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We extend the problem of finding an optimal structure with maximum load-bearing capacity to the case of
multiple materials. We first consider a reinforcement optimization case where the structure consists of a
fixed background matrix material with given strength properties and optimize the reinforcement topology
within this material. We discuss the use of various isotropic and anisotropic strength criteria to model the
reinforcing phase, including reinforcements with discrete orientations. In a second time, we investigate a
bi-material formulation where we optimize the topology of two material phases simultaneously. Various
choices for the material strength conditions are proposed and we apply this formulation to the optimization
of pure tensile and compressive phases of a single material. In all cases, two optimization variants are
proposed using concepts of convex optimization and limit analysis theory, namely maximizing the
load-bearing capacity under a fixed volume constraint or minimizing the volume under a fixed loading.
Both problems are convex and a penalization procedure is proposed. The underlying problems can be
solved using conic programming solvers. Illustrative applications demonstrate the versatility of the
proposed formulation, including the influence of the selected strength criteria, the possibility to obtain
structures with members of fixed orientation or structures with different importance granted to tensile and
compressive regions. Finally, we also draw a parallel with the generation of strut-and-tie models for the
analysis of reinforced concrete structures.

Keywords: topology optimization, multi-material optimization, limit analysis, homogenization, bearing capacity,
conic programming, reinforced concrete

1 Introduction
Although topology optimization methods have become increasingly popular, many works
concentrate on compliance optimization of elastic materials. Plastic design optimization has been
much less investigated although fundamental theoretical works have dealt with both elastic and
plastic design (Prager 1974; Strang and Kohn 1986; Rozvany and Ong 1986). Despite nonlinear
constitutive relations having been considered in the topology optimization process (Swan and
Kosaka 1997; Maute et al. 1998; Bogomolny and Amir 2012; Wallin et al. 2016; Amir 2017), the
numerical cost is very high and there are still many difficulties to be tackled when including
local stress constraints (Podersen 1998; Duysinx and Bendsøe 1998). In contrast, plastic design
of truss structures (Dorn et al. 1964; Gilbert and Tyas 2003; He and Gilbert 2015) shows less
problems and is now able to tackle large scale problems with the development of efficient linear
programming solvers. Interestingly, the extension of the concepts of plastic truss design to
continuum topology optimization has been largely ignored until recently when strength-based
topology optimization of von Mises plastic materials were proposed (Kammoun and Smaoui 2014;
Fin et al. 2018; Herfelt et al. 2018). In a more general manner using the concepts of limit analysis,
we formulated in (Mourad et al. 2021) the problem of maximizing a structure’s load-bearing
capacity subject to given material strength properties and a material volume constraint. This
problem is also closely linked to the problem of minimizing the total volume under the constraint
of carrying a fixed loading as well as to Michell’s theory of optimal trusses (Michell 1904). In
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LeylaMourad et al. Multi-material topology optimization of load capacity

particular, this approach, which relies on convex optimization solvers, enables to treat the case of
materials with different strength properties in tension and compression which are commonly
encountered in civil engineering applications.

Apart from topology optimization, interesting mechanical performances can be achieved
when mixing materials with different mechanical properties, motivating the extension of topology
optimization approaches towards the multi-material case. For instance, the density-based SIMP
methodology was extended to multiple material phases in various works (Sigmund and Torquato
1997; Gibiansky and Sigmund 2000; Guest 2009; Zuo and Saitou 2017) whereas others used
a phase-field approach based on Allen-Cahn or Cahn-Hillard models (Zhou and Wang 2007;
Tavakoli 2014; Wallin et al. 2015) or level-set methods (Allaire et al. 2014; Liu and Ma 2018).
Only few works considered multi-material topology optimization with material non-linearity
such as (Zhang et al. 2018; Rostami and Marzbanrad 2020; Zhang et al. 2020). The extension of
continuous plastic-based (or limit-analysis based) topology optimization to multi-materials,
which is the main purpose of the present work, has never been done.

As it will be illustrated later, our work also bears conceptual similarities with the so-called
strut-and-tie method frequently used for the ultimate design of reinforced concrete (RC) structures
using a truss analogy (Ritter 1899; Mörsch and Goodrich 1909; Schlaich et al. 1987). Compressed
concrete regions are idealized as compressive struts and steel rebars as tensile ties, both of
them experiencing uniaxial stress states and connecting to each other at nodes which sustain
multi-axial stress states. The Strut-and-Tie (ST) method is used in common engineering practice
as a hand-based procedure to verify a RC structure bearing capacity once the ST model has
been established. It is also used, at an earlier stage of the design, to find an efficient layout
of steel rebars by considering different ST models. Optimizing for the steel rebars position is
difficult to automate since it also strongly depends on the compressive struts’ layout. Previous
works proposed to identify a ST model based on the flow of elastic stresses of the continuous
structure (Marti 1980; Collins and Mitchell 1980) or by optimizing for the structure compliance
using topology optimization concepts (Gaynor et al. 2013; Bruggi 2009), arguing that a stiff
structure exhibits the best load-deformation behavior. Only few references such as Querin et al.
(2010); Victoria et al. (2011); Bruggi (2016); Smarslik et al. (2019) generated ST models using
topology optimization by considering different tensile and compressive properties for steel and
concrete phases. We can also mention references based on a ground-structure layout optimization
approach (Chavez 2018; Zhang et al. 2018; Smarslik et al. 2019). Overall, the majority of such
works are based on compliance minimization.

Our contribution therefore aims at bridging the gap between multi-material topology
optimization, plastic or limit analysis-based topology optimization and the generation of strut-
and-tie like models using materials with different tensile and compressive strengths. Doing so,
we aim at formulating a generic framework for the optimization of the load-bearing capacity of
reinforced structures, either by considering a fixed background matrix material and optimizing
for the reinforcing phase only or by simultaneously optimizing for the topology of two different
phases (in addition to a potential void phase). As it will be seen, this second possibility will offer
a natural framework for the generation of strut-and-tie models by considering tensile-only and
compression-only phases. Following the same spirit as our previous work (Mourad et al. 2021),
our approach will be strongly based on the concepts of convex optimization, especially regarding
the formulation of isotropic and anisotropic strength conditions promoting specific features such
as uniaxial or pure tension/compression stress states. As a result, our numerical implementation
uses convex optimization solvers and solves simultaneously for the mechanical state and the
optimal density field(s), thereby avoiding the need to compute sensitivities for instance.

The present manuscript is organized as follows: Section 2 first recalls concepts and notations
of the limit analysis-based topology optimization methodology proposed in (Mourad et al. 2021),
Section 3 then discusses its extension to reinforcement optimization and the choice of a strength
condition for the reinforcement phase, Section 4 presents a bimaterial formulation optimizing
two material phases in addition to a void phase and similarly discusses different possible choices
of strength criteria for both phases and Section 5 finally discusses the numerical aspects and
presents various illustrative applications of the proposed approach.
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2 A review of limit analysis-based topology optimization
In this section, we recall the general concepts of limit analysis-based topology optimization.
We follow the exposition introduced by Mourad et al. (2021) which presented two different
formulations: a load maximization and a volume minimization formulation for generic strength
criteria. We refer to (Kammoun and Smaoui 2014), and later (Herfelt et al. 2018; Fin et al. 2018),
for volume minimization formulations based on von Mises plasticity.

First, limit analysis aims at finding the maximum load amplification factor 𝜆 for which there
exists an internal stress field 𝝈 which can balance the loading and still comply with the material
strength condition 𝝈 ∈ 𝐺 at every point in the domain Ω. Here,𝐺 is the strength criterion, or the
plastic yield criterion when referring to a perfectly plastic material. It is assumed to be a convex
set containing 0. According to such a characterization, the limit load Λ+ can be found as the
solution to the convex optimization problem

Λ+ = max
𝜆,𝝈

𝜆

s.t. div𝝈 = 0 in Ω

𝝈 · 𝒏 = 𝜆𝑻 on 𝜕Ω𝑇

𝝈 ∈ 𝐺 in Ω

(1)

in which we neglect body forces for simplicity and look for the maximal value of the reference
surface tractions 𝑻 acting on some part 𝜕Ω𝑇 of the boundary.

