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In this paper, we propose an implicit staggered algorithm for crystal plasticity finite element method

which makes use of dynamic relaxation at the constitutive integration level. An uncoupled version of

the constitutive system consists of a multi-surface flow law complemented by an evolution law for the

hardening variables. Since a saturation law is adopted for hardening, a sequence of nonlinear iteration

followed by a linear system is feasible. To tie the constitutive unknowns, the dynamic relaxation method is

adopted. A Green-Nagdhi plasticity model is adopted based on the Hencky strain calculated using a

[2/2] Padé approximation. For the incompressible case, the approximation error is calculated exactly.

A enhanced-assumed strain element technology is adopted, which was found to be especially suited

to localization problems such as the ones resulting from crystal plasticity plane slipping. Analysis of

the results shows significant reduction of drift and well defined localization without spurious modes or

hourglassing.

Keywords: Green-Naghdi plasticity, CPFEM, multi-surface flow, strongly coupled algorithm, enhanced-assumed

strain technology

1 Introduction

Realistic simulations of anisotropy in metal polycrystals require robust single crystal algorithms

that consistently produce results within an established error bound. In addition, since polycrystals

typically include a large number of grains and significant computational costs, efficiency

improvements are a necessity. Fully coupled constitutive systems for single crystals involve a

large number of constitutive unknowns (plastic strain tensor, hardening variables, among others)

in a nonlinear and frequently nonsmooth system. In a single FCC simulation at one quadrature

point, there are at least 18 constitutive unknowns, corresponding to hardening in each of the 12

dominant slip systems plus 6 unknowns corresponding to the flow law (either plastic strain or

final stress). Computational costs of the fully coupled constitutive system in a polycrystal are

prohibitive for practical applications without considerable computational investment. Staggered

algorithms are often used, but naive implementations produce drifting, since there is no measure

to reduce the solution error. In that case, both time step and sequence of operations affect the

solution (Matthies et al. 2006). A comprehensive description is given by Felippa et al. (2001). In

terms of solution classes for the coupled equations, options are as follows:

· Classical full Newton iteration for the coupled constitutive system (e.g. Souza Neto et al. 2008).

· Sequential solution of the constitutive equations, in a staggered form.

· Fixed point iteration with relaxation (e.g. in the fluid-structure interaction context Le Tallec et al.

2001; Küttler et al. 2008).

· Block-Newton partition approach with approximate out-of-diagonal blocks (e.g. Matthies et al.

2003).

· Block-Newton-Krylov where only multiplications are used for the out-of-diagonal blocks Michler

et al. 2006.
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Effective implicit staggered algorithms have been developed for thermoelasticity (Erbts et al. 2012)

and phase-field simulations (Schapira et al. 2023). These are here adopted to improve the accuracy

of the staggered algorithm. For FCC (aluminum), we propose an implicit staggered algorithm

which strongly couples the solutions (in the sense of Matthies et al. (2006)) to avoid drifting.

Classical works on single crystal plasticity emphasize the strain localization physics and

describe the essentials of what is now the Crystal Plasticity Finite Element Method (CPFEM) (Rice

1971; Asaro et al. 1977). Significant developments were achieved to incorporate metallurgical

effects in hardening and coupling with grain boundary phenomena (Cailletaud et al. 2003). Current

success of algorithms for single crystals can be observed by large-scale polycrystalline ensembles,

either combined with homogenization or not. Currently, theoretically sound frameworks exist for

single crystal plasticity, including that of Kaiser et al. (2019), where gradient effects in hardening

are considered. A review of developments in single crystal plasticity up to the year 2010 was

performed by Roters et al. (2010).

This work is organized as follows: in Section 2, a description of the aluminum FCC crystal

plasticity is presented, in Section 3 the constitutive integration algorithm for the flow law and the

hardening evolution law is presented and a localization test is performed. Section 5 presents the

proposed implicit staggered algorithm based on dynamic relaxation, as well as a verification test

for its effectiveness. Section 4 presents the finite element technology, specifically a 3D enhanced

assumed strain (EAS) hexahedron which is able to capture strain localization. A polycrystal

numerical test, following the data of Alankar et al. (2009), is presented in Section 6. In Section 7,

conclusions are drawn with respect to the proposed algorithm.

