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In fracture mechanics, the mesh sensitivity is a key issue. It is particularly true concerning cohesive-
volumetric finite element methods in which the crack path and the overall behavior are respectively
influenced by the mesh topology and the mesh density. Poisson-Delaunay tessellations parameters,
including the edge length distributions, were widely studied in the literature but very few works concern
the mesh density and topology in Delaunay type meshes suitable for finite element simulations, which is of
crucial interest for practical use. Starting from previous results concerning Poisson-Delaunay tessellations
and studying in detail the Lloyd relaxation algorithm, we propose estimates for the probability density
functions of the edge length and triangle top angles sets. These estimates depend both on the intensity of
the underlying point process and on an efficiency index associated to the global quality of the mesh. The
global and local accuracies of these estimates are checked for various standard mesh generators. Finally
the mesh density and geodesic tortuosity are estimated for standard random or structured triangular
meshes typically used in finite element simulations. These results provide practical formulas to estimate
bias introduced by the mesh density and topology on the results of cohesive-volumetric finite element
simulations.

Keywords: triangular tessellations, edge length distribution, angle distribution, mesh density, mesh tortuosity,
Delaunay mesh

1 Introduction

The geometrical features statistics of Poisson-Delaunay planar triangular tessellations have been
studied by numerous authors among which (Meijering 1953; Miles 1970; Sibson 1980; Chang
et al. 1984; Watanabe 2008; Liu et al. 2009). Their works were mostly devoted to network/graph
theories or computational geometry and the context of finite element simulations has been less
studied. Tessellations suitable for finite element simulations are built to avoid badly shaped
elements in order to preserve the quality of the finite element approximation, see e.g. (Shewchuk
2002) for a review. Roughly speaking, the standard mesh generators lead to less “disordered”
tessellations than the Poisson-Delaunay ones. To the best of our knowledge, there exists no
estimates of the geometrical features statistics of this type of tessellations, although insights on
such estimates could prove useful, for example, for fracture mechanics simulations.

The mesh dependency is indeed a crucial problem in fracture mechanics. In continuum
damage mechanics as well as in surface fracture methods (e.g. in DEM simulations (Nguyen et al.
2017; Liu et al. 2021; Manorosoa et al. 2023)), softening behaviors lead to ill-posed problems and
the field equations which describe the motion of the body lose hyperbolicity as soon as softening
occurs (Lasry et al. 1988; Bourdin et al. 2008). Many regularization methods have been proposed,
most of them introducing a characteristic length scale (nonlocal formulations, higher gradient
theories, extended or enriched finite element methods, etc.) or a characteristic time scale (volume
or surface viscosity), see e.g. (Chaboche et al. 2001; Lu et al. 2009) for a review.
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Acronyms
PD Poisson-Delaunay mesh
PDF probability density function
St Standard mesh

Symbols
E efficiency index of a mesh, see Section 3.3
𝜇𝐺 (𝜏 ;𝑥) mean of 𝑓𝐺 (𝜏 ;𝑥)
𝜎2
𝐺
(𝜏 ;𝑥) variance of 𝑓𝐺 (𝜏 ;𝑥)

𝜏 intensity of a point process, see Section 2

𝑓𝐺 (𝜏 ;𝑥) probability density function of a quantity 𝑥
for a graph/tessellation 𝐺 with intensity 𝜏

𝑁𝐸 number of edges of a mesh
𝑇𝐺 (𝑛) tortuosity of a particular continuous path

between two nodes of a tessellation 𝐺
composed by 𝑛 connected edges

𝑍𝐺 mesh density of a graph/tessellation 𝐺
defined as the total length of an edge set
divided by the area 𝐴 of the discretized
planar domain

Two particular tessellations geometrical features are studied in the present work: the mesh
density and the mesh geodesic tortuosity. These quantities play an important role in surface damage
approaches and in particular in the Cohesive-Volumetric Finite Element (CVFE) method (Dugdale
1960; Barenblatt 1962; Tijssens et al. 2000; Perales et al. 2008). This method consists in inserting
surface cohesive elements (a traction-separation law) between two adjacent elements of a
considered tessellation. The interface between the adjacent elements are governed by cohesive
zone models which can either be described by intrinsic or extrinsic laws.

Within intrinsic model, the CZM curve comprises two parts: an artificial elastic part with a
finite initial slope and a softening part describing the failure process. They are pre-inserted in the
underlying mesh of the simulation leading to inherent crack activations without any need to add
additional criteria. On the other hand, the extrinsic models have infinite initial slope, i.e. no
initial elastic part, and the cohesive elements are activated, or incorporated, on the fly once the
crack criterion is reached.

These cohesive elements can be inserted on a predefined crack path or between each element
of a given mesh. The later is often used when the crack path is not known a priori and has to
emerge naturally from the loading path. Despite the success of these models, their use suffers
from a twofold mesh dependency.

Firstly, in the CVFE method, cracks are forced to propagate along the tessellation elements
boundaries. Thus, a dependence on the mesh topology appears (Xu et al. 1994; Tijssens et al.
2000): the computed crack path length is always greater or equal to the theoretical one as a
straight path between two nodes of a planar triangular mesh is not always accessible (Pele et al.
2023). As a consequence, the computed overall damage energy, proportional to the crack length
(resp. surface) in 2D (resp. 3D) may be overestimated. The geodesic tortuosity is introduced in
order to quantify this overestimate. It is defined as the ratio between the length of the shortest
path between two nodes of the mesh composed of connected edges and the Euclidean distance
between these two nodes. It is a deterministic variable for structured meshes and a stochastic
variable characterized by a mean and a variance for random meshes. Various solutions were
proposed in literature to avoid this dependency on the mesh topology. Among others, the
extended finite element method (Dolbow et al. 2000), the pin-wheel based meshes (Papoulia et al.
2006) and K-means meshes (Rimoli et al. 2012) are very promising.

Secondly, the CVFE approach exhibits a mesh size dependency when considering an intrinsic
cohesive law characterised by a finite initial cohesive stiffness. The latter is related to the
characteristic length scale introduced by cohesive zone models, since they are defined with the
help of a surface energy and a peak stress. A rigorous micromechanical-based approach has been
proposed by Blal et al. (2011); Blal et al. (2012a); Blal et al. (2012b) in order to limit this mesh size
sensitivity. In this approach, the cohesive zone models are considered as inclusions distributed
in a matrix (the set of the bulk elements). The spatial distribution of these inclusions strictly
corresponds to the one of the edges (resp. surfaces) in a 2-D (resp. 3-D) mesh. For any random
planar meshes with an equiprobable distribution of the orientation of the edges, the spatial
distribution of the inclusions is isotropic in space and in orientation. Since these inclusions have
zero thickness, they are characterized by a surface density, referred in this paper as mesh density.
It is defined as the total length of the edge set divided by the area of the discretized domain
and is directly related to the intensity of the underlying point process. As it is the case for the
geodesic tortuosity, it is a deterministic variable for structured meshes and a stochastic variable
characterized by a mean and a variance for random meshes.
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We want to emphasize that the main objective of this paper is to estimate this mesh density
and the geodesic tortuosity for standard triangular tessellations suitable for finite element
simulations. In turn, most of the content of the present paper concerns geometrical statistics
matters. Fracture mechanics is only addressed through practical applications of the mesh density
and geodesic tortuosity estimates.

Introducing some notations, see Section 2, and starting from standard results concerning
Poisson-Delaunay tessellations, we show that the Lloyd relaxation algorithm leads to random
triangular tessellations with edge length and triangle top angles distributions having the same
means as Poisson-Delaunay tessellations but smaller variances, see Section 3. The “quality” of
the resulting meshes is also studied using a global efficiency index. Estimates are proposed for
both edge length and triangle top angles distributions of any random triangular tessellation
with arbitrary efficiency index and intensity of the underlying point process, in Section 4.
The local robustness and the validity range of these estimates are analyzed in Appendices A
and B. Moreover, we show that the edge length and the triangle top angles distributions of a
Lloyd relaxed random triangular tessellation, are suitable for standard mesh generators. Finally,
the mesh density and geodesic tortuosity are estimated for random tessellations in Section 5.
Additional results concerning the mesh density of usual structured tessellations are available
in Appendix C. Practical estimates are exhibited.

2 Notations
A Delaunay triangle is obtained by joining three points of a set of points 𝑃 if and only if the
resulting triangle does not contain any other points of 𝑃 in the interior of its circumcircle. For a
𝑁 points generating Poisson point process (intensity 𝜏 = 𝑁 /𝐴, where 𝐴 is the area covered by
the set of points), Table 1 holds. For a bounded Delaunay tessellation, the number of faces in a
triangulation is not exactly twice the number of points and the edge set intensity and the face
set intensity given in Table 1 are only approximations in that case. We assume in the sequel
that these approximations are accurate for high intensity point processes even for bounded
tessellations.

Intensities point set edge set face set
Delaunay - 𝐺𝐷 𝜏 3𝜏 2𝜏

Table 1 Densities of the point set, of the edge set and of the face set of a Delaunay Tessellation based on a
generating Poisson point process with intensity 𝜏 . According to (Meijering 1953; Miles 1970).

3 Poisson-Delaunay tessellation and Lloyd relaxed random triangular
tessellation

3.1 Poisson-Delaunay tessellation: probability density functions of edge lengths
and triangle top angles
If the set 𝑃 corresponds to a Poisson point process with intensity 𝜏 , Collins (1968); Miles (1970);
Sibson (1980) showed that the probability density functions of both the length 𝑙 of the Delaunay
edge and the top angle 𝛼 of a Delaunay triangle are

𝑓PD(𝜏 ; 𝑙) (𝑥) = 1
3𝜋𝑥𝜏

(
erfc( 1

2
√
𝜋𝑥

√
𝜏) + 𝑥

√
𝜏𝑒−

1
4𝜋𝑥

2𝜏 ), for 𝑥 ⩾ 0, (1)

and

𝑓PD(𝛼) (𝑥) = 4
3𝜋 [(𝜋 − 𝑥) cos𝑥 + sin𝑥] sin𝑥, for 𝑥 ∈ [0, 𝜋], (2)

where erfc is the complementary error function. The corresponding means and variances read

𝜇PD(𝜏 ; 𝑙) = 32
9𝜋

√
𝜏

(length mean), 𝜎2
PD

(𝜏 ; 𝑙) = 405𝜋 − 322

81𝜋2𝜏
(length variance), (3)
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and

𝜇PD(𝛼) = 𝜋

3 (top angle mean), 𝜎2
PD

(𝛼) = 𝜋2

9 − 5
6 (top angle variance). (4)

These pdf are represented in Figure 1 and compared to histograms of a particular PD tessellation.
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Figure 1 Geometrical statistics of a PD tessellation. Left: Delaunay tessellation of a Poisson point process (𝜏 = 1000).
Middle: Density function of the length 𝑙 of a typical Delaunay edge. Right: Density function of a top angle
𝛼 of a typical Delaunay triangle; black lines correspond to Equations (1) and (2).

We underline that both the mean and the variance of the edge lengths depend on 𝜏 . However,
the triangle top angle distribution does not depend on the intensity of the point process. With the
same number of points generated by the point process, the larger the domain, the greater the
variance of the edge length distribution.

3.2 Lloyd relaxation
The Lloyd algorithm (Lloyd 1982) is an iterative scheme for computing Centroidal Voronoi
tessellations. Centroidal Voronoi tessellations are Voronoi tessellations of a bounded geometric
domain Ω such that the generating points of the tessellations are also the centroids (mass centers)
of the corresponding Voronoi regions. The Llyod algorithm consists in: i) selecting an initial set of
points (seeds) according to a point process, ii) constructing the Voronoi tessellation associated to
these seeds, iii) computing the mass centroids of the constructed Voronoi zones and iv) consider
these centroids as the seeds of the new Voronoi tessellation. The process is iterated, see Figure 2.
At convergence, the obtained Voronoi cells compose the so-called Centroidal Voronoi tessellation.
The dual of this centroidal Voronoi tessellation is as close as possible to a tessellation of equilateral
triangles.

Since Lloyd iterations lead to triangles as close as possible to equilateral ones and knowing
that the mean of triangle top angles in a PD tessellation corresponds to the top angle of equilateral
triangles, see Equation (4), we consider that the triangle top angles mean remains unchanged
through the Lloyd iterations. Following (Chang et al. 1984), the same goes with the edge length
mean

𝜇𝐿 (𝑖 ) (𝜏 ; 𝑙) = 𝜇PD(𝜏 ; 𝑙) and 𝜇𝐿 (𝑖 ) (𝛼) = 𝜇PD(𝛼). (5)

where the subscript 𝐿(𝑖) denotes parameters of the tessellation obtained by the Lloyd algorithm
at iteration 𝑖 .

Despite its wide application in many problems, the convergence of the Llyod algorithm
still remains an open issue. Numerous (local and global) convergence properties are presented
in (Du et al. 2006) and in the references cited therein. The Lloyd algorithm may be viewed as a
fixed point iteration of a mapping from a set of distinct seeds to the mass centers. The global
convergence is only guaranteed in one-dimensional space for any positive and smooth density
function. For multidimensional spaces, no rigorous convergence can be pronounced. Moreover,
when the convergence holds, the speed of convergence is very low and can be significantly
improved using dedicated algorithms (Liu et al. 2009).
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Figure 2 Lloyd relaxation algorithm. Top row: successive Lloyd relaxations of a Voronoi tessellation (intensity
𝜏 = 500). Second row: dual graph. Third row: pdf of the edge length in the dual graph (bar charts). Bottom
row: pdf of the triangle top angle in the dual graph (bar charts). Black lines over bar charts are estimates
(14) and (15). From left to right various iterations of the Lloyd algorithm: initial tessellation (Ē = 0.005), 2d
iteration (Ē = 0.41), 30th iteration (Ē = 0.70). Retained boundary elements may introduce a small bias.
Thus edge lengths and summit angles of triangles containing a boundary node were not considered for
computing efficiency indexes and establishing bar charts.

However, we show in the sequel that Lloyd relaxed tessellations lead to high quality triangles.
For a sufficient number of iterations, this quality is similar to the quality of triangular mesh
generators devoted to finite element computations. This quality is estimated with a global
efficiency index. The associated variances of both edge length and triangle top angle sets are also
estimated.

3.3 Efficiency index and variance of edge length and triangle top angle sets in PD
tessellations improved by the Lloyd relaxation algorithm

The quality of a planar triangular mesh suitable for finite element calculations can be evaluated by
two main ways. The first one concerns a topological measure of this quality: spatial homogeneity
of the area of each triangle or of the edge length set, respect of minimal or maximal angles, etc.
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The second one refers directly to the quality of the finite element approximation. Various authors
have thus proposed some interpolation quality measures, see (Shewchuk 2002) for example. Since
this later type of measure depends on the degree of interpolation in the finite element strategy,
we focussed our attention on topological indexes.

Following Frey et al. (2000), the efficiency index of a triangular tessellation reads

E = 𝑒 ⟨𝜂⟩ with
{
𝜂 = 𝑙 − 1 if 𝑙 < 1
𝜂 = 1/𝑙 − 1 if 𝑙 ⩾ 1

(6)

where

𝑙 =

∫
𝑒𝑖

1
𝜌 (𝒙) d𝑙, (7)

is the adimensional length of an arbitrary edge 𝑒𝑖 (𝜌 (𝒙) is a prescribed size field) and

⟨𝛾⟩ = 1
𝑁𝐸

𝑁𝐸∑︁
𝑖=1

𝛾𝑖 (8)

denotes the average of any quantity 𝛾 = {𝛾1, . . . , 𝛾𝑁𝐸
} defined on the set of edges (according to

Table 1, 𝑁𝐸 = 3𝜏𝐴 if 𝜏 is the intensity of the underlying point process over the area 𝐴 = |Ω |).
The efficiency index E belongs to [0, 1] and should be as close as possible to 1 in order to

have a mesh suitable for finite element simulations.
In the sequel, the size field 𝜌 (𝒙) is chosen uniform: 𝜌 (𝒙) = 𝜇PD,𝑙 (𝜏), ∀𝒙 ∈ Ω. Propagat-

ing the probability density function of the edge length Equation (1) through the efficiency
index Equation (6), one obtains the PD tessellation approximated efficiency index (∀𝜏):

EPD ≃ 0.725. (9)

In the sequel, efficiency indexes, edge length and triangle top angle variances are computed.
In order to avoid bias induced by boundary elements, only triangles whose summit are inner
tessellation nodes have been considered for computing these values.

The Lloyd algorithm leads to a triangular tessellation whose triangle elements are as close as
possible to a tiling of equilateral triangles. As a consequence, both the edge length and triangle
top angle variances diminish with Lloyd iterations (see Figure 3, left). Thus Lloyd relaxations
improves the efficiency index, as the efficiency index increases when the edge length variance
decreases (see Figure 3, right).

0 20 40
Lloyd iterations

0.0

0.5

1.0

N
or

m
al

iz
ed

Va
ria

nc
es VAR(; )

VAR(U)

0 20 40
Lloyd iterations

0.8

0.9

E

Figure 3 The progressive structuration of a mesh during a Lloyd relaxation. Left: edge length (black marks) and
triangle top angle (gray marks) variances for the Lloyd algorithm (normalized by the corresponding
variances of the Poisson-Delaunay tessellation respectively 𝜎2

PD
(𝜏, 𝑙) and 𝜎2

PD
(𝛼)) as a function of the

successive iterations. Right: efficiency index E of the Lloyd algorithm as a function of the successive
iterations (𝜏 = 300).

A semi-empirical relationship can be exhibited between the variances and the efficiency
for the Lloyd algorithm. Starting from a PD tessellation and remarking that for a structured
tessellation based on equilateral triangles the efficiency index is optimal E+ = 1 and both the
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edge length and triangle top angle variances vanishe 𝜎 (𝜏, 𝑙)2 = 0 and 𝜎 (𝛼)2 = 0, we can derive
semi-empirical relationships (see Figure 4):

𝜎𝐿 (𝑖 ) (𝜏 ; 𝑙)2

𝜎PD(𝜏 ; 𝑙)2 ≃ (1 − Ē𝐿 (𝑖 ) )2

1 + Ē𝐿 (𝑖 )
and

𝜎𝐿 (𝑖 ) (𝛼)2

𝜎PD(𝛼)2 ≃ (1 − Ē𝐿 (𝑖 ) )3/2

(1 + Ē𝐿 (𝑖 ) )1/2 , (10)

where Ē ∈ [0, 1] denotes the reduced efficiency index of any index E greater than or equal to
EPD:

Ē =
E − EPD

E+ − EPD

=
E − EPD

1 − EPD

. (11)

Figure 4 Edge length and triangle top angle variances for the Lloyd
algorithm (normalized by the corresponding variances of the
Poisson-Delaunay tessellation respectively 𝜎2

PD
(𝜏, 𝑙) and 𝜎2

PD
(𝛼))

as a function of the reduced efficiency index Ē. Points: numerical
results starting from 10 different PD tessellations (𝜏 = 1000).
Lines: semi-empirical relationships (10).
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The corresponding means and variances of edge length and triangle top angle sets of a Lloyd
tessellation read (combining Equations (3) to (5) and (10)):

𝜇𝐿 (𝑖 ) (𝜏 ; 𝑙) = 32
9𝜋

√
𝜏

and 𝜎2
𝐿 (𝑖 ) (𝜏 ; 𝑙) ≃ (1 − Ē𝐿 (𝑖 ) )2

1 + Ē𝐿 (𝑖 )

(405𝜋 − 322

81𝜋2𝜏

)
, (12)

and

𝜇𝐿 (𝑖 ) (𝛼) =
𝜋

3 and 𝜎2
𝐿 (𝑖 ) (𝛼) ≃

(1 − Ē𝐿 (𝑖 ) )3/2

(1 + Ē𝐿 (𝑖 ) )1/2

(𝜋2

9 − 5
6

)
. (13)

The next section proposes a probability density functions for both edge length and triangle top
angle sets for standard triangular random meshes. These meshes try to avoid as much as possible
distorted elements to ensure the accuracy of the finite element method.

4 Edge length and triangle top angle distributions in standard trian-
gular random meshes

4.1 Standard meshing strategies
In the huge literature corresponding to mesh generators, three main approaches can be exhibited
for unstructured (or random triangular) meshes (octree methods are not taking into account):

• Delaunay tessellations. Starting from a Poisson point process or using iterative George-Frey-like
algorithms, this situation leads to 𝑓PD(𝜏 ; 𝑙).

• Frontal algorithms. Using advancing-front techniques, meshes are generated starting from
boundaries and adding progressively some “ideal” points as Steiner-like points (Rebay 1993;
Lohner et al. 1988). The added points are chosen in order to have a new sequence of elements as
close as possible as those of the previous sequence corresponding to the advancing-front (see
e.g. Oliveira (1988) for a review). Far away from the boundaries of the domain 𝜕Ω, these frontal
algorithms lead to semi-structured meshes with hexagonal shape.

• Ad hoc optimized meshes. Each mesh generator has its own strategy to construct elements having
a good shape. Mathematical indicators of this good shape can be local (minimal angle, minimal
aspect ratio, etc.) or global as Equation (6). As for Delaunay tessellations, these mesh generators
lead to random meshes.
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Since, we have here interest for random meshes, we consider in the sequel the “ad hoc optimized
meshes” and in particular the so-called “MeshAdapt” strategy proposed by Gmsh (Geuzaine et al.
2009) as a representative strategy of triangular random meshes generators. Starting from a PD

tessellation, the “MeshAdapt” strategy consists in four local mesh modifications:
• Edge Splitting: long edges (𝑙𝑒𝑖 > 1.4) are split if the two new obtained edges will have a sufficient

adimensional size (min(𝑙𝑒 𝑗 , 𝑙𝑒𝑘 ) > 0.7).
• Edge Collapsing: short edges (𝑙𝑒𝑖 < 0.7) are collapsed.
• Edge Swapping: an edge between two triangles is swapped if the efficiency index Equation (6)

will improved.
• Triangle re-positioning: each triangle (vertex) is moved inside the cavity made of all its surrounding

triangles in order to maximize the worst element quality (Freitag et al. 1997).

4.2 Edge length and triangle top angle distributions in random triangular tessella-
tions with any efficiency index and intensity
The Lloyd relaxation algorithm depicted in Figures 2 and 3 shows that when the efficiency
index of a random triangular mesh increases, the probability density functions of the edge
length and triangle top angle sets seem to be contracted and shifted while globaly keeping their
shapes. Moreover edge lengths and triangle top angles means are preserved. We assume that this
observation is valid at any intensity 𝜏 and any efficiency index E and we propose to define the
pdf of any random triangular tessellation edge length and triangle top angle sets (referred with
the subscript St for Standard mesh generators) as

𝑓St(Ē, 𝜏 ; 𝑙) (𝑥) = 𝑘 (Ē; 𝑙) 𝑓PD(𝜏 ; 𝑙) (𝑥 (Ē, 𝑥 ; 𝑙)) (14)

and

𝑓St(Ē;𝛼) (𝑥) = 𝑘 (Ē;𝛼) 𝑓PD(𝛼) (𝑥 (Ē, 𝑥 ;𝛼)) (15)

where 𝑓PD(𝜏 ; 𝑙) and 𝑓PD(𝛼) are prolonged to be defined over the whole set of real numbers:

∀𝑥 < 0, 𝑓PD(𝜏 ; 𝑙) (𝑥) = 0 and ∀𝑥 ∈ ] − ∞; 0[ ∪ ]𝜋 ;+∞[, 𝑓PD(𝛼) (𝑥) = 0 (16)

with
𝑥 (Ē, 𝑥 ; 𝑙) = 𝑘 (Ē; 𝑙)𝑥 + 𝑝 (Ē; 𝑙)
𝑥 (Ē, 𝑥 ;𝛼) = 𝑘 (Ē;𝛼)𝑥 + 𝑝 (Ē;𝛼), (17)

the contraction parameters being defined as

𝑘 (Ē; 𝑙) = 𝜎PD(𝜏 ; 𝑙)
𝜎St(Ē, 𝜏 ; 𝑙) =

(1 + Ē)1/2

1 − Ē (18)

and

𝑘 (Ē, 𝛼) = 𝜎PD(𝛼)
𝜎St(Ē, 𝛼)

=
(1 + Ē)1/4

(1 − Ē)3/4 , (19)

and the shift parameters by 𝑝 (Ē, 𝜏 ; 𝑙) = (1−𝑘 (Ē; 𝑙))𝜇PD(𝜏 ; 𝑙) and 𝑝 (Ē;𝛼) = (1−𝑘 (Ē;𝛼))𝜇PD(𝛼) =
𝜋
3 (1 − 𝑘 (Ē;𝛼)) where Ē stands again for the reduced efficiency index given in Equation (11).

The accuracy of estimates (14) and (15) is shown in Figures 2 and 5 to 7. Since we have
interest in standard mesh generators, four new cases are considered in Figures 6 and 7 covering
various standard efficiency indexes and intensities (efficiency indexes associated to each mesh
generator have been chosen arbitrarily): 1/ a mesh generated with the frontal algorithm of Gmsh
with low intensity but high efficiency index, 2/ a mesh generated with Abaqus (2008) with very
high intensity and high efficiency index, 3/ a mesh obtained with the pre-processor of the Cast3m
(2011) finite element code with high intensity and intermediate efficiency index, 4/ a mesh drawn
with the mesh generator Triangle (Shewchuk 1996) with high intensity and low efficiency index.

Figures 5 to 7 show that estimates (14) and (15) lead to accurate estimates of the edge length
and triangle top angle means. However variances estimates are accurate only for tessellations
whose efficiency index is is not too high (typically equal or at least less than 0.92, see Figures 6
and 7). As a conclusion, estimates (14) and (15) are accurate for standard random meshes with
efficiency index between 0.725 and 0.92 (i.e. with reduced efficiency index at least less than 0.71).
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Figure 5 Histograms of the edge length and triangle top angle sets obtained with the Gmsh mesh generator (Geuzaine
et al. 2009), with “MeshAdapt” strategy. First line: edge lengths distributions. Second line: triangle top
angle distributions. From left to right the meshes with increasing intensity 𝜏 , (coarser mesh 𝜏 = 525,
intermediate mesh 𝜏 = 831, finest mesh 𝜏 = 1611) black lines refer to the standard mesh estimators for the
density functions of both the edge length (14) and the triangle top angle (15) sets. The efficiency index of
the finest mesh is about E ≃ 0.86.
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Figure 6 Edge length probability density: accuracy of estimate (14) (black line). Meshes obtained with: 1/ the
“frontal” algorithm of Gmsh (𝜏 = 750, E = 0.976), 2/ the Abaqus software (𝜏 = 1386, E = 0.981), 3/ the
Cast3m software (𝜏 = 1102, E = 0.917), 4/ the Triangle mesh generator (𝜏 = 1008, E = 0.863).

Journal of Theoretical, Computational and Applied Mechanics

��
September 2024

��
jtcam.episciences.org 9

��
25

https://jtcam.episciences.org


J. Lhonneur et al. Mesh density and geodesic tortuosity in planar triangular tessellations

0 2
Angle U (rad)

0

5

10

pd
f

0 2
Angle U (rad)

0

5

10

15

pd
f

0 2
Angle U (rad)

0

1

2
pd

f

0 2
Angle U (rad)

0.0

0.5

1.0

pd
f

1/ 2/

3/ 4/

Figure 7 Top angle probability density: accuracy of estimate (15) (black line). Meshes obtained with: 1/ the “frontal”
algorithm of Gmsh (𝜏 = 750, E = 0.976), 2/ the Abaqus software (𝜏 = 1386, E = 0.981), 3/ the Cast3m
software (𝜏 = 1102, E = 0.917), 4/ the Triangle mesh generator (𝜏 = 1008, E = 0.863).

5 Density of random triangular meshes
The mesh density

𝑍 =
1
𝐴

𝑁𝐸∑︁
𝑖=1

𝑙𝑖 (20)

is defined as the sum of the edge lengths divided by the area of the meshes domain Ω, where 𝑁𝐸

is the number of edges of the mesh.
For practical purpose, we showed that the pdf of length 𝑙 of the typical edge is given by

Equation (14). Due to the central limit theorem, the sum
∑𝑁𝐸

𝑖=1 𝑙𝑖 follows a normal distribution
with mean 𝑁𝐸 × 𝜇St(𝜏 ; 𝑙) and variance 𝑁𝐸 × 𝜎2

St
(Ē, 𝜏 ; 𝑙) when the number of edges 𝑁𝐸 is large

enough (Billingsley 1995). Then the mesh density 𝑍 follows a normal distribution with mean
(𝑁𝐸/𝐴) × 𝜇St(𝜏 ; 𝑙) and variance (𝑁𝐸/𝐴2) × 𝜎2

St
(Ē, 𝜏 ; 𝑙).

Recalling that 𝑁𝐸 = 3𝜏𝐴, one obtains the probability density function 𝑓St(Ē, 𝜏 ;𝑍 ) of the
mesh density as a normal distribution with mean 𝜇St(𝜏 ;𝑍 ) equal to 3𝜏𝜇St(𝜏 ; 𝑙) and variance
𝜎2
St
(Ē, 𝐴;𝑍 ) equal to (3𝜏/𝐴)𝜎2

St
(Ē, 𝜏 ; 𝑙):

𝑓St(Ē, 𝜏 ;𝑍 ) = PDF [N(𝜇St(𝜏 ;𝑍 ), 𝜎2
St
(Ē, 𝐴;𝑍 ))] (21)

with

𝜇St(𝜏 ;𝑍 ) = 32
√
𝜏

3𝜋 (mean) and 𝜎2
St
(Ē, 𝐴;𝑍 ) ≃ (1 − Ē)2

1 + Ē
(405𝜋 − 322

27𝜋2𝐴

)
(variance). (22)

It is worth noting that the variance of this mesh density no more depends on the intensity 𝜏 ,
but now depends on the area 𝐴 of the meshed domain. In particular, 𝜎2

𝑍
depends on the unit

length used to define the boundary of the domain 𝜕Ω.
The ratio in percentage between the standard deviation and the mean of a standard mesh

density is given by

𝜎St(Ē, 𝜏 ;𝑍 )
𝜇St(𝜏 ;𝑍 ) × 100 ≃

(
0.49 1 − Ē√

1 + Ē
) 1√

𝑁𝐸

× 100. (23)
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This relation leads to the result

∀E ≥ 0.86, 𝜎St(Ē, 𝜏 ;𝑍 )
𝜇St(𝜏 ;𝑍 ) × 100 ≤ 20√

𝑁𝐸

. (24)

In fracture mechanics, 𝑁𝐸 is sufficiently large to consider that the variance of 𝑍 is negligible.
We then consider for practical purpose that 𝑍 can be understand as a scalar value depending
exclusively on the intensity of the underlying point-process or equivalently on the edge length
mean:

𝑍St(𝜏) = 32
√
𝜏

3𝜋 =
1024

27𝜋2𝜇St(𝜏 ; 𝑙) . (25)

The accuracy of estimate (25) is illustrated in Figure 8. The dependence of the mesh density on

Figure 8 Mesh density 𝑍 as a function of the intensity of the
point-process 𝜏 (line: 𝜇St (𝜏 ;𝑍 ) in Equation (21), unitary area).
Gmsh results with the “MeshAdapt” strategy (points) and with
the “Frontal” strategy (open circles); Cast3m result (cross);
Triangle result (filled square); Abaqus result (open square).
Corresponding meshes in Figures 6 and 7.
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the square root of the intensity 𝜏 is in accordance with the Vaschy-Buckingham theorem. Indeed,
the intensity of the point process and the total area of the discretized domain fully describe
the tessellation geometrical features statistics. Thus, an intensive feature such as the mesh
density 𝑍 would only depend on the point process intensity 𝜏 . Using the Vashy-Buckingham
theorem, it is then expected that the density 𝑍—homogeneous to the inverse of a length—would
be proportional to the square root of the point process intensity.

6 Geodesic tortuosity of random Delaunay meshes

6.1 Shortest path approximation

Let 𝐴 and 𝐵 be two nodes of a planar triangular mesh. Among all the paths which are composed
of a collection of adjacent edges and whose extremities are nodes 𝐴 and 𝐵, there exists at least
one path with a minimum length. Let an edge inclination be the angle between this edge and
direction 𝐴𝐵, whose value has to be taken between −𝜋

2 and 𝜋
2 .

The orientation with respect to a given direction 𝐴𝐵 of the edges of a PD mesh is uniformly
distributed over [−𝜋

2 ; 𝜋2 ]. It is reasonably supposed that this observation remains valid for
meshes obtained from a PD tessellation after few Lloyd relaxations (as long as the mesh remains
sufficiently unstructured). In the sequel, such meshes will be referred as “unstructured Delaunay-
like meshes”. As a consequence, in such meshes only the distance 𝑑 (𝐴, 𝐵) has to be considered for
estimating the shortest path length between 𝐴 and 𝐵. Considering a fixed value for the distance
𝑑 (𝐴, 𝐵) is somehow the same as fixing the number of edges 𝑛 composing the shortest path. For
sake of simplicity, the choice is therefore made to characterise a shortest path only by the number
𝑛 of edges it contains.

At that point, the edge length and triangle top angle distributions are the only geometrical
data on which we can rely on for estimating the shortest path length between two nodes of
a given planar triangular mesh. However, to the best of our knowledge, there is no explicit
mathematical expression relying these quantities. The difficulty lies in the fact that a shortest
path is a “global” quantity in the way that there is no explicit rule followed individually by each
edge. Thus all the edges of the shortest path have to be found at the same time and cannot be
chosen independently from each other.
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Facing this difficult problem, it has been considered to focus on 𝑛-edges paths verifying the
following property, hereafter referred to as “inclination rule”:

Each edge inclination of the path is as close as possible to zero. (26)

The idea is to consider paths as close as possible to the shortest one and whose description
is made easier by the inclination rule they fulfill. Thanks to this rule the probability density
function of the tortuosity of such a path—i.e. the ratio between the path length and the length of
its projection along the direction 𝐴𝐵—can be estimated (see Section 6.4).

Figure 9 represents on its first column examples of a shortest path between two nodes 𝐴 and
𝐵 of a PD tessellation and a Lloyd relaxed PD tessellation. A distinction is made between edges
following the inclination rule (blue ones) and those who are not (red ones). On the same figure,
on the second column, corresponding histograms of the percentage of the path edges which are
not following the inclination rule are displayed.
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Figure 9 Relevance of the use of the inclination rule. First column: Representation of the shortest path between two
nodes 𝐴 and 𝐵 in a PD tessellation (top) and a Lloyd relaxed tessellation (bottom) of a Poisson point process
(𝜏 = 300). Blue edges follow the inclination rule, red ones do not. On the second column: over 1000 PD

tessellations (top) and over 1000 Lloyd relaxed tessellations (bottom) of a Poisson point process (𝜏 = 300),
histograms of the percentage of edges of the shortest path which are not following the inclination rule.

Although all the edges are not following the inclination rule, a major part of them does. To
consider that the shortest path is following the rule (26) is then not optimal but seems acceptable
for estimating the shortest path tortuosity.

6.2 Definition of the tortuosity of a path following the inclination rule
Among all edges connected to a given node, at least one is associated to a minimum inclination
(along direction 𝐴𝐵) absolute value. The inclination 𝜃 of this particular edge is referred to in the
sequel as “best inclination”, see Figure 10.

Edges best inclinations of a path following the inclination rule (26) are particular events of
the random variable 𝜃 . For sake of simplicity, we consider in the sequel that these events are
statistically independent. The tortuosity of a 𝑛-edges path of a given tessellation 𝐺 following the
inclination rule is given by

𝑇𝐺 (𝑛) =
( 𝑛∑︁
𝑖=1

𝑙𝑖 cos𝜃𝑖
)−1 𝑛∑︁

𝑖=1
𝑙𝑖 , (27)

where 𝑙𝑖 are the edge lengths of the path and 𝜃𝑖 its edge inclinations.
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In the particular case where the path is a straight line, ∀𝑖 ∈ ⟦1;𝑛⟧, 𝜃𝑖 = 0, the tortuosity is
equal to 1. For the other cases, the tortuosity is greater than 1.

� �

( )
+1

( )
+1

| − | > | |

Figure 10 Definition of the incident angle 𝛾 , bissector orientation 𝛽 and best inclination 𝜃 .

6.3 Probability density function of the best inclination in Delaunay-type meshes
Except for trivial cases, the half straight line from a node 𝑃 with direction 𝐴𝐵 crosses exactly
one of the triangle elements surrounding 𝑃 . We respectively denote as 𝛽 and 𝛾 the bissector
orientation with respect to the direction 𝐴𝐵 and the angle of this triangle at top 𝑃 , hereafter
called the incident angle (see Figure 10).

Node 𝑃 is surrounded by triangles having their own angle at summit 𝑃 . The orientation
with respect to a given direction 𝐴𝐵 of the edges of an unstructured Delaunay-like mesh may
reasonably supposed uniformly distributed over [−𝜋

2 ; 𝜋2 ]. As a consequence, the probability that
a summit angle corresponds to a particular value of 𝛾 is proportional to the value of this angle.
In other words, it is more likely that among the surrounding triangles at node 𝑃 , the triangle
crossed by the half straight line from node 𝑃 with direction 𝐴𝐵 be the one having the highest
angle at summit 𝑃 . Considering then that the angles at summit 𝑃 are independent events of the
random variable 𝛼 (as defined in Section 3), the following expression for the pdf of 𝛾 is obtained:

𝑓St(Ē;𝛾) (𝑥) = 𝑘 (Ē;𝛼)
𝜋
3 − 𝑝 (Ē;𝛼) × 𝑥 𝑓St(Ē;𝛼) (𝑥), (28)

where the prefactor ensures that
∫ 𝜋

0 𝑓St(Ē;𝛾) (𝑥) d𝑥 = 1. By construction, the bissector orientation
verifies

𝛽 ∈ [−𝛾/2;𝛾/2] . (29)

Since the edges inclinations follow a uniform distribution, the conditional density of 𝛽 knowing
𝛾 = 𝛾0 is derived from Equation (29):

𝑔St(Ē; 𝛽 |𝛾 = 𝛾0) (𝑥) =


1
𝛾0

if 𝑥 ∈
[
−𝛾0

2 ,
𝛾0
2

]
0 if not

=


1
𝛾0

if |𝑥 | ≤ 𝜋

2 and𝛾0 ∈ [2|𝑥 |, 𝜋]

0 if not.
(30)

Using then the law of total probability, the pdf of 𝛽 reads

𝑓St(Ē; 𝛽) (𝑥) =
∫ 𝜋

0
𝑔St(Ē; 𝛽 |𝛾 = 𝑧) (𝑥) 𝑓St(Ē;𝛾) (𝑧) d𝑧 (31)

which, according to Equations (28) and (30) could be written as

𝑓St(Ē; 𝛽) (𝑥) =
∫ 𝜋

2 |𝑥 |

𝑓St(Ē;𝛾) (𝑧)
𝑧

d𝑧 =

( 𝑘 (Ē;𝛼)
𝜋
3 − 𝑝 (Ē;𝛼)

) ∫ 𝜋

2 |𝑥 |
𝑓St(Ē;𝛼) (𝑧) d𝑧

=

( 𝑘 (Ē;𝛼)
𝜋
3 − 𝑝 (Ē;𝛼)

)
(1 − 𝐹St(Ē;𝛼) (2|𝑥 |)),

(32)
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where 𝐹St(Ē;𝛼) is the cumulative density function of 𝛼 given by

𝐹St(Ē;𝛼) (𝑥) =



0 if 𝑥 (Ē, 𝑥 ;𝛼) ≤ 0
1

3𝜋
[
𝜋 + 2𝑥 (Ē, 𝑥 ;𝛼) + (𝑥 (Ē, 𝑥 ;𝛼) − 𝜋) cos(2𝑥 (Ē, 𝑥 ;𝛼))
− 3

2 sin(2𝑥 (Ē, 𝑥 ;𝛼))] if 𝑥 (Ē, 𝑥 ;𝛼) ∈ [0, 𝜋]
1 if 𝑥 (Ē, 𝑥 ;𝛼) ≥ 𝜋

(33)

where 𝑥 (Ē, 𝑥 ;𝛼) is defined in Equation (17).
Considering Figure 10 and denoting by 𝑖 the 𝑖𝑡ℎ edge of a path following the inclination

rule (26), a relation can be exhibited between 𝜃𝑖 , 𝛽𝑖 and 𝛾𝑖 :

if 𝛽𝑖 ≥ 0, 𝜃𝑖 = 𝛽𝑖 − 𝛾𝑖/2 ≤ 0, else 𝜃𝑖 = 𝛽𝑖 + 𝛾𝑖/2 ≥ 0, (34)

which can be rewritten as

if 𝜃𝑖 ≥ 0, 𝛽𝑖 = 𝜃𝑖 − 𝛾𝑖/2 ≤ 0, else 𝛽𝑖 = 𝜃𝑖 + 𝛾𝑖/2 ≥ 0. (35)

The symmetry of relations (34) and (35) implies that 𝛽 and 𝜃 have the same density

𝑓St(Ē;𝜃 ) (𝑥) =
( 𝑘 (Ē;𝛼)
𝜋
3 − 𝑝 (Ē;𝛼)

)
(1 − 𝐹St(Ē;𝛼) (2|𝑥 |)). (36)

Figure 11 compares the distributions of 𝛾 , 𝛽 and 𝜃 for a PD tessellation and a Lloyd relaxed PD

tessellation. A very good agreement is obtained between the actual distributions and the different
pdf expressions defined in Equations (28), (32) and (36).
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Figure 11 Accuracy of the estimated probability density functions of angles 𝛾 , 𝛽 and 𝜃 . First line: angles distributions
of a PD tessellation (𝜏 = 500). Second line: angles distributions of a Lloyd relaxed PD tessellation
(E = 0.89, 𝜏 = 500). From left to right: 𝛾 , 𝛽 and 𝜃 distributions. Black lines: density functions expressed
in Equations (28), (32) and (36).

6.4 Tortuosity probability density function of a path following the inclination rule
Equation (27) can be rewritten as

𝑇St(𝑛) =
( 𝑛∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖
)−1

(37)
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with weight 𝑤𝑖 defined by the proportion of the 𝑖th edge length in the total length of the path:

𝑙𝑖 = 𝑤𝑖

𝑛∑︁
𝑘=1

𝑙𝑘 . (38)

It is worth noting that with such a definition, summation of 𝑤𝑖 values is equal to 1.
Figure 12 represents 𝑤𝑖 values versus cos𝜃𝑖 values of a PD tessellation (left) and a Lloyd

relaxed PD one (right). A correlation can be exhibited between 𝑤𝑖 and cos𝜃𝑖 since low values of
cos𝜃𝑖 seem to be associated to low values of 𝑤𝑖 . The following hypothesis is therefore considered
in the sequel for purpose of simplification:

The expected value of 𝑤𝑖 knowing that cos𝜃𝑖 = 𝑐0 is proportional to 𝑐0. (39)

As a consequence, it is necessary to compute the correlation coefficient (which would differs
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Figure 12 Weights 𝑤𝑖 versus cos𝜃𝑖 of a PD tessellation (left) and a Lloyd relaxed PD one (right).

from zero) between weights 𝑤𝑖 and cos𝜃𝑖 sets for the computation of the probabilistic density
function of the tortuosity.

Splitting 𝐼 , the interval of accessible values for cos𝜃𝑖 , into𝑚 intervals 𝐼𝑘 , 𝑘 ∈ ⟦1;𝑚⟧ of equal
lengths, the sum at denominator of Equation (37) reads

𝑛∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖 =
𝑚∑︁
𝑘=1

( 𝑛𝑘∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖
)

(40)

where 𝑛𝑘 corresponds to the number of cos𝜃 realizations which are in 𝐼𝑘 . Therefore, if 𝑛𝑘 is large
enough and according to the central limit theorem, the sum can be approximated by

𝑛∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖 ≃
𝑚∑︁
𝑘=1

𝑛𝑘 ⟨𝑤 cos𝜃⟩𝑘 =

𝑚∑︁
𝑘=1

( 𝑛𝑘∑︁
𝑖=1

⟨𝑤 cos𝜃⟩𝑘
)

(41)

where notation ⟨𝑋 ⟩𝑘 stands for the expected value of the random variable 𝑋 inside the interval
𝐼𝑘 and 𝜃 and 𝑤 are respectively the random variables associated to the values 𝜃𝑖 and 𝑤𝑖 . If
the interval 𝐼𝑘 is narrow enough, values cos𝜃𝑖 in 𝐼𝑘 can be considered as equal to a constant
value corresponding to the center 𝑐𝑘 of interval 𝐼𝑘 . Then ⟨𝑤 cos𝜃⟩𝑘 ≃ ⟨𝑤⟩𝑘 𝑐𝑘 and estimate (41)
becomes

𝑛∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖 ≃
𝑚∑︁
𝑘=1

( 𝑛𝑘∑︁
𝑖=1

⟨𝑤⟩𝑘 𝑐𝑘
)
. (42)

Referring to the hypothesis (39), and remembering that the summation of 𝑤𝑖 values is equal to 1,
values of ⟨𝑤⟩𝑘 can be expressed as

⟨𝑤⟩𝑘 ≃
( 𝑚∑︁
𝑖=1

𝑛𝑖𝑐𝑖
)−1

𝑐𝑘 (43)
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where 𝑐𝑖 and 𝑛𝑖 are respectively the center and the number of elements of the interval 𝐼𝑖 . Therefore,
the following estimate is accurate when the number of edges 𝑛 is large enough and considering
that hypothesis (39) is true:

𝑛∑︁
𝑖=1

𝑤𝑖 cos𝜃𝑖 ≃
( 𝑛∑︁
𝑘=1

cos𝜃𝑘
)−1 𝑛∑︁

𝑖=1
cos2 𝜃𝑖 . (44)

This estimate leads to the approximation

𝑇St(𝑛) ≃
( 𝑛∑︁
𝑖=1

cos2 𝜃𝑖
)−1 𝑛∑︁

𝑖=1
cos𝜃𝑖 (45)

for the tortuosity of an 𝑛-edges path following the inclination rule (26). In the sequel the
numerator and the denominator in Equation (45) are respectively denoted by 𝑋 and 𝑌 . Using
the academic result 𝜎2

𝑋+𝑌 = 𝜎2
𝑋
+ 𝜎2

𝑌
+ 2Cov(𝑋,𝑌 ) on the variance of the sum of two correlated

variables, the correlation coefficient between variables 𝑋 and 𝑌 can be expressed as

𝜌𝑋,𝑌 =
Cov(𝑋,𝑌 )
𝜎𝑋𝜎𝑌

=
𝜎2
𝑋+𝑌 − 𝜎2

𝑋
− 𝜎2

𝑌

2𝜎𝑋𝜎𝑌
(46)

where the variances are estimated by the central limit theorem as

𝜎2
𝑋+𝑌 ≃ 𝑛𝜎2

cos𝜃+cos2 𝜃 , 𝜎2
𝑋 ≃ 𝑛𝜎2

cos𝜃 and 𝜎2
𝑌 ≃ 𝑛𝜎2

cos2 𝜃 . (47)

Relations (46) and (47) imply that 𝜌𝑋,𝑌 does not depends of 𝑛. Equation (36) allows then to
directly estimate 𝜌𝑋,𝑌 in function of Ē.

Having estimated 𝜌𝑋,𝑌 and given the fact that𝑇St(𝑛) is a ratio between two correlated normal
random variables, Hinkley (1969) gives the estimate of the probabilistic density function of 𝑇St(𝑛)

𝑓St(Ē, 𝑛;𝑇 ) (𝑥) ≃

√︃
1 − 𝜌2

𝑋,𝑌

𝜋𝜎𝑋𝜎𝑌𝑎(𝑥)2 exp
(
− 𝑐

2(1 − 𝜌2
𝑋,𝑌

)
)

+ 𝑏 (𝑥)𝑑 (𝑥)√
2𝜋𝜎𝑋𝜎𝑌𝑎(𝑥)3

𝜙
( 𝑏 (𝑥)
𝑎(𝑥)

√︃
1 − 𝜌2

𝑋,𝑌

)
− 𝜙

(
− 𝑏 (𝑥)
𝑎(𝑥)

√︃
1 − 𝜌2

𝑋,𝑌

) ,
(48)

where

𝑎(𝑥) =
√︄

𝑥2

𝜎2
𝑋

− 2𝜌𝑋,𝑌𝑥

𝜎𝑋𝜎𝑌
+ 1
𝜎2
𝑌

, 𝑏 (𝑥) = 𝜇𝑋𝑥

𝜎2
𝑋

− 𝜌𝑋,𝑌 (𝜇𝑋 + 𝜇𝑌𝑥)
𝜎𝑋𝜎𝑌

+ 𝜇𝑌

𝜎2
𝑌

(49)

𝑐 =
𝜇2
𝑋

𝜎2
𝑋

− 2𝜌𝑋,𝑌 𝜇𝑋 𝜇𝑌
𝜎𝑋𝜎𝑌

+ 𝜇2
𝑌

𝜎2
𝑌

, 𝑑 (𝑥) = exp( 𝑏 (𝑥)2 − 𝑐𝑎(𝑥)2

2(1 − 𝜌2
𝑋,𝑌

)𝑎(𝑥)2 ) (50)

𝜇𝑋 =

∫ 𝜋
2

− 𝜋
2

cos𝑥 𝑓St(Ē;𝜃 ) (𝑥) d𝑥, 𝜇𝑌 =

∫ 𝜋
2

− 𝜋
2

cos2 𝑥 𝑓St(Ē;𝜃 ) (𝑥) d𝑥, (51)

with the normal cumulative distribution function

𝜙 (𝑦) = 1√
2𝜋

∫ 𝑦

−∞
exp(− 1

2𝑢
2) d𝑢. (52)

Figure 13 shows that Equation (48) is accurate for PD tessellations while considering 𝑛-
edges path following the inclination rule (26) with 𝑛 ≥ 20. For Lloyd relaxed PD tessellation,
Equation (48) slightly underestimates the actual tortuosity of paths following the inclination rule.

Figure 14 shows that estimate (48) leads to an overestimate of the actual geodesic tortuosity.
This overestimate is explained by the fact that the geodesic path is, by definition, always associated
to the minimum tortuosity. In addition, the overestimate tends to decrease as the quality index
increases. This observation is in accordance with Figure 9 which shows that the inclination rule
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Figure 13 Distributions of the tortuosity of 𝑛-edges paths following the inclination rule. Top: distributions obtained
from a PD tessellation (𝜏 = 500). Bottom: distributions obtained from a Lloyd relaxed PD tessellation
(E = 0.86, 𝜏 = 500). Left: 20-edges path, middle: 50-edges path and right: 100-edges path. Black line:
tortuosity pdf estimate (48).

Figure 14 Accuracy of the tortuosity
probability density function. Left:
geodesic tortuosity distribution of a
PD tessellation (𝜏 = 500). Right:
geodesic tortuosity distribution of a
Lloyd relaxed PD tessellation
(E = 0.89, 𝜏 = 500). Black lines:
geodesic tortuosity pdf estimates
(48).
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is more often respected by meshes having a high quality index. As a result, estimate (48) appears
to be accurate for unstructured Delaunay-like meshes suitable to finite element simulations
(see Figure 14, right). This statement as been verified by a complementary study carried out on
meshes generated by the Gmsh Delaunay algorithm.

Figure 15 shows comparisons between the geodesic tortuosity pdf estimate (48) and distribu-
tions obtained by a Monte Carlo simulation using the Dijkstra algorithm on 1000 Gmsh Delaunay
meshes for several path lengths. The pdf estimates correctly mimic the geodesic tortuosity
distributions of Gmsh Delaunay meshes with a slight overestimate: the average value obtained
for Gmsh meshes is about 1.043 while estimate (48) gives an average value of 1.051.

It could have been possible to use regressions on the results of the Monte Carlo simulation
to obtain estimates of the tortuosity value. However, this method comes with an additional
difficulty: finding the underlying tortuosity probability density distribution.

7 Practical use of the results in computational fracture mechanics

7.1 Application of the mesh density estimate
When using finite initial cohesive stiffnesses (intrinsic cohesive laws) in a CVFE simulation, an
artificial compliance is introduced between each finite elements. In turn, an overall stiffness loss
is observed. The loss may be reduced by considering sufficiently high initial cohesive stiffnesses.
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Figure 15 Tortuosity pdf estimate compared to tortuosity histograms associated with Gmsh meshes. top: histograms
of geodesic tortuosities of cracks containing distinct number of edges 𝑛 computed via a Monte Carlo
simulation using Dijkstra’s algorithm. Black lines: geodesic tortuosity pdf estimates (48); bottom: zoom on
particular shortest paths obtained on meshes generated by the Gmsh Delaunay algorithm (from left to
right: paths containing respectively 10, 20 and 30 edges). Results obtained on Gmsh meshes (E = 0.89).

Blal et al. 2012b have proposed practical formulas for choosing initial cohesive stiffnesses
(hereafter denoted by𝐶

𝑁
< ∞ and𝐶

𝑇
< ∞ respectively for the normal and tangential decohesion

modes) ensuring to maintain as enough rigidity as wanted in a homogeneous linear elastic
isotropic material (Young modulus 𝐸, Poisson ratio 𝜈).

Denoting by 𝑅 the “tolerated” ratio between the apparent overall stiffness obtained by using
the CVFE approach and the theoretical one, the practical formulas read

𝐶
𝑁

𝐸
≥ 𝑍

( 𝑅

1 − 𝑅

) ( 1
3 − 6𝜈

)
(53)

and

𝐶
𝑇

𝐶
𝑁

= 2
(1 − 2𝜈

1 + 3𝜈

)
. (54)

Equation (53) shows that the initial cohesive stiffness in normal mode has to be chosen propor-
tionally to the mesh density 𝑍 . Equation (54) permits to maintain the overall Poisson effect. For
random planar triangular meshes suitable for finite element simulations, the mesh density is
given by Equation (25) as function of the underlying point process intensity 𝜏 . Additional mesh
densities associated to several structured meshes are given in Appendix C.

7.2 Application of the geodesic tortuosity estimate

In CVFE approach, crack paths are restrained to propagate along elements boundaries (edges).
If the localization and/or the orientation of the crack path is not known a priori, an isotropic
tessellation is used, typically a Delaunay tessellation. A Delaunay tessellation seldom includes
the theoretical path followed by the crack. In turn, a more tortuous crack path is obtained by the
CVFE approach leading to an overestimate of the crack length (or crack surface in 3D).

As the theoretical overall fracture energy𝑊th is proportional to the crack length times the
specimen width (in 2D), the computed overall fracture energy𝑊comp is also overestimated. It is
reasonably expected that the fracture energy and equivalently the crack length overestimates are
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of the same order of magnitude as the tortuosity estimate 𝑇St(𝑛). Thus, denoting by 𝐿th the
theoretical length of the crack path and by 𝐿comp the computed one, the relations

𝑊comp

𝑊th
(𝑛) = 𝐿comp

𝐿th
(𝑛) ≃ 𝑇St(𝑛) (55)

are obtained, where 𝑛 is the number of edges composing the crack path.
From Equation (48), confidence intervals of geodesic tortuosity estimate 𝑇St(𝑛) as well as

its expected value can be derived and estimated for distinct values of 𝑛, see Figure 16. Table 2
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Figure 16 Estimate of the geodesic tortuosity expected value (continuous line) and 95 % (dashed line) and 99 %
(dotted line) confidence intervals in function of the efficiency index. Left: for 100-edges paths. Right: for
1000-edges paths.

quantifies the dependency of the geodesic tortuosity estimate 𝑇St distribution to the number of
edges 𝑛 composing the crack path. Considering Equation (55) and table 2, we expect that an

Number of edges Mean tortuosity 95 % certainty interval 99 % certainty interval
20 1.0512 [1.0279; 1.0760] [1.0212; 1.0844]
50 1.0510 [1.0362; 1.0665] [1.0317; 1.0716]
100 1.0510 [1.0404; 1.0617] [1.0371; 1.0653]
1000 1.0509 [1.0474; 1.0542] [1.0464; 1.0553]

Table 2 Estimates of the geodesic tortuosity expected value and 95 % and 99 % confidence intervals in function of
the number of edges (E = 0.89).

overestimate of the fracture energy of about 5 % may be obtained while using an unstructured
Delaunay-like mesh in a CVFE simulation.

8 Conclusion

The main objective of this paper was to derive accurate estimates for both the mesh density and
geodesic tortuosity of planar triangular tessellations suitable for finite element simulations in the
context of cohesive-based fracture mechanics. The following results were obtained.

• New estimates for the edge length and the triangle top angle distributions were proposed for
Poisson-Delaunay tessellations and Lloyd relaxed ones for arbitrary efficiency indexes and
intensities, Equations (14) and (15).

• The edge length and triangle top angle distributions of random triangular meshes obtained by
standard mesh generators (Abaqus, Gmsh, Cast3M and Triangle) have been compared to these
estimates depending on the intensity of the underlying point process and its efficiency index.
These estimates are accurate for meshes with efficiency index at least less than 0.92. In other
words, estimates are no longer accurate for semi-structured meshes (obtained for example by the
GMSH “Frontal” algorithm and Abaqus). Moreover, these estimates are robust enough to be used
at a local scale, see Appendix A.

• Based on these practical estimates, the distribution of the mesh density was derived as a normal
law in Equation (21). Its mean grows as the square root of the intensity of the point process, while
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its variance does not depend on this intensity but decreases when the area of the discretized
domain increases. The expected value of the mesh density does not depend on the global
efficiency index. A dependence to the efficiency index is observed for the variance of the mesh
density. However, for standard meshes used in finite elements simulations, the variance of the
mesh density appears to be negligible in comparison to its expected value. It is then stated
that the mesh density can be viewed as a singular function of the intensity of the underlying
point-process (equal to the mesh density expected value). The mesh densities of usual structured
triangular meshes are also given in Appendix C.

• For unstructured Delaunay-like meshes (whose edge orientations may be considered uniformly
distributed), a tortuosity estimate has been derived from an hypothetical “orientation rule”
followed by each edge of a shortest path between two nodes. Since the orientation rule is
not exactly fulfilled by shortest paths, the tortuosity is slightly overestimated. However, for
application we have in mind, the overestimate is small enough for considering that the geodesic
tortuosity estimate (48) is accurate.

• Overestimate of both the overall fracture energy and cracks tortuosities computed by a CVFE
simulation are expected while using an unstructured Delaunay-like mesh. Using the geodesic
tortuosity estimate 𝑇St, we deduced that this overestimate is approximately equal to 5 %.
We emphasize the fact that the results of this work are valid only for “sufficiently disordered”
homogeneous planar triangular meshes. They may be improved by considering the case of
inhomogeneous Poisson point processes or three-dimensional Poisson-Delaunay tessellations.

In three-dimensional tessellations, the notion of geodesic plane might be introduced as
well as an associated tortuosity. To the best of our knowledge, there are no known results for
estimating the three-dimensional tortuosity distribution. To provide such an estimate seems to be
far more challenging than providing the estimate of the two-dimensional tortuosity.

A Local robustness of the edge length and triangle top angle distribu-
tions Equation (14) and Equation (15)

Since we have in mind fracture mechanics of complex microstructures, involving local hetero-
geneities, gradients, cavities, etc., we have to check at which scale or for which local intensity 𝜏
estimates (14) and (15) are accurate enough. The accuracy is quantified by the standard deviations
of the means 𝜇St(𝜏 ; 𝑙) and 𝜇St(𝛼), respectively denoted by 𝜎𝜇St (𝜏 ; 𝑙) and 𝜎𝜇St (𝛼), and by the
standard deviations of the variances 𝜎2

St
(𝜏 ; 𝑙) and 𝜎2

St
(𝛼), respectively denoted by 𝜎𝜎2

St

(𝜏 ; 𝑙) and
𝜎𝜎2

St

(𝛼), for 100 samples. Each sample corresponds to a subset of a Gmsh random triangular mesh
(“MeshAdapt” strategy, efficiency index E ≃ 0.86) consisting of a disk with random center and
radius 𝑅, see Figure A.1. The mesh of Figure A.1 has an efficiency index of E ≃ 0.86.

Figure A.1 Six circular subset samples with random center and radius 𝑅 ≃ 3.3𝜇St (𝜏 ; 𝑙).

Figure A.2 shows that, when the radius 𝑅 is larger than the expected mean of the edge length,
𝑅 ⩾ 𝜇St(𝜏 ; 𝑙), the standard deviation of the mean 𝜎𝜇St (𝜏 ; 𝑙) is lower than about 5 % of the actual
edge length mean and the standard deviations of the variances 𝜎𝜎2

St

(𝑙) and 𝜎𝜎2
St

(𝛼) are respectively
lower than 4 % and 12 % of the corresponding actual variances. In addition, the standard deviation
of the mean 𝜇St(𝛼), which is not represented in Figure A.2, is lower than the machine epsilon
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whatever 𝑅 ⩾ 𝜇St(𝜏 ; 𝑙). Finally, the local robustness of Equations (14) and (15) is such that they
can be applied at the length scale of a few triangles in an unstructured Delaunay-like mesh.
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Figure A.2 Local robustness of the estimates of the edge length and triangle top angle probability density functions.
Left: standard deviation of the mean of the edge length divided by its actual mean with respect to
𝑅/𝜇St (𝜏 ; 𝑙). Right: standard deviation of the variance of the edge length (resp. the triangle top angle)
divided by its actual variance with respect to 𝑅/𝜇St (𝜏 ; 𝑙) (black dots/resp. gray dots). The standard
deviations are computed over 100 samples of circular random subsets belonging to a Gmsh triangular
mesh (“MeshAdapt” strategy, efficiency index E ≃ 0.86).

B Some hints on the range of validity for estimates (14) and (15)
The proposed estimates (14) and (15) are strictly devoted to unstructured Delaunay-like meshes.
These estimates are not able to deal with:

• Badly shaped elements. Efficiency indexes lower than the minimal value EPD corresponding to PD

tessellations (see Equation (11)) can not be taken into account by these estimates. They are
restricted to “good” enough meshes (i.e. with a efficiency index greater than 0.725).

• Structured or quasi-structured meshes. Structured meshes lead to discrete values of the edge
length and triangle top angle sets. Their distributions thus correspond to successive Dirac delta
functions. Estimates (14) and (15) are restricted to “sufficiently unstructured” meshes (i.e. with a
efficiency index at least less than 0.92).
To underline these two limitations, planar hand-generated meshes are considered as counterex-
amples. These meshes consist in cross-triangular square patterns stretched in one direction
(degradation of the shape) with random perturbation of the inner points (in order to control the
regularity), tessellations remaining valid. Three cases are considered.

With highly random perturbation, the mesh is no more structured and estimates (14) and
(15) exhibit a rough validity. In addition, these estimates do not accurately predict the tail of
the edge length and tirangle angle distributions when badly shaped elements are numerous;
see Figure B.3, left. With small random perturbation, the edge length distribution consists in
multi-modal normal distribution. Estimates (14) and (15) are able to predict the mode with higher
intensity, but are not able to predict the other modes; see Figure B.3, middle. With even smaller
random perturbation, a quasi-structured mesh is obtained and estimates (14) and (15) fail to
predict the quasi-Dirac combs; see Figure B.3, right.

Thus, the use of estimates (14) and (15) is restricted to standard random triangular tessellations
whose efficiency index is greater than or equal to the one of a PD tessellation and at least less
than 0.92 (see Section 4.2).

C Complementary results for structured triangular meshes

The estimate of the total length of the edges of a tessellation containing 𝑁𝑃 points regularly
distributed in an area 𝐴 has been presented in Watanabe (2008) for various measures. Their results
concern some triangular meshes, square meshes and hexagonal meshes. We focus on the mesh

Journal of Theoretical, Computational and Applied Mechanics

��
September 2024

��
jtcam.episciences.org 21

��
25

https://jtcam.episciences.org


J. Lhonneur et al. Mesh density and geodesic tortuosity in planar triangular tessellations

0.0 0.1 0.2
Length ; (a.u.)

0

10

20

pd
f

0.0 0.1 0.2
Length ; (a.u.)

0

20

40

pd
f

0.0 0.1 0.2
Length ; (a.u.)

0

50

100

pd
f

0 2
Angle U (rad)

0.0

0.5

1.0

pd
f

0 2
Angle U (rad)

0.0

0.5

1.0

1.5

pd
f

0 2
Angle U (rad)

0

2

4

pd
f

Figure B.3 Limit of validity for estimates (14) and (15) in case of quasi-structured meshes. Pdf of the edge length (first
row) and triangle top angle (second row) sets for hand-generated cross-triangular square meshes, stretched
in the horizontal direction and randomly perturbed of the inner points. Left: stretching/elongation ratio of
3 with high distortion, efficiency index E ≃ 0.78, intensity 𝜏 = 466. Middle: stretching ratio of 2 with
intermediate distortion, efficiency index E ≃ 0.84, intensity 𝜏 = 472. Right: stretching ratio of 1 with small
distortion, efficiency index E ≃ 0.87, intensity 𝜏 = 458.

density 𝑍 of structured triangular meshes usually used in finite element discretizations (Tijssens
et al. 2000).

The total length of edges in a structured triangular tessellation based on a hexagonal (H)
point process reads (see Table C.1)

𝑁𝐸∑︁
𝑖=1

𝑙𝑖 = 3
√︄

2𝜏√
3
𝐴. (C.1)

The corresponding mesh density is thus

𝑍H = 3
√︄

2√
3
√
𝜏 . (C.2)

Regular points distributed along a square lattice (see Table C.1) lead to a structured “Triangle
Quadrilateral” (TQ) pattern whose the total length of the edges reads

𝑁𝐸∑︁
𝑖=1

𝑙𝑖 = (2 +
√

2)√𝜏𝐴, (C.3)

and the mesh density,

𝑍TQ = (2 +
√

2)√𝜏 . (C.4)

In fracture mechanics, “Cross-Triangle Quadrilateral” (CTQ) patterns are often used (see
Table C.1). For that mesh topology, the mesh density is deduced from the previous one:

𝑍CTQ = 2(1 +
√

2)√𝜏 . (C.5)

This CTQ pattern can be stretched in one direction and the underlying quadrilateral is not a
square but a rectangle (aspect ratio 𝑠 ⩾ 1). In this case, the mesh density becomes

𝑍CTQs =

(
2
√︂

1 + 1
𝑠2 + 1 + 1

𝑠

)√
𝜏 . (C.6)
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𝑍H = 3
√︂ 2√

3
√
𝜏 𝑍TQ = (2 + √

2)√𝜏

𝑍CTQ = 2(1 + √
2)√𝜏 𝑍CTQs =

(
2
√︂

1 + 1
𝑠2 + 1 + 1

𝑠

)√
𝜏

Table C.1 Mesh density of the structured triangular meshes usually used in finite element discretizations.

Table C.1 summarizes the mesh densities for structured meshes usually used in finite element
discretizations. It is worth noting that these mesh densities for structured triangular meshes
evolve as

√
𝜏 , exactly as the means of the mesh densities for random triangular meshes do. In

particular, the mean 𝜇St(𝜏 ;𝑍 ) of standard random triangular meshes given in Equation (21) is
very close to the mesh density of TQ tessellations: the prefactor of 𝜇St(𝜏 ;𝑍 ) is about 3.40, while
the prefactor of 𝑍TQ (𝜏) is about 3.41:

𝑍TQ (𝜏) ≃ 𝜇St(𝜏 ;𝑍 ). (C.7)

From the point of view of the mesh density, a Triangle Quadrilateral pattern accurately mimics a
standard random triangular mesh (keeping in mind that the distribution of the edge length set is
bimodal in TQ tessellations). Moreover, the mesh density 𝑍 of stretched CTQ (CTQs) decreases
as the stretch factor 𝑠 increases, see Figure C.4.

Figure C.4 Mesh density 𝑍 as a function of the point process intensity 𝜏 for
different types of structured triangular meshes. Gray line:
Cross-Triangle Quadrilateral mesh (C.5). Gray dashed line:
stretched Cross-Triangle Quadrilateral mesh (C.6) with stretch
factor 𝑠 = 2. Black dashed line: Triangle Quadrilateral mesh (C.4).
Black line: hexagonal mesh (C.2).
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