2.1 A load-maximization problem
Considering a computational domain D, we proposed in (Mourad et al. 2021) an extension of
the concepts of limit analysis to the determination of an optimized structure Ω ⊆ D which
would have the maximum load-bearing capacity for a given material volume fraction constraint
|Ω | ⩽ 𝜂 |D|. Formulating this problem as a non-convex binary optimization problem and
considering its convexification through a continuous pseudo-density 𝜌 (𝒙) ∈ [0; 1], we define the
load-maximization problem

𝜆+ = max
𝜆,𝝈 ,𝜌

𝜆

s.t. div𝝈 = 0 in D
𝝈 · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈 ∈ 𝜌𝐺 in D∫
D 𝜌 dx ⩽ 𝜂 |D|
0 ⩽ 𝜌 ⩽ 1

(LOAD-MAX)

where the main difference with Equation (1) comes from the density-dependent strength criterion
𝜌𝐺 . Clearly, when 𝜌 = 0, we have 𝝈 = 0 and when 𝜌 = 1, 𝝈 ∈ 𝐺 which correspond to the initial
material strength condition. Finally, one key property of the above problem is that it is convex
and can be solved using dedicated conic programming solvers for many usual strength criteria.

2.2 A related volume-minimization problem
Finally, for a fixed loading level 𝜆, one can also find the structure sustaining the loading with the
minimum volume. A similar volume-minimization problem therefore reads as (Kammoun and
Smaoui 2014; Herfelt et al. 2018)

𝜂− = min
𝝈 ,𝜌

1
|D|

∫
D
𝜌 dx

s.t. div𝝈 = 0 in D
𝝈 · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈 ∈ 𝜌𝐺 in D
0 ⩽ 𝜌 ⩽ 1

(VOL-MIN)
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which is again a convex problem.
Note that, contrary to an elastic problem with stress constraints, both formulations Equa-

tion (LOAD-MAX) and Equation (VOL-MIN) do not presuppose any constitutive relation and are
able to account for stress redistributions until plastic collapse, following the principles of limit
analysis.

2.3 Choice of the material strength criterion
The choice of the material strength criterion 𝐺 will have an important impact on the optimal
design. For instance, criteria with anisotropic strength properties will induce anisotropic features
in the optimized design. Regarding isotropic materials, the optimized structure load-capacity
depends essentially upon the material uniaxial tensile (resp. compressive) strength 𝑓𝑡 (resp. 𝑓𝑐 ).
Indeed, optimized topologies usually have a truss-like layout with many members subjected to
uniaxial stress states. in (Mourad et al. 2021), the so-called 𝐿1-Rankine criterion 𝐺𝐿1-Rankine was
introduced by the strength condition

𝝈 ∈ 𝐺𝐿1-Rankine ⇔ 𝑔(𝜎𝐼 ) + 𝑔(𝜎𝐼 𝐼 ) ⩽ 1 (2)

written here in 2D with 𝜎𝐼 , 𝜎𝐼 𝐼 being the principal stresses and where 𝑔(𝜎) = max{−𝜎/𝑓𝑐 ;𝜎/𝑓𝑡 }.
It was advocated in (Mourad et al. 2021) that the 𝐿1-Rankine criterion was a good choice for
promoting uniaxial stress states in the optimal solutions. This argument will be revisited in
Section 3.4. Moreover, with such a bounded criterion, we easily see that when 𝜌 → 0, the density
dependent criterion 𝜌𝐺𝐿1-Rankine → {0} which correctly enforces a zero stress state in the limit
of a void material. This is in contrast with unbounded criteria such as a 3D or plane-strain
von Mises criterion for instance. In the limit 𝜌 → 0, the latter still sustain non-zero spherical
stress states 𝜎𝑰 , with 𝑰 denoting the identity tensor. In this case, we would recommend to use a
strength criterion with a large but finite hydrostatic strength to avoid any residual strength.

3 Reinforcement material optimization
In this section, we investigate the situation in which we optimize a single phase with a fixed
background phase, see Figure 1-left. This situation essentially applied to the optimization of a
reinforcing phase in a composite material, the background fixed phase then corresponding to the
matrix material. We will respectively denote by𝐺m and𝐺 r the strength criteria of the matrix and
reinforcement bulk materials.

Figure 1 Two variants of multi-material optimization. Left: reinforcement optimization where the background
“matrix” material is fixed and we optimize a single “reinforcement” phase, right: general bi-material
optimization where we optimize over two materials and a void phase.

3.1 Reinforced material strength conditions
In general, reinforcements are present in a small volume fraction 𝜙 ≪ 1. In such a case,
the strength criterion of the composite material 𝐺comp can be approximated by the dilute
estimation (de Buhan et al. 2017)

𝝈 ∈ 𝐺comp ⇔ ∃𝝈m,𝝈 r s.t.


𝝈 = 𝝈m + 𝝈 r

𝝈m ∈ 𝐺m

𝝈 r ∈ 𝐺 r,eff
(3)
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where 𝐺 r,eff = 𝜙𝐺 r. This formulation states that the composite strength condition corresponds
to a stress state which is the sum of a stress 𝝈m satisfying the bulk matrix condition and a
contribution of the effective strength condition of the reinforcement material, the strength
property of which being that of the bulk reinforcement material scaled by the reinforcement
volume fraction.

3.2 Convex problems formulation
We assume here that the matrix material is fixed and occupies the whole computational domain
D and we aim at optimizing over the reinforcement phase only. The approach of Mourad et al.
(2021) can be easily extended by considering the a density-dependent composite strength criterion
𝐺comp(𝜌), defined by the strength condition

𝝈 ∈ 𝐺comp(𝜌) = 𝐺m ⊕ 𝜌𝐺 r,eff ⇔ ∃𝝈m,𝝈 r s.t.


𝝈 = 𝝈m + 𝝈 r

𝝈m ∈ 𝐺m

𝝈 r ∈ 𝜌𝐺 r,eff
(4)

where ⊕ denotes the Minkowski sum between two sets1. Note that we still have 𝐺comp(𝜌 =

1) = 𝐺comp. The main difference with the single material optimization for which 𝐺 (0) = {0}
was representing void is that we now have 𝐺comp(𝜌 = 0) = 𝐺m. As a result, the above strength
criterion will interpolate for 𝜌 ∈ [0; 1] between the pure matrix strength condition𝐺m and the
reinforced composite criterion 𝐺comp.

The two corresponding load-maximization (LOAD-MAX) and volume minimization (VOL-MIN)
problems are therefore respectively given by

𝜆+ = max
𝜆,𝝈m,𝝈 r,𝜌

𝜆

s.t. div(𝝈m + 𝝈 r) = 0 in D
(𝝈m + 𝝈 r) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈m ∈ 𝐺m in D
𝝈 r ∈ 𝜌𝐺 r,eff in D∫
D 𝜌 dx ⩽ 𝜂 |D|
0 ⩽ 𝜌 ⩽ 1

(REINF-LOAD-MAX)

and

𝜂− = min
𝝈m,𝝈 r,𝜌

1
|D|

∫
D
𝜌 dx

s.t. div(𝝈m + 𝝈 r) = 0 in D
(𝝈m + 𝝈 r) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈m ∈ 𝐺m in D
𝝈 r ∈ 𝜌𝐺 r,eff in D
0 ⩽ 𝜌 ⩽ 1

(REINF-VOL-MIN)

where the total stress 𝝈 has been replaced by the sum of the two partial stresses arising in
the definition Equation (4). As a result, both problems are very similar to the single material
counterpart, which can be obtained in the particular case 𝝈m = 0. The numerical implementation,
including the penalty procedure, will therefore be a straightforward adaptation to that described
in (Mourad et al. 2021). Note in particular that only a global equilibrium condition on the total
stress 𝝈 = 𝝈m + 𝝈 r needs to be considered so that standard finite-element discretization can be
used to enforce this equation weakly.

Before finishing this section, let us now discuss some particular choices for 𝐺 r,eff in the case
of uniaxial reinforcements.