2 Aluminum crystal plasticity

Significant literature exists concerning aluminum plasticity, both in phenomenological (Barlat

et al. 1991; Barlat et al. 2005) as well as single crystal (Alankar et al. 2009; Kasemer et al. 2020;

Romanova et al. 2022) cases. The FCC dominant slip systems (which is considered here for pure

Aluminum) consist of {111} planes and ⟨110⟩ directions. Table 1 presents the dominant slip

systems which Figure 1 illustrates. The lattice elasticity matrix is anisotropic and reads

C =



106.75 60.41 60.41 0 0 0

60.41 106.75 60.41 0 0 0

60.41 60.41 106.75 0 0 0

0 0 0 28.34 0 0

0 0 0 0 28.34 0

0 0 0 0 0 28.34


× 109 Pa (1)

Table 1 Dominant slip systems of an FCC

single crystal.
Slip system Dense plane (𝒎𝛼 ) Dense direction (𝒏𝛼 )

1 (111) [011]

2 (111) [101]

3 (111) [110]

4 (111) [011]

5 (111) [101]

6 (111) [110]

7 (111) [011]

8 (111) [101]

9 (111) [110]

10 (1̄11) [011]

11 (1̄11) [101]

12 (1̄11) [110]

Planes and directions are rotated for the analysis, as Figure 2 shows. The crystal orientation is

defined in spherical coordinates using two angles: 𝜃 and 𝜙 . Figure 2 exhibits the transformation.
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Figure 1 Dominant slip systems for a FCC crystal. [001]
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Figure 2 Rotation of the FCC cell in

the space 𝑥,𝑦, 𝑧.
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The corresponding transformation matrix defined as

𝑻 (𝜃, 𝜙) =


cos𝜃 cos𝜙 cos𝜃 sin𝜙 − sin𝜃

− sin𝜙 cos𝜙 0

sin𝜃 cos𝜙 sin𝜃 sin𝜙 cos𝜃


(2)

For the stereographic representation of the loading direction, the transpose of 𝑻 (𝜽, 𝝓) is adopted.

We use a viscoplastic formulation, which is comprised of the following ingredients:

· lattice elastic law,

· additive decomposition of the logarithmic strain into elastic and plastic terms,

· Schmidt flow law,

· hardening laws for the 12 systems.

We adopt the Lagrangian Hencky strain (Schröder et al. 2002)

𝜺 =
1

2
log[2𝑬 + 𝑰 ] (3)

where 𝑬 is the GreenśLagrange strain and 𝑰 , the identity matrix. Schröder et al. (2002); Shutov et al.

(2014); Miehe et al. (2002) have explored the additive decomposition of 𝜺 and the corresponding

conjugate stress. For metals, it is a long-standing procedure to adopt a Hooke-like law with the

strain (3), see (Anand 1979), which is compatible with hyperelasticity if the Kirchhoff stress is

used. The present approach is aligned with the spirit of (Asaro 1983) for the constitutive law. A

review is presented by Xiao (2005). Computational origins of the additive strain decomposition in

finite strains were established by Papadopoulos et al. (1998); Papadopoulos et al. (2001). The

approach inherits some of the formalism adopted in small strain elastoplasticity. In particular, the

additive decomposition

𝜺 = 𝜺𝑒 + 𝜺𝑝 (4)

into elastic 𝜺𝑒 and plastic 𝜺𝑝 parts is retained. Theoretical foundations for the use of Equation (4)

in finite strains were established by Green et al. (1965) and have been followed by schools of

continuum mechanics, see (Lehmann 1991). The lattice elastic law is written as 𝜺𝑒 = C
−1 : 𝝈 .

In the isotropic case, Bruhns et al. (2001) proved the satisfaction of the Legendre-Hadamard

condition if every principal stretch satisfies 𝜆𝑘 ∈ [0.21162 . . . , 1.39561 . . .] which encompasses

the range of elastic behavior of metals discussed by Anand (1979). In Equation (4), the total strain
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𝜺 is assumed to be known from 𝑬 . That allows to establish, in Equation (4), a coupling between

the macroscopic stress 𝝈 and the plastic strain 𝜺𝑝 . The stress for the system 𝛼 is obtained using

Cauchy’s lemma

𝜏𝛼 = 𝒎𝛼 · (𝝈 · 𝒏𝛼 ) ⇔ (5)

𝜏𝛼 = 𝑴𝛼 : 𝝈 ⇔ (6)

𝜏𝛼 = 𝑷𝛼 : (𝜺 − 𝜺𝑝) (7)

where 𝑷𝛼 = (𝒎𝛼 ⊗ 𝒏𝛼 ) : C. The strain rate corresponding to each dominant slip system

𝛼 = 1, . . . , 12 is introduced as ¤𝛾𝛼 . The single crystal flow law is provided by the Schmid relation

¤𝜺𝑝 =

12∑︁
𝛼=1

𝑴𝛼 ¤𝛾
𝛼 (8)

known to be an acceptable starting point for FCC crystals and where the flow vector 𝑴𝛼 is

obtained as𝑴𝛼 = [𝒎𝛼 ⊗𝒏𝛼 ]symm. We note that𝑴𝛼 is established for a given crystalline structure,

which is fixed during the analysis. Since symmetry ensures that a Voigt form can be established

for 𝑴𝛼 , it becomes possible to write 𝑷𝛼 = 𝑴𝛼 : C. If a fixed yield stress is assumed, then

𝜉𝛼 − |𝜏𝛼 | ⩾ 0. Note that in Equation (8) the equivalent strain rate in system 𝛼 , ¤𝛾𝛼 can assume

either negative or positive values. It is often assumed that ¤𝛾𝛼 follows the viscoplastic law

¤𝛾𝛼 = ¤𝛾𝛼0

���𝜏𝛼
𝜉𝛼

���𝑛sign[𝜏𝛼 ] . (9)

The hardening law for the critically resolved shear stress 𝜉𝛼 follows Kasemer et al. (2020)

saturation proposal

¤𝜉𝛼 = ℎ0

12∑︁
𝛽=1

[
| ¤𝛾𝛽 |

(
1 −

𝜉𝛽

𝜉
𝛽
∞

)
ℎ𝛼𝛽

]
(10)

where the coupling matrix is given by Chang et al. (1981) with 𝑞 = 1.4 (Kasemer et al. 2020), see

also (Bassani et al. 1991; Zhang et al. 2016):

ℎ𝛼𝛽 =

{
1 𝛼 = 𝛽

1.4 𝛼 ≠ 𝛽.
(11)

Initial conditions for the previous constitutive system are

𝜺𝑝
��
0
= 0 (12)

𝜉𝛼 = 𝜉0. (13)

3 Constitutive integration and testing

Using the backward-Euler integration method between time steps 𝑠 and 𝑠 + 1, Equation (8) reads

𝜺
𝑝
𝑠+1 = 𝜺

𝑝
𝑠 +

12∑︁
𝛼=1

𝑴𝛼Δ𝛾
𝛼
𝑠+1. (14)

Given Equation (14), the trial shear stress for system 𝛼 is given by 𝜏★𝛼 = 𝑷𝛼 · (𝜺 − 𝜺
𝑝
𝑠 ). Trial 𝜏

★

𝛼 is

such that 𝜏★𝛼 Δ𝛾
𝛼
𝑠+1 ⩾ 0, without sum on 𝛼 . Integration of Equation (14) for a given time increment

Δ𝑡 is

𝜺
𝑝
𝑠+1 − 𝜺

𝑝
𝑠 − Δ𝑡

12∑︁
𝛼=1

𝑴𝛼 ¤𝛾
𝛼
0

���𝑷𝛼 : (𝜺 − 𝜺
𝑝
𝑠+1)

𝜉𝛼𝑠+1

���𝑛sgn[𝜏𝛼 ] = 0. (15)
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Newton iteration for 𝜺
𝑝
𝑠+1 in Voigt form is performed, which results in a decoupled solution from

𝜉𝛼𝑠+1. The Jacobian of (15) is

𝑱 𝜀𝑝 = 𝑰 6×6 + Δ𝑡

12∑︁
𝛼=1

𝑴𝛼 ⊗ 𝑷𝛼

𝑛 ¤𝛾𝛼
0

𝜉𝛼𝑠+1

���𝑷𝛼 : (𝜺 − 𝜺
𝑝
𝑠+1)

𝜉𝛼𝑠+1

���𝑛−1. (16)

The hardening law is also integrated:

𝜉𝛼𝑠+1 = 𝜉𝛼𝑠 + ℎ0

12∑︁
𝛽=1

[
|Δ𝛾

𝛽
𝑠+1 |

(
1 −

𝜉
𝛽
𝑠+1

𝜉
𝛽
∞

)
ℎ𝛼𝛽

]
. (17)

Given that Equation (17) is a linear system for 𝜉
𝛾
𝑠+1, we rewrite it as

𝜉
𝛾
𝑠+1𝛿𝛼𝛾 = 𝜉𝛼𝑠 + ℎ0

[
|Δ𝛾

𝛽
𝑠+1 |

(
1 −

𝛿𝛽𝛾𝜉
𝛾
𝑠+1

𝜉
𝛽
∞

)
ℎ𝛼𝛽

]
(18)

⇔
(
𝛿𝛼𝛾 + ℎ0ℎ𝛼𝛾

|Δ𝛾
𝛾
𝑠+1 |

𝜉
𝛾
∞

)
𝜉
𝛾
𝑠+1 = 𝜉𝛼𝑠 + ℎ0 |Δ𝛾

𝛽
𝑠+1 |ℎ𝛼𝛽 (19)

If all slipping systems are active, then it follows that |𝜏𝛼 | − 𝜉
𝛼
𝑠+1 = 0 for 𝛼 = 1, . . . , 12. Introducing

the sign of 𝜏𝛼 as 𝑠𝛼 , it follows that 𝜏𝛼−𝑠𝛼𝜉
𝛼
𝑠+1 = 0 for active systems. For each𝛼 , a summation in 𝛽 =

1, . . . , 12 is required (Einstein summation convention), that is 𝜏★𝛼 − 𝑠𝛼𝜉
𝛼
𝑠+1 − 𝑷𝛼 ·𝑴𝛽Δ𝛾

𝛽
𝑠+1 = 0.

For the sole purpose of calculating Δ𝛾𝛼𝑠+1, it is convenient to adopt the forward-Euler

algorithm for Equation (10), resulting in a linearized version of 𝜉𝛼𝑠+1, denominated here as

𝜉𝛼𝐿𝑠+1 = 𝜉𝛼𝑠 +𝑇𝛼𝛽𝑠𝛽Δ𝛾
𝛽
𝑠+1 where 𝑇𝛼𝛽 = ℎ0ℎ𝛼𝛽 (1 − 𝜉

𝛽
𝑠 /𝜉

𝛽
∞) and 𝑠𝛽 = 𝜏𝛽/|𝜏𝛽 |. The coupled system,

in terms of constitutive unknowns {𝜺
𝑝
𝑠+1; 𝜉

𝛼
𝑠+1, 𝛼 = 1, . . . , 12} is written as

𝒆𝜀 = 𝜺
𝑝
𝑠+1 − 𝜺

𝑝
𝑠 − Δ𝑡

12∑︁
𝛼=1

𝑴𝛼 ¤𝛾
𝛼
0

���𝑷𝛼 : (𝜺 − 𝜺
𝑝
𝑠+1)

𝜉𝛼𝑠+1

���𝑛sgn[𝜏𝛼 ] = 0 (20)

𝑒𝛾 =

(
𝛿𝛼𝛾 + ℎ0ℎ𝛼𝛾

|Δ𝛾
𝛾
𝑠+1 |

𝜉
𝛾
∞

)
𝜉
𝛾
𝑠+1 − 𝜉

𝛼
𝑠 − ℎ0 |Δ𝛾

𝛽
𝑠+1 |ℎ𝛼𝛽 = 0; 𝛾 = 1, . . . , 12. (21)

Concerning the strain measure, we use power-equivalence to obtain a conjugate stress to the

Hencky strain. The second Piola-Kirchhoff stress 𝑺 is power-conjugated to ¤𝑬 and therefore, in

Voigt form,

𝑺 : ¤𝑬 = 𝝈 : ¤𝜺 = 𝝈 :
d𝜺

d𝑬
: ¤𝑬 ⇔ 𝑺 = 𝝈 :

d𝜺

d𝑬
. (22)

For moderate strains, the Padé approximation of order (2, 2) is adopted and it is shown to be

adequate. The approximation is given by Rezaee-Hajidehi et al. (2021)

log [𝑿 ] � [2/2] log(𝑰 − 𝑿 ) = 3
(
𝑿2 − 𝑰

) (
𝑿2 + 4𝑿 + 𝑰

)−1
. (23)

This ensures the coincidence, at 𝑿 = 𝑰 , of the approximation and the function up to the third

derivative. Popular alternatives to Equation (23) are polynomial approximations with scaling and

squaring algorithm (used for the exponential by Sastre et al. (2015)) and the approximation

proposed by Bažant (1998). Since 𝜺 = 1
2
log[2𝑬 + 𝑰 ], we have, in matrix form,

𝜺 � 3[𝑬 · 𝑬 + 𝑬] · [2𝑬 · 𝑬 + 6𝑬 + 3𝑰 ]−1 (24)

First and second variations of 𝜺 are required. For the first variation, we have

d𝜺 = 3[d𝑬 ·𝑬+𝑬 ·d𝑬 + d𝑬] · [2𝑬 · 𝑬+6𝑬+3𝑰 ]−1

− 3[𝑬 ·𝑬+𝑬] · [2𝑬 ·𝑬+6𝑬+3𝑰 ]−1 · [2d𝑬 ·𝑬+2𝑬 ·d𝑬+6d𝑬] · [2𝑬 ·𝑬+6𝑬+3𝑰 ]−1. (25)
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The material tangent modulus, C, is calculated using the chain rule. Using Voigt form, this is

calculated as follows:

CVoigt =

[ d𝜺
d𝑬

]⊤
·
d𝝈

d𝜺
·
d𝜺

d𝑬
+ 𝝈 ·

d2𝜺

d𝑬d𝑬
. (26)

The specific expression for CVoigt is too intricate to present in this text. The corresponding

Mathematica/Acegen source code is available in the Github repository (Areias 2023). The

optimized expression for Equation (26) is compact (around 840 lines of Fortran 95) and dispenses

the explicit calculation of the sixth-order tensor d2𝜺/d𝑬d𝑬 described in (Miehe et al. 2002). Error

analysis by Kenney et al. (1989) presents the following inequality, relating the errors of Padé

approximation (after specialization for the present case):

[𝑚/𝑛] log(−2𝑬) − log[2𝑬 + 𝑰 ]

 ⩽ [𝑚/𝑛] log(2∥𝑬 ∥) − log[1 − 2 ∥𝑬 ∥] (27)

where the right hand side term is denoted 2𝐸max
[𝑚/𝑛] log

.

This provides an upper bound for the error in 𝜺. Bounds for the condition number are

provided in (Kenney et al. 1989). Of course, in the 1D case, the absolute error can be calculated in

closed form 𝐸1𝐷
[𝑚,𝑛] log

= 1/2| [𝑚/𝑛] log(2𝑬) − log[1 + 2𝑬] |. Quantities 𝐸
max
[2/2] log

and 𝐸1𝐷
[2,2] log

are

shown in Figure 3. For materials with limited elastic strains, the error in the approximation of

logarithm is compatible with current computational mechanics practice. For the incompressible

Figure 3 Upper bound on the error 𝐸max
[2/2] log

[solid]

compared with the error in closed form

𝐸1𝐷
[2/2] log

[dashed].
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case, which is reasonable in metal plasticity with finite strains, and using principal directions

(principal Euler-Lagrange strains 𝐸1, 𝐸2 and 𝐸3), we have, for the Hencky strain,

1

2
log[−2𝑬] =

1

2


log[2𝐸1 + 1] 0 0

0 log[2𝐸2 + 1] 0

0 0 − log[1 + 2𝐸1 + 2𝐸2 + 4𝐸1𝐸2]


(28)

where it was assumed that 𝐸3 is a function of 𝐸1 and 𝐸2:

𝐸3(𝐸1, 𝐸2) =
1

2

[
−1 +

1

1 + 2𝐸1 + 2𝐸2 + 4𝐸1𝐸2

]
. (29)

For the [2/2] Padé approximation, we have

𝜺 =



3𝐸1 (1+𝐸1 )
3+2𝐸1 (3+𝐸1 )

0 0

0
3𝐸2 (1+𝐸2 )

3+2𝐸2 (3+𝐸2 )
0

0 0
3𝐸3 (1+𝐸3 )

3+2𝐸3 (3+𝐸3 )


. (30)

Figure 4 shows the error ∥1/2 log[2𝑬 + 𝑰 ] − 𝜺∥ in the domain 𝐸𝑘 ∈ [−0.25, 0.65]. It can be

observed that even for considerable strains in tension, the error is 0.0258, which corresponds to a

relative error of 2.52 %. The calculation of the rotated normals is performed with Kröner/Lee’s

multiplicative decomposition (Kröner 1960; Lee et al. 1967; Lee 1969) of the deformation gradient

𝑭 into elastic 𝑭 𝑒 and plastic parts 𝑭 𝑝 , 𝑭 = 𝑭 𝑒 · 𝑭 𝑝 . Since 𝑭 is determined by the finite element

solution, 𝑭 𝑒 at time step 𝑠 is determined by the flow law as (Alankar et al. 2009)

𝑭 𝑒
𝑠 = 𝑭 𝑠 · [𝑭

𝑝
𝑠−1]

−1 ·
(
𝑰 −

12∑︁
𝛼=1

𝒎𝛼 ⊗ 𝒏𝛼Δ𝑡 ¤𝛾
𝛼
)

(31)
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Figure 4 Relative error 𝐸 [2,2] log = ∥
1
2
[2/2] log (−2𝑬) − 𝜺∥

for an incompressible 2𝐷 problem.

0
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𝐸
2

from which the plane normals in the deformed configuration are obtained using the elastic

push-forward 𝒎★

𝛼 = 𝑭 𝑒
𝑠 ·𝒎𝛼 (Kaiser et al. 2019). We use the centroidal deformation gradient for

purposes of calculating 𝑭 𝑒
𝑠 and 𝒎★

𝛼 . A verification test is performed using the data shown in

Figure 5. Two rigid plates are connected to the single crystal. The upper plate is clamped and

Y

X

Z
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.5
×
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−
3
m

0.
5
×
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−
3
m
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5
×
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−
3
m

⊘12.5× 10−3 m

u3 = 0

u3 = u3
u1 = u2 = 0
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FCC Al.

(a) Geometry and boundary conditions. Time increment is

Δ𝑡 = 1 × 10−3 s and ¤𝑢3 = 0.001 m/s.

- 1.0 - 0.5 0.5 1.0
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- 0.5

0.5

1.0

X

Y

(111)

θ =0 .304π,
φ =0 .25π

θ =0 .25π,
φ =0

(111) plane in the XYZ space

(b) Cases of plane (111) orientation with

respect to 𝑍 .

Figure 5 Verification test: geometry and boundary conditions for the single crystal cylinder under tension.

pulled in the 𝑧 direction by an imposed displacement 𝑢3 where ¤𝑢3 = 0.001 m/s. The lower plate is

fixed in the 𝑧 direction but left free to have displacement in the 𝑥 − 𝑦 plane. We measure the

average normal stress 𝜎33 by dividing the reaction force on the 𝑧 direction. In addition, the

average strain, 𝐸33 is obtained as 𝐸33 = 𝑢3/12.5×10−3. To force strain localization, we adopt the

saturation stress 𝜉★∞ in Table 2.

¤𝛾0 [s
−1] ℎ0 [Pa] 𝜉0 [Pa] 𝜉∞ [Pa] 𝜉★∞ [Pa] 𝑞 𝑛

0.001 75 × 106 31 × 106 63 × 106 7 × 106 1.4 30

Table 2 Relevant hardening properties for single crystal plasticity of aluminum (Alankar et al. 2009) assumed

constant for 𝛼 = 1, . . . , 12.

Since strain rate dependence is present in the flow law, strain softening is allowed. Localization

results for the two orientations are shown in Figure 6 as a function of the element size ℎ (see,

e.g. (Hughes 2000) for this nomenclature). The relation between these quantities is represented

in Figure 7, where good mesh insