛼 ]{𝜶 }. (A.4)

By substituting Equations (A.2) to (A.4) into Equation (23), we obtain the discretized form which

represents the equilibrium of structure:

[𝑲0
𝑡 ]{𝒒𝑝 } = 𝜆𝑝 {𝑭 } + {𝑭𝑝 } − [𝑲𝛼𝑢] [𝑲𝛼𝛼 ]

−1{𝑹𝛼
𝑝 }

[𝑲𝛼𝛼 ]{𝜶𝑝 } + [𝑲𝛼𝑢]{𝒒𝑝 } = {𝑹𝛼
𝑝 }

𝑡 {𝒒𝑝 }{𝒒1} + 𝜆𝑝𝜆1 = 0

(A.5)

with

[𝑲𝛼𝛼 ] =

𝑁∑︁

𝑚=1

∫

Ω

(𝑡 [𝑩𝛼 ] [𝑫]𝑚 [𝑩𝛼 ]) 𝑑𝑣 (A.6)

[𝑲𝛼𝑢] =

𝑁∑︁

𝑚=1

∫

Ω

(𝑡 [𝑩𝛼 ] [𝑫]𝑚 [�̄�]) 𝑑𝑣 (A.7)

[𝑲𝑢𝑢] =

𝑁∑︁

𝑚=1

∫

Ω

(𝑡 [�̄�] [𝑫]𝑚 [�̄�] + 𝑡 [𝑮] [𝑷 ]𝑚 [𝑮]) 𝑑𝑣 (A.8)

and [𝑲0
𝑡 ] = [𝑲𝑢𝑢] − [𝑲𝛼𝑢] [𝑲𝛼𝛼 ]

−1 [𝑲𝛼𝑢] where [𝑲0
𝑡 ] is the tangent stiffness matrix, {𝑭 } the

external load vector and [𝑷 ]𝑚 the initial stress matrix in m𝑡ℎ layer. Compared to Riks method,

the new terms are the right-hand nonlinear terms {𝑭𝑝 } and {𝑹𝛼
𝑝 } related to solutions at previous

orders. These two terms are expressed as follows:

{𝑭𝑝}=−

𝑁∑︁

𝑚=1

{∫

Ω

(
𝑡 [𝑮]

𝑝−1∑︁

𝑟=1

𝑡 [𝑨(𝒒𝑝−𝑟)]{𝑺𝑟}
𝑚+𝑡 [𝑩(𝒒0)] [𝑫]𝑚

𝑝−1∑︁

𝑟=1

1
2
[𝑨(𝒒𝑝−𝑟)]{𝜽 (𝒒𝑟)}

)
𝑑𝑣

}
(A.9)

and

{𝑹𝛼
𝑝 } = −

𝑁∑︁

𝑚=1

{∫

Ω

(
𝑡 [𝑩𝛼 ] [𝑫]𝑚

𝑝−1∑︁

𝑟=1

1

2
[𝑨(𝒒𝑝−𝑟 )]{𝜽 (𝒒𝑟 )}

)
𝑑𝑣

}
(A.10)
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