1 𝐴 ⊕ 𝐵 = {𝑎 + 𝑏 s.t. 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}
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3.3 The particular case of uniaxial reinforcements

When considering uniaxial reinforcements aligned along a direction 𝒆𝛼 in small volume fraction,
the composite homogenized strength criterion is in fact exactly given by the dilute estimation
Equation (3) (de Buhan and Taliercio 1991; de Buhan et al. 2017) which reads here

𝝈 ∈ 𝐺comp ⇔ ∃𝝈m, 𝜎r s.t.


𝝈 = 𝝈m + 𝜎r𝒆𝛼 ⊗ 𝒆𝛼

𝝈m ∈ 𝐺m

−𝑓 r,eff𝑐 ⩽ 𝜎r ⩽ 𝑓
r,eff
𝑡

(5)

where 𝑓 r,eff𝑡 (resp. 𝑓 r,eff𝑐 ) denotes the reinforcement uniaxial effective tensile (resp. compressive)
strength (per unit of transverse area). As a result, the case of uniaxial reinforcements is similar to
Equation (3) except that the effective reinforcement strength criterion 𝐺 r,eff is now given by the
corresponding uniaxial strength condition

𝐺 r,eff = {𝜎r𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓 r,eff𝑐 ⩽ 𝜎r ⩽ 𝑓
r,eff
𝑡 }. (6)

Finally, the homogenized strength criterion Equation (5) and Equation (6) easily generalize to
a reinforcing material made of multiple reinforcement directions by summing the corresponding
uniaxial stress contributions. For instance, an important practical case of interest is that of
orthogonal reinforcements aligned with the global 𝑥,𝑦 directions (and possibly 𝑧 in 3D). In this
case, the effective strength criterion Equation (6) for two reinforcement directions 𝒆𝑥 and 𝒆𝑦
generalizes to

𝐺 r,eff = {𝜎r,𝑥𝒆𝑥 ⊗ 𝒆𝑥 + 𝜎r,𝑦𝒆𝑦 ⊗ 𝒆𝑦 s.t. − 𝑓 r,eff𝑐 ⩽ 𝜎r,𝑥 , 𝜎r,𝑦 ⩽ 𝑓
r,eff
𝑡 }. (7)

3.4 The 𝐿1-Rankine criterion for isotropically distributed reinforcements

Similarly to the concepts of the homogenization method in topology optimization, our ultimate
goal is to find an optimal microstructure for the reinforcing phase at each material point. To do so,
instead of considering that the reinforcing material is made of a fixed distribution of predefined
orientations, we can consider a reinforcing material consisting of uniaxial reinforcements but with
locally unknown orientation a priori, with the goal that the topology optimization process would
naturally select the locally optimal orientation. in (Mourad et al. 2021), the use of a 𝐿1-Rankine
was proposed in order to promote uniaxial stress fields. Let us now revisit this argument and
exhibit the link with a material made of isotropically distributed uniaxial reinforcements.

Let us indeed consider that the reinforcing material is made of a distribution of uniaxial
reinforcements belonging to a certain family A of orientations 𝛼 and of similar effective
tensile/compressive strengths 𝑓 r,eff𝑡 , 𝑓

r,eff
𝑐 . In order to enforce that only one orientation is active at

a given material point, we can write the strength condition

∃𝜎r,𝛼 , 𝜁𝛼 s.t.



𝝈 r =
∑︁
𝛼∈A

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

−𝑓 r,eff𝑐 ⩽ 𝜎r,𝛼 ⩽ 𝑓
r,eff
𝑡 ∀𝛼 ∈ A

𝜁𝛼 ∈ {0; 1} ∀𝛼 ∈ A∑︁
𝛼∈A

𝜁𝛼 = 1

(8)

where we introduced the binary variables 𝜁𝛼 which describe the activation or not of a specific
orientation, the last constraint enforcing that only one such orientation can be active.

Clearly, criterion Equation (8) is non-convex due to the binary constraint on the 𝜁𝛼 variable
which will result in the corresponding topology optimization problem being extremely difficult to
solve. To alleviate this issue and follow the same kind of convex optimization methodology of our
approach, a natural idea is to convexify 𝐺 r,eff by relaxing the binary constraint. We therefore
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consider the convexified formulation

𝝈 r ∈ 𝐺 r,eff ⇔ ∃𝜎r,𝛼 , 𝜁𝛼 s.t.



𝝈 r =
∑︁
𝛼∈A

𝜁𝛼𝜎
r,𝛼𝒆𝛼 ⊗ 𝒆𝛼

−𝑓 r,eff𝑐 ⩽ 𝜎r,𝛼 ⩽ 𝑓
r,eff
𝑡 ∀𝛼 ∈ A

0 ⩽ 𝜁𝛼 ⩽ 1 ∀𝛼 ∈ A∑︁
𝛼∈A

𝜁𝛼 = 1

(9)

which we recognize as the definition of the convex hull of the individual uniaxial strength
conditions 𝐺𝛼 = {𝜎r,𝛼𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓

r,eff
𝑐 ⩽ 𝜎r,𝛼 ⩽ 𝑓

r,eff
𝑡 } i.e.

𝐺 r,eff = conv

𝛼∈A
{𝐺𝛼 } (10)

which is indeed the tightest convexification of the union of all the 𝐺𝛼 . Finally, in the case where
A spans all the possible directions in space, we can easily show that 𝐺 r,eff is in fact equal to
the 𝐿1-Rankine criterion with tensile (resp. compressive) strength 𝑓

r,eff
𝑡 (resp. 𝑓 r,eff𝑐 ) introduced

in (Mourad et al. 2021), see Appendix A for the proof. This result justifies that the 𝐿1-Rankine is
the tightest convex criterion promoting uniaxial stress states in an isotropic fashion.

In the case of orthogonal reinforcements where 𝛼 can only be aligned with either the 𝑥 or 𝑦
directions, Equation (9) reads

𝝈 r ∈ 𝐺 r,eff ⇔ ∃𝜎r,𝑥 , 𝜎r,𝑦, 𝜁𝑥 , 𝜁𝑦 s.t.


𝝈 r = 𝜁𝑥𝜎

r,𝑥𝒆𝑥 ⊗ 𝒆𝑥 + 𝜁𝑦𝜎
r,𝑦𝒆𝑦 ⊗ 𝒆𝑦

−𝑓 r,eff𝑐 ⩽ 𝜎r,𝑥 , 𝜎r,𝑦 ⩽ 𝑓
r,eff
𝑡

0 ⩽ 𝜁𝑥 , 𝜁𝑦 ⩽ 1
𝜁𝑥 + 𝜁𝑦 = 1.

(11)

Interestingly, the above criterion corresponds exactly to the 𝐿1-Rankine criterion intersected
with the plane 𝜎r

𝑥𝑦 = 0.

The main interest of the above construction in the case of a fixed family of discrete orientations
A = {𝛼1, . . . , 𝛼𝑁 } is that the resulting strength condition will be anisotropic with larger strength
in the corresponding directions. We therefore expect the strength-based topology optimization
procedure to naturally result in designs locally oriented in one of these directions.

By way of illustration, Figure 2 displays the uniaxial tensile strength in direction 𝒆𝜃 =

cos𝜃𝒆𝑥 + sin𝜃𝒆𝑦 for a material consisting of such a family of discrete orientations. As expected,
when the reinforcement material is made of only two reinforcement directions, the material
possesses no shear strength so that the uniaxial strength is always zero except if 𝜃 is perfectly
aligned with one of the two directions. For more than two directions, the material possesses a
shear strength and, therefore, a non-zero tensile strength for any 𝜃 . Again, we observe that the
uniaxial strength is equal to 𝑓𝑡 when the loading direction is aligned with one of the reinforcement
direction and is less than 𝑓𝑡 in-between. The resulting material therefore possesses anisotropic
strength properties. In the limit of an isotropic continuous distribution of reinforcement direction,
the uniaxial strength becomes a constant equal to 𝑓𝑡 since the resulting material strength
properties are equivalent to an isotropic 𝐿1-Rankine strength criterion.

4 Bi-material optimization

In this section, we investigate the concurrent optimization of multiple materials in addition to a
void phase (see Figure 1-right). For simplicity, we restrict here to the case of two materials only,
although the proposed procedure can be easily generalized to 𝑛 different materials. We denote
the two materials by their phase index 𝑖 = 1, 2 whereas void is associated with 𝑖 = 0. We aim at
enforcing that a given point 𝒙 belongs to either phase 1, phase 2 or to the void. In terms of
strength conditions, we would therefore have 𝝈 ∈ 𝐺1, 𝝈 ∈ 𝐺2 or 𝝈 = 0 which can be written as
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Figure 2 Anisotropic uniaxial tensile strength for a material reinforced by a family of reinforcements of discrete
orientations.

follows:

∃�̃�0
, �̃�1

, �̃�2
, 𝜁0, 𝜁1, 𝜁2 s.t.



𝝈 = 𝜁0�̃�
0 + 𝜁1�̃�

1 + 𝜁2�̃�
2

�̃�0
= 0

�̃�1 ∈ 𝐺1

�̃�2 ∈ 𝐺2

𝜁0 + 𝜁1 + 𝜁2 = 1
𝜁0, 𝜁1, 𝜁2 ∈ {0, 1}

(12)

where the binary variables 𝜁𝑖 indicate the membership to the corresponding phase, the constraint∑
𝜁𝑖 = 1 enforcing that one and only one of the 𝜁𝑖 = 1 while the others are zero.
Obviously, due to the binary constraints, the above strength condition is not convex which

will result in the corresponding topology optimization problem being extremely difficult to solve.
To alleviate this issue and following the same ideas as in Section 3.4, we convexify the above
condition with its tightest convex relaxation. To do so, we allow each 𝜁𝑖 to take continuous
values inside [0; 1] instead of being binary. To make a clear distinction, we will replace each 𝜁𝑖
with 𝜌𝑖 , interpreting these variables as the pseudo-density fields of topology optimization. Hence,
we consider

∃�̃�1
, �̃�2

, 𝜌0, 𝜌1, 𝜌2 s.t.



𝝈 = 𝜌1�̃�
1 + 𝜌2�̃�

2

�̃�1 ∈ 𝐺1

�̃�2 ∈ 𝐺2

𝜌0 + 𝜌1 + 𝜌2 = 1
𝜌0, 𝜌1, 𝜌2 ∈ [0; 1]

(13)

⇐⇒ ∃�̃�1
, �̃�2

, 𝜌1, 𝜌2 s.t.



𝝈 = 𝜌1�̃�
1 + 𝜌2�̃�

2

�̃�1 ∈ 𝐺1

�̃�2 ∈ 𝐺2

𝜌1 + 𝜌2 ⩽ 1
𝜌1, 𝜌2 ∈ [0; 1]

(14)

where we removed the void density 𝜌0.
This motivates the introduction of a density-dependent strength condition 𝐺 (𝜌1, 𝜌2), defined
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by the following strength condition:

𝝈 ∈ 𝐺 (𝜌1, 𝜌2) ⇔ ∃𝝈1,𝝈2 s.t.


𝝈 = 𝝈1 + 𝝈2

𝝈1 ∈ 𝜌1𝐺
1

𝝈2 ∈ 𝜌2𝐺
2

(15)

in which we made the change of variable 𝝈 𝑖 = 𝜌𝑖 �̃�
𝑖 .

In particular, if both 𝜌1(𝒙) = 𝜌2(𝒙) = 0 at a given point 𝒙 , we have 𝝈 (𝒙) = 0 i.e. 𝒙 is in a
void phase. If 𝜌1(𝒙) = 1, then 𝜌2(𝒙) = 0 and 𝝈 (𝒙) ∈ 𝐺1 i.e. 𝒙 belongs to material 1 and vice
versa. Note that it is possible to find states where 𝜌1(𝒙) ≠ 0 and 𝜌2(𝒙) ≠ 0 which results in 𝒙
belonging to a fictitious material averaging the strength properties of both phases.

Finally, in the case where𝐺1 = 𝐺2 = 𝐺 , we have𝐺 (𝜌1, 𝜌2) = (𝜌1+𝜌2)𝐺 = 𝜌𝐺 and we recover
the single material formulation of Mourad et al. (2021). Moreover, let us consider phase 1 to be the
matrix phase. If we fix 𝜌1 = 1 everywhere and if we ignore the constraint 𝜌1 + 𝜌2 ⩽ 1, we recover
the reinforcement formulation of Section 3 where phase 2 corresponds to the reinforcement
phase. In this context and contrary to the bi-material formulation, we see that we do not optimize
the matrix phase density and that we do not consider any void phase, we only optimize for the
reinforcement density.

4.1 Convex problem formulation

The two corresponding load-maximization (LOAD-MAX) and volume minimization (VOL-MIN)
problems are therefore respectively given by

𝜆+ = max
𝜆,𝝈1,𝝈2,𝜌1,𝜌2

𝜆

s.t. div(𝝈1 + 𝝈2) = 0 in D
(𝝈1 + 𝝈2) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈1 ∈ 𝜌1𝐺
1 in D

𝝈2 ∈ 𝜌2𝐺
2 in D∫

D 𝑐𝜔 (𝜌1, 𝜌2) dx ⩽ 𝜂 |D|
0 ⩽ 𝜌1 ⩽ 1
0 ⩽ 𝜌2 ⩽ 1
𝜌1 + 𝜌2 ⩽ 1

(BIMAT-LOAD-MAX)

and

𝜂− = min
𝝈1,𝝈2,𝜌1,𝜌2

1
|D|

∫
D
𝑐𝜔 (𝜌1, 𝜌2) dx

s.t. div(𝝈1 + 𝝈2) = 0 in D
(𝝈1 + 𝝈2) · 𝒏 = 𝜆𝑻 on 𝜕D𝑇

𝝈1 ∈ 𝜌1𝐺
1 in D

𝝈2 ∈ 𝜌2𝐺
2 in D

0 ⩽ 𝜌1 ⩽ 1
0 ⩽ 𝜌2 ⩽ 1
𝜌1 + 𝜌2 ⩽ 1

(BIMAT-VOL-MIN)

where we introduced 𝑐𝜔 (𝜌1, 𝜌2) = 2𝜔𝜌1 + 2(1 − 𝜔)𝜌2 which is a weighted-average cost function
measuring the amount of both materials. As it will be seen later, the introduction of the weighting
factor 𝜔 ∈ [0; 1] gives us increased flexibility in obtaining various optimal design depending on
the cost associated with the presence of material 1 over material 2. Note that the above choice
gives 𝑐1/2(𝜌1, 𝜌2) = 𝜌1 + 𝜌2 = 𝜌 .
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Figure 3 Splitting of a nominal strength criterion𝐺 (in black) into a purely compressive part𝐺− (in blue) and
a purely tensile part 𝐺+ (in red) and the corresponding convex hull conv{𝐺+,𝐺−} (in green). Left: a
Rankine strength criterion, right: a 𝐿1-Rankine strength criterion in the plane of principal stresses.

4.2 No-tension and no-compression materials
An important case of application of the previous bi-material formulation is concerned with the
optimization of a no-tension and a no-compression phase. Practically, this could correspond to
two different materials respectively possessing negligible tensile strength (e.g. concrete, rocks,
masonry, etc.) and negligible compressive strength (e.g. thin membrane which would buckle
under compression). Another possibility is to consider a single material for which we would like
to distinguish members in tension from members in compression in the optimization process, for
example in order to assign a different cost between the tensile and compressive "phase".

As regards this last point of view for a single material of nominal strength properties 𝐺 ,
one could define the no-tension strength criterion 𝐺1 = 𝐺− = 𝐺 ∩ 𝑆− and the no-compression
strength criterion 𝐺2 = 𝐺+ = 𝐺 ∩ 𝑆+ where 𝑆± = {𝝈 s.t. ± 𝝈 ⪰ 0} represents the cone of
symmetric positive/negative stress tensors. In this case, since 𝐺± ⊂ 𝐺 and 𝐺 is convex, we have
that conv{𝐺+,𝐺−} ⊆ 𝐺 . Again, this formulation will tend to promote stress states either in pure
tension or in pure compression. Figure 3 illustrates this construction in the case of a Rankine and
𝐿1-Rankine criterion. Note that we have that conv{𝐺+,𝐺−} = 𝐺𝐿1-Rankine in this latter case.

Finally, as already discussed, the use of a 𝐿1-Rankine strength criterion will even further
promote uniaxial stress states. If the original material is isotropic and possesses a characteristic
tensile strength 𝑓𝑡 and compressive strength 𝑓𝑐 , a natural modeling strategy for obtaining
truss-like designs when distinguishing the optimization of tensile and compressive members is
therefore to consider

𝐺1 = 𝐺𝐿1-Rankine(𝑓𝑐 ,0) (16)

𝐺2 = 𝐺𝐿1-Rankine(0,𝑓𝑡 ) (17)

where𝐺𝐿1-Rankine(𝑓𝑐 ,𝑓𝑡 ) denotes the isotropic 𝐿1-Rankine strength criterion of compressive (resp.
tensile) strength 𝑓𝑐 (resp. 𝑓𝑡 ).

Finally, the above choice can also be adapted to the situations for which members are
constrained to have fixed potential orientations by using criteria of the form Equation (9) instead
of the isotropic 𝐿1-Rankine criterion.

5 Illustrative applications

5.1 Numerical implementation and penalization procedure
Similarly to (Mourad et al. 2021), the corresponding discrete optimization problems are formulated
using the fenics_optim package (Bleyer 2020a; Bleyer 2020b) which enables to couple the
FEniCS finite-element software package (Alnæs et al. 2015; Logg et al. 2012) with the Mosek conic
optimization solver (MOSEK ApS 2018). The equilibrium constraint is enforced weakly through
the virtual work principle using a continuous P2-Lagrange (quadratic polynomial) interpolation
for virtual displacement fields. The pseudo density fields are discretized using a continuous
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P1-Lagrange (linear polynomial) interpolation, see (Mourad et al. 2021) for more details. For all
examples, we use unstructured meshes consisting of affine triangles. Mesh dependency issues are
removed by adding a slope-control constraint (Petersson and Sigmund 1998) for ∥∇𝜌𝑖 ∥2 ⩽ 1/ℓ
for all density fields. This slope control avoids localization of thin members on bands of a single
element width by controlling the gradient of the density field. Doing so, member width must be
at least of thickness 2ℓ which is chosen to be larger a few times than the mesh size. With this
procedure, we also avoid checkerboard issues which can occur in topology optimization without
spatial regularization.

Finally, we also extend the continuation procedure penalizing intermediate densities proposed
in (Mourad et al. 2021) to the present case. More precisely, each convex strength constraint of the
form 𝝈 𝑖 = 𝜌𝑖𝐺

𝑖 is replaced by a penalized power-law (non-convex) constraint 𝝈 𝑖 = (𝜌𝑖)𝑝𝐺𝑖

following ideas of the SIMP method (Bendsøe and Sigmund 2004). At each iteration of the
penalization procedure, the power-law is linearized around the current density estimate 𝜌𝑖,𝑛 and
the exponent is progressively increased from 1 to a maximum value 𝑝max > 1, see again (Mourad
et al. 2021) for more details.

5.2 Numerical examples objectives

In the following, we will investigate three different examples which will have the common goal
of assessing the versatility of the proposed methodology. Each of them will analyze some specific
features which can be considered at the modeling stage, namely:

• MBB beam example:
– Analyze the “reinforcement optimization” formulation and assess the influence of the

reinforcement strength criterion choice (in terms of overall shape or anisotropy) on the
resulting design;

– Analyze the “bi-material optimization” formulation and assess the influence of the strength
criterion of one of the phases on the resulting design;

– Assess the corresponding formulation in which one phase only sustains tension and the other
phase only compression;

– Assess the corresponding formulation where the tensile phase is subjected to a prescribed
anisotropy in terms of reinforcement directions and compare its efficiency against an isotropic
distribution of reinforcements.

• Bridge example:
– Analyze the influence of asymmetric tensile and compressive strengths on the resulting

design;
– Compare the obtained design with a topology optimization involving a single material (with

asymmetric strength properties);
– Assess the influence of the cost function factor 𝜔 used to weight the cost of one phase with

respect to another.
• Deep beam example:

– Consider the design of widely studied reinforced concrete structure with an opening and
compare the result against a strut-and-tie model used in practice;

– Consider a variation in which the reinforcement phase can only be located in orthogonal
directions;

– Compare the designs obtained with the reinforcement and bi-material formulations.

5.3 MBB beam

We first consider a MBB beam example (Figure 4) of length 𝑙 = 36 cm and height ℎ = 6 cm with
simple supports on the left and roller supports on the right, a vertical force of reference intensity
𝑃 = 1 is applied at the top. In the following, only one half of the model will be represented, taking
symmetry into account. Both supports and force are distributed over a small distance 𝑠 = 0.5 cm
to mitigate stress concentrations. The mesh consists of approximately 40,000 elements.
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Figure 4 A MBB beam example.

5.3.1 Reinforcement optimization

We first consider the case of a fixed matrix material of strength condition 𝐺m being given by a
Rankine criterion of compressive strength 𝑓 m𝑐 = 1 and tensile strength 𝑓 m𝑡 = 0.05. The reinforced
material effective strength criterion 𝐺 r,eff will either be:

• a plane stress von Mises criterion with uniaxial tension/compression effective strengths 𝑓 r,eff𝑐 =

𝑓
r,eff
𝑡 = 1

• a 𝐿1-Rankine criterion with the same uniaxial strengths
• a "no-compression" 𝐿1-Rankine criterion with 𝑓

r,eff
𝑐 = 0, 𝑓 r,eff𝑡 = 1

• an orthotropic 𝐿1-Rankine criterion with 𝑓
r,eff
𝑡𝑥 = 𝑓

r,eff
𝑡𝑦 = 1 and 𝑓

r,eff
𝑐𝑥 = 𝑓

r,eff
𝑐𝑦 = 0

We consider the reinforcement load-maximization problem (REINF-LOAD-MAX) with an imposed
volume fraction 𝜂 = 0.2.

Figure 5 displays the obtained optimized reinforcement density in black along with the
principal compressive stress field in the matrix phase in blue. Owing to the fact that the matrix

(a) plane-stress von Mises. (b) 𝐿1-Rankine.

(c) no-compression 𝐿1-Rankine. (d) orthotropic 𝐿1-Rankine.

Figure 5 Reinforcement optimization of the MBB example for various reinforcement strength criteria: in black,
reinforcement optimized density; in blue, principal compressive stress in the matrix phase.

phase has a low tensile strength, reinforcements are primarily located on the bottom tensile face
of the beam. The amount of reinforcement increases from the support to the beam mid-span
where the bending moment is maximum. The choice of the reinforcement phase strength criterion
mainly influences small details in the layout such as the precise location of the reinforcements.
The use of a von Mises criterion (Figure 5(a)) for the reinforcement phase tends to favor biaxial
stress states in the reinforcement region whereas the use of a 𝐿1-Rankine criterion (Figure 5(b))
effectively promotes uniaxial stress states. Inclined reinforcements are also obtained to provide
anchoring between the reinforcement tensile stress and the diffuse matrix compressive stresses.
Moreover, when the reinforcement material possesses a non-zero compressive strength, we
obtain a small amount of reinforcement on the top face at mid-span, thereby reinforcing the beam
bending capacity. This region disappears in the case of a zero compressive strength (Figure 5(c)).
Finally, when considering an orthotropic 𝐿1-Rankine in Figure 5(d), we obtain a 90◦-bend as
commonly encountered in reinforced-concrete structures.
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5.3.2 Bi-material optimization

We now investigate the bimaterial load-maximization problem (BIMAT-LOAD-MAX) with again
𝜂 = 0.2 and 𝜔 = 1/2.

As in Section 5.3.1, phase 1 corresponds to a Rankine criterion with 𝑓𝑐 = 1, 𝑓𝑡 = 0.05 and
phase 2 with either a plane stress von Mises or a 𝐿1-Rankine criterion of strengths 𝑓𝑐 = 𝑓𝑡 = 1.
Note that we voluntarily used similar compressive strengths for both phases. Figure 6 represents
the optimized two phase densities in both cases. We can see that phase 1, with low tensile
strength, is mostly used where it is the most efficient i.e. in the top part of the structure subjected
to compression. The second phase is used mainly in tensile regions, except for the loading region
in Figure 6(a). This can be explained by the fact that this region is essentially under a biaxial
compressive state, a stress state for which the von Mises criterion is larger than the Rankine
criterion of phase 1. Let us also remark that the use of a 𝐿1-Rankine criterion seems to yield a
simpler design than that obtained with the von Mises material which can probably be attributed
to the former promoting more efficiently uniaxial states.

Moreover, we can also observe in Figure 6 a transition between phase 1 and phase 2 materials
along the inclined struts in compression on the right of the structure. This can be explained by
the fact that we used the same uniaxial compressive strength 𝑓𝑐 for both phases. Both of them are
therefore equally optimal for uniaxial compression. The precise location of the transition between
both phases is probably dictated by the initial distribution of the phase density in the initial stages
of the penalization procedure. In such stages, phase 1 material is essentially located on the top
part of the beam and phase 2 on the bottom part. The penalization process being a continuation
procedure, it will naturally converge to a uniaxial stress state corresponding to the phase which
was active initially. Note that the use of a phase 1 material with a lower compressive strength, e.g.
𝑓𝑐 = 0.9 would have resulted in a design involving only phase 2 material, since phase 1 would
have been strictly weaker and, therefore, less efficient than phase 2. In this case, the formulation
becomes equivalent to a single-material formulation. To conclude, this example illustrates the
efficiency of the convex relaxation procedure with respect to binary constraints. Indeed, since
binary constraints are relaxed to continuous constraints and that both materials exhibit exactly
the same strength properties in compression, we could have expected that both phases will be
continuously mixed throughout the domain. However, this is not what we observe. Instead, the
continuation penalization procedure succeeds in driving the design towards an almost binary
distribution, non-binary values for 𝜌1 and 𝜌2 being only observed in a small transition region of
order ℓ .

(a) plane-stress von Mises. (b) 𝐿1-Rankine.

Figure 6 Bi-material load-maximization of the MBB example: in blue, phase 1 density; in red, phase 2 density.

5.3.3 Splitting between tension and compression

We now investigate the formulation discussed in Section 4.2 where phase 1 (resp. phase 2)
corresponds to a pure compression (resp. pure tension) phase of strength 𝑓𝑐 (resp. 𝑓𝑡 ). In
practice, we use a 𝐿1-Rankine strength criterion for both phases with a small residual tensile
(resp. compression) strength in phase 1 (resp. phase 2) to avoid numerical instabilities. Figure 7
represents the corresponding optimized densities for both phases and various imposed volume
fractions 𝜂. Comparing for instance Figure 7(c) with Figure 6(b), we can see that both final
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designs are very similar but with a different repartition between both phases. In the present
tension/compression splitting formulation Equation (17), each truss member belongs to a single
phase, depending on its state of tension and compression whereas, in the previous formulation,
some compression members could involve the phase 2 material or even both materials as already
discussed.

(a) 𝜂 = 0.05. (b) 𝜂 = 0.1.

(c) 𝜂 = 0.2. (d) 𝜂 = 0.3.

Figure 7 Bi-material load-maximization of the MBB example with tension/compression splitting (𝑓𝑐 = 𝑓𝑡 = 1) and
various maximum volume fraction 𝜂.

5.3.4 Anisotropic strength properties for the tensile phase

We finish this example by considering again a tension/compression splitting formulation, except
that the tensile phase (phase 2) now enjoys anisotropic strength properties of the form Equation (9)
with here 𝑓 r, eff𝑐 = 0 and 𝑓

r, eff
𝑡 = 1. We recall that if the set of allowed orientations A spans all

directions, then the corresponding strength criterion is equivalent to a 𝐿1-Rankine strength
criterion so that we recover the results of Figure 7. In Figure 8, we report the results obtained when
considering a tensile phase with allowed orientations of 𝛼 = 0◦, 𝛼 ∈ {0◦;±30◦}, 𝛼 ∈ {0◦;±45◦}
or 𝛼 ∈ {0◦; 90◦}. As expected, if tensile members can be aligned horizontally only (Figure 8(a)),
the most efficient design is obtained with tensile members located at the bottom of the beam and
with inclined compressive struts transmitting the load to the supports. Interestingly, we obtain
two individual tensile members in this case. When we further allow for inclined directions along
±30◦ or ±45◦, we obtain, in addition to a horizontal tensile member, secondary inclined members
to which additional compressive struts can be connected. Note that the case 𝛼 ∈ {0◦;±45◦}
(Figure 8(c)) is quite close to the isotropic case obtained with the 𝐿1-Rankine criterion in Figure 7(c).
Finally, the case with 𝛼 ∈ {0◦; 90◦} (Figure 8(d)) indeed produces tensile members aligned either
horizontally or vertically. Interestingly, despite the fact that tensile orientations are constrained,
one still has freedom in the length and location of those members which enables to reach a
design where compressive struts can more or less follow the same paths as in the isotropic case.
Also note that the convexified formulation in Equation (9) authorizes in theory a superposition
of the different orientations at a given point. Clearly, this is not observed since each tensile
members is in a pure uniaxial stress state corresponding to a single well-defined orientation. It is
only at points corresponding to junctions between tensile and/or compressive members that
different orientations may coexist.

Figure 9 compares the corresponding load-bearing capacity of the previous discrete orientation
designs with that of the isotropic case. As expected, the isotropic case is the most efficient in
terms of load-bearing capacity, both at the beginning and at the end of the penalization procedure.
The case with only horizontal tensile members is the less efficient whereas the case with 45◦
shows only slightly lower bearing capacity than the isotropic case which can be explained by the
fact that the corresponding design was already quite close to that of the isotropic case. Regarding
the computational cost, each outer iteration of the continuation procedure requires solving a
convex conic-constrained optimization problem using the Mosek solver. Resolution of each
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(a) Orientations along 0◦. (b) Orientations along 0◦ and ±30◦.

(c) Orientations along 0◦ and ±45◦. (d) Orientations along 0◦ and 90◦.

Figure 8 Bi-material load-maximization (𝜂 = 0.2) of the MBB example with discrete orientations for the tensile
phase.

convex problem instance is particularly robust throughout the overall procedure and does not
pose any convergence issues in general. Depending on the selected tolerance criteria, each outer
resolution requires roughly 20-30 inner iterations of the primal-dual interior point solver used in
Mosek.
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Figure 9 Evolution of the load-bearing capacity during the oute iterations of the penalization procedure for the
MBB example with discrete tensile orientations.

5.4 Bridge example

We now turn to a bridge-like problem as described in Figure 10. On this example, we investigate
the influence of asymmetric tensile/compressive strengths. We again use load-maximization

Figure 10 A bridge structure with a central uniformly distributed loading 𝑻 = −𝒆𝑦 . Fixed supports are distributed
over regions of length 0.1 at both extremities.

formulations with 𝜂 = 0.2 for the imposed volume fraction and 𝜔 = 1/2. In particular, Figures 11
to 13 compare the obtained optimized design when using either a bi-material or a single material
formulation in the cases where 𝑓𝑐 = 𝑓𝑡 = 1, 𝑓𝑐 = 1, 𝑓𝑡 = 10 and 𝑓𝑐 = 10, 𝑓𝑡 = 1 respectively. As
expected, we observe relatively similar designs from the two formulations in terms of general
layout of members in tension and compression. Nevertheless, small differences can be observed,
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especially in Figure 12. Such differences can be attributed to the fact that the bi-material
formulation treats differently the behavior of connections between tension and compression
members compared to the single material formulation. One can in particular observe that such
connections have a larger spatial extension in the bi-material case. Indeed, in locations where
both tension and compression phases coexist, the bi-material formulation allows for reduced
strength properties compared to the single material phase. For instance, if 𝜌1 = 𝜌2, then at most
𝜌1 = 𝜌2 = 0.5 such that the effective tension and compression strengths are here 𝑓𝑐/2 and 𝑓𝑡/2,
that is half of that of the single material formulation which can reach full capacity. This modeling
aspect reflects the fact that anchoring two different materials usually has a detrimental effect
on the local strength compared to a single material possessing both tensile and compressive
strengths.

(a) bi-material. (b) single material.

Figure 11 Symmetric strengths 𝑓𝑐 = 𝑓𝑡 = 1.

Although, the single material formulation of Mourad et al. (2021) enables to obtain similar
design as the bimaterial formulation, the latter has the advantage of offering additional modeling
choices by using a different factor in the combined volume measure of both phases through the
factor𝜔 . For instance, Figure 14 represents the evolution of the obtained design when varying this
weighting coefficient. We can see that when 𝜔 < 0.5, tensile (phase 2) material costs more than
compression (phase 1) material. The number of tensile members therefore tends to decrease with
decreasing 𝜔 . It must be noted that, although compressive members seem slightly thicker, the
number of such members do not necessarily increase with decreasing tensile material since they
still need to be connected with tensile members to be supported. Conversely, when 𝜔 increases
above the value 0.5, tensile members cost less than compression members and can therefore
be utilized more extensively. Figure 15 represents the evolution of the structure load-bearing
capacity as a function of the penalization procedure iterations for the considered values of
𝜔 . Interestingly, the initial value corresponding to the convex problem (BIMAT-LOAD-MAX)
does not strongly depend on the density cost parameter 𝜔 . However, during the penalization
procedure, the choice of 𝜔 leads to different optimized designs, some of which performing better
than other in terms of bearing capacity. In particular, the case 𝜔 = 0.9 yields a more efficient
structure which may be explained by the fact that more tensile material can be considered since it
costs less in terms of weighted volume than compressive material.

5.5 Deep beam example

We now finish with a deep beam example classically considered when dealing with the design of
massive reinforced concrete structures, see Figure 16. Such structures offer great challenges to
engineers when aiming at proposing an efficient reinforcement steel layout. Many solutions are
possible in practice, depending on the priority given to the simplicity of the design (number of
members, orientations, etc.) or to its optimality in terms of steel consumption for instance. In this
section, we show how our methodology can easily address both concerns.

With the proposed methodology we consider a total design load 𝑄 = 2 MN and formulate a
bimaterial volume minimization problem. The first phase, representing concrete is modeled with

(a) bi-material. (b) single material.

Figure 12 Asymmetric strengths 𝑓𝑐 = 1, 𝑓𝑡 = 10.
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(a) bi-material. (b) single material.

Figure 13 Asymmetric strengths 𝑓𝑐 = 10, 𝑓𝑡 = 1.

(a) 𝜔 = 0.10. (b) 𝜔 = 0.25.

(c) 𝜔 = 0.50. (d) 𝜔 = 0.75.

(e) 𝜔 = 0.90.

Figure 14 Bridge example with varying density-cost parameter 𝜔 in the case 𝑓𝑐 = 𝑓𝑡 = 1.

a 𝐿1-Rankine criterion with 𝑓𝑐 = 40 MPa and 𝑓𝑡 = 0.1 MPa, the second phase, representing steel
rebar reinforcements, is modeled with a 𝐿1-Rankine criterion with (almost) no compressive
strength and an effective tensile strength 𝑓𝑡 = 𝜒 𝑓𝑦 = 40MPa where 𝑓𝑦 = 400MPa is the steel
tensile strength and 𝜒 = 0.1 a strength reduction factor accounting for the fact that, in practice,
steel rebars only occupy a small fraction (10% at maximum in the present case) of the total beam
thickness. Both phases have identical volume cost (𝜔 = 0.5) and we use ℓ = 0.15 m.

Figure 17(a) represents the obtained design for both phases. We can clearly see multiple
compressive struts aiming at the beam supports, equilibrated by a bottom horizontal tensile
reinforcement and a more complex curved reinforcement above the beam opening. Clearly
the obtained design is quite similar to strut-and-tie models proposed in (Muttoni et al. 2015)
based on elastic stress fields, see Figure 17(b). The global structural behavior in terms of strut
and tie location is quite similar between both models. There are however some noticeable
differences: since the ST model of Figure 17(b) is based on the interpretation of elastic stress fields,
the two main compressive struts exhibit a characteristic “bottle” shape corresponding to the
diffusion of elastic stress fields between singular points corresponding to point loads and supports.
Such a diffusion induces the presence of small secondary transverse reinforcements which help
preventing cracking of concrete in tension. Such features are typical of elastic computations and
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Figure 15 Evolution of the load-factor during the outer iterations of the penalization procedure for various cost
parameters.
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Figure 16 Deep beam problem (25 mm thick) investigated in (Muttoni et al. 2015).

are therefore absent from limit-analysis based computation which yield very straight compressive
struts with constant cross-section. Similarly, we can note that the “array” of struts emerging from
the point load is much wider in the ST model than what is obtained with our procedure, for
similar reasons.

(a) Optimized design from the bimaterial volume
minimization.

(b) Strut-and-tie model with inclined reinforcements
based on elastic stress fields, taken from (Muttoni et al.
2015). Tensile ties are in solid lines and compressive struts

in dotted lines.

Figure 17 Comparison of the proposed methodology with strut-and-tie models with inclined reinforcements.

As pointed out above, such a complex rebar layout might not be practical for on-site placing
for instance. Engineers therefore aim at obtaining simpler solutions, although being less optimal,
which might be easier to implement in practice. A typical simplifying choice in the design of
reinforced concrete structures is to resort to orthogonal reinforcement layout. To achieve this, we
simply modify the isotropic strength criterion of the tensile phase with an orthotropic criterion
with admissible reinforcement orientations of 0◦ or 90◦. The corresponding result is represented
in Figure 18(a) which indeed results in steel rebars being either placed horizontally or vertically.
Again, the obtained design is compared with a ST model including only horizontal or vertical
reinforcements in Figure 18(b). We can again notice the striking similarity between both models
with some differences in terms of steel rebar lengths for instance.

Similarly, the reinforcement optimization formulation where the concrete is not optimized
has also been considered on the same example. Results are reported on Figure 19 for both the
𝐿1-Rankine and orthotropic 𝐿1-Rankine criterion for the reinforcement phase. Clearly, this
formulation provides reinforcement layouts qualitatively similar to the bi-material case. We can
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(a) Optimized design from the bimaterial volume
minimization with orthotropic reinforcement criterion.

(b) Strut-and-tie model with orthogonal reinforcements,
taken from (Muttoni et al. 2015).

Figure 18 Comparison of the proposed methodology with strut-and-tie models with orthogonal reinforcements.

(a) 𝐿1-Rankine criterion. (b) orthotropic 𝐿1-Rankine criterion.

Figure 19 Reinforcement optimization of the deep beam example: in black, reinforcement optimized density; in blue,
principal compressive stress in the matrix phase.

notice that the amount of reinforcement is however much less than in Figures 17(a) and 18(a)
since, in the present case, concrete strength can be mobilized in the whole computational domain,
thereby requiring less reinforcement to sustain the same load. However, the concrete stress
field is still well localized and compressive concrete struts can be observed. This observation is
interesting since the reinforcement optimization formulation involves only a single density
variable and is therefore much less computationally intensive than the bi-material formulation.

6 Conclusions, discussion and future work
This work proposed an extension of limit analysis-based topology optimization problems to the
case of multiple materials. In particular, the structural load-bearing capacity can be maximized
under a material cost constraint. Alternatively, the total material cost function can be minimized
for a given imposed loading. Following similar numerical techniques (penalization procedure,
filtering) as a previous contribution dedicated to a single material (Mourad et al. 2021), the main
contribution of the present work is related to the way composite materials are represented.

We first proposed a reinforcement formulation, in which we aim at optimizing only a
reinforcement phase (e.g. steel rebars, fibers, etc.) embedded in a fixed background matrix
material (e.g. concrete, soil, resin, etc.). The chosen strength criterion for the reinforcement
phase attempts at promoting uniaxial stress states. Reinforcements can be either isotropically
distributed (using the 𝐿1-Rankine criterion) or with fixed preferential orientation directions
(anisotropic criterion in Equation (9)).

Second, we proposed a formulation in which two distinct material phases are simultaneously
optimized, each of them possessing its own distinct strength criterion. The latter can either be an
isotropic one or an anisotropic one such as Equation (9). Each phase can also represent either two
intrinsically distinct materials or represent instead a fictitious phase with a specific stress state,
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e.g. pure tension and pure compression as in Section 4.2. The introduction of a material cost
function 𝑐𝜔 (𝜌1, 𝜌2) also enables to consider a different cost for each phase through the weighting
coefficient 𝜔 . All these possibilities make the proposed formulation extremely versatile in terms
of modeling capabilities.

The question remainswhich of the reinforcement or bimaterial formulation is more appropriate.
Obviously, there is no definitive answer as it depends on the targeted application and the potential
need for exploring different topologies. Let us recall that the reinforcement formulation can be
seen as a particular case of the bimaterial formulation in which one of the phase pseudo-density is
fixed to a value of 1 and where the constraint 𝜌1 + 𝜌2 ⩽ 1 is ignored. The bimaterial formulation
is, in this respect, more general but is also much more computationally demanding as two phases
must be optimized instead of one. Second, considering a fixed background phase occupying the
whole domain produces much more diffuse matrix stress fields in some instances (see Figure 5).
For some applications such as the strut-and-tie method for reinforced concrete structures, it
might be more interesting to have a clear and simplified stress field in the concrete phase, despite
the fact that concrete still occupies the whole structure. In such cases, the bi-material formulation
seems particularly attractive. Finally, the latter approach also offers a richer way of exploring
various topologies through the choice of the phase criteria or the weighting cost factor. Finally,
one can also wonder about the optimality of the solutions found using the proposed penalization
procedure. First, let us recall that we are solving a sequence of convex optimization problems so
that global optimality of each solution is ensured, especially for the solution of the convexified
problems at the first iteration. The question remains open regarding optimality with respect to
the initial non-convex problems. We should point out that our penalization procedure follows
similar ideas to those of the SIMP method used in elastic compliance minimization problems. In
this context, it is known that SIMP solutions are sub-optimal since optimal solutions are given by
multi-rank laminates. However, in practice they perform very well. Although we are not aware
of any similar result in the limit analysis setting, it might be possible that the same holds in this
setting as well.

As regards future works, the possibility of generating strut-and-tie models with the proposed
formulation seems very promising. It remains to be checked that the obtained models qualitatively
agree with engineering practice on a wider range of examples. One should also check that the
corresponding internal forces also quantitatively agree with calculations based on Eurocode
design norms. Finally, as the proposed bi-material formulation is computationally demanding, its
extension to 3D would require developing dedicated numerical strategies in order to reduce its
computational cost.

A Proof that the 𝐿1-Rankine criterion is the convex hull of isotropi-
cally distributed uniaxial strengths
Let us consider an infinite distribution of uniaxial reinforcements indexed by 𝛼 with tensile and
compressive strengths 𝑓𝑡 and 𝑓𝑐 (independent of 𝛼 ). Let us denote by𝐺𝛼 = {𝜎𝛼𝒆𝛼 ⊗ 𝒆𝛼 s.t. − 𝑓𝑐 ⩽
𝜎𝛼 ⩽ 𝑓𝑡 } the uniaxial strength criterion of a given family of reinforcement. We show that:

𝐺𝐿1-Rankine = conv

𝛼
{𝐺𝛼 } (A.1)

where𝐺𝐿1-Rankine is the 𝐿1-Rankine criterion defined in Equation (2) which can also be equivalently
written as:

𝝈 ∈ 𝐺𝐿1-Rankine ⇔


𝜎𝐼 + 𝜎𝐼 𝐼 ⩽ 𝑓𝑡

−𝜎𝐼 − 𝜎𝐼 𝐼 ⩽ 𝑓𝑐

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 ⩽ 1
−𝜎𝐼/𝑓𝑐 + 𝜎𝐼 𝐼/𝑓𝑡 ⩽ 1

(A.2)

Note that although everything is written in a 2D setting, the following proof also holds in 3D.

Proof. Let us first show that 𝐺𝐿1-Rankine ⊆ conv𝛼 {𝐺𝛼 }. For any given stress tensor, we have
𝝈 = 𝜎𝐼 𝒆𝐼 ⊗ 𝒆𝐼 +𝜎𝐼 𝐼 𝒆𝐼 𝐼 ⊗ 𝒆𝐼 𝐼 . Then there exist two families of reinforcement 𝛼𝐼 and 𝛼𝐼 𝐼 of respective
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orientation 𝒆𝐼 and 𝒆𝐼 𝐼 . Moreover, assuming that 𝝈 ∈ 𝐺𝐿1-Rankine and introducing 𝜁𝐼 = 𝑔(𝜎𝐼 ) and
𝜁𝐼 𝐼 = 𝑔(𝜎𝐼 𝐼 ), we have:

−𝑓𝑐 ⩽
𝜎𝐼

𝜁𝐼
⩽ 𝑓𝑡 (A.3)

−𝑓𝑐 ⩽
𝜎𝐼 𝐼

𝜁𝐼 𝐼
⩽ 𝑓𝑡 (A.4)

and 𝜁𝐼 + 𝜁𝐼 𝐼 ⩽ 1. As a result, 𝝈 can indeed be written as Equation (9) with 𝜎r,𝛼𝐼 = 𝜎𝐼/𝜁𝐼 and
𝜎r,𝛼𝐼 𝐼 = 𝜎𝐼 𝐼/𝜁𝐼 𝐼 so that 𝐺𝐿1-Rankine ⊆ conv𝛼 {𝐺𝛼 }.

Now let us show that conv𝛼 {𝐺𝛼 } ⊆ 𝐺𝐿1-Rankine. Let 𝝈 given by Equation (9). Let 𝒆𝐼
and 𝒆𝐼 𝐼 be the principal stress directions of this stress state and introduce 𝜃𝛼 such that 𝒆𝛼 =

cos𝜃𝛼𝒆𝐼 + sin𝜃𝛼𝒆𝐼 𝐼 for any 𝛼 . Then:

𝜎𝐼 =
∑︁
𝛼

𝜁𝛼 cos2 𝜃𝛼𝜎r,𝛼 (A.5)

𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼 sin2 𝜃𝛼𝜎r,𝛼 (A.6)

Since 𝜁𝛼 ⩾ 0 and
∑

𝛼 𝜁𝛼 = 1, we have:

𝜎𝐼 + 𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼𝜎
r,𝛼 ⩽ 𝑓𝑡

∑︁
𝛼

𝜁𝛼 = 𝑓𝑡

−𝜎𝐼 − 𝜎𝐼 𝐼 =
∑︁
𝛼

𝜁𝛼 (−𝜎r,𝛼 ) ⩽ 𝑓𝑐

∑︁
𝛼

𝜁𝛼 = 𝑓𝑐

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 =
∑︁
𝛼

𝜁𝛼 (cos2 𝜃𝛼𝜎r,𝛼/𝑓𝑡 − sin2 𝜃𝛼𝜎r,𝛼/𝑓𝑐) ⩽
∑︁
𝛼

𝜁𝛼 = 1

𝜎𝐼/𝑓𝑡 − 𝜎𝐼 𝐼/𝑓𝑐 =
∑︁
𝛼

𝜁𝛼 (− cos2 𝜃𝛼𝜎r,𝛼/𝑓𝑐 + sin2 𝜃𝛼𝜎r,𝛼/𝑓𝑡 ) ⩽
∑︁
𝛼

𝜁𝛼 = 1

So that 𝝈 ∈ 𝐺𝐿1-Rankine. □

Finally, let us note that in the case where the consider family of reinforcement is discrete
𝛼 ∈ {𝛼1, . . . , 𝛼𝑁 }, we only have that conv𝛼 {𝐺𝛼 } ⊆ 𝐺𝐿1-Rankine.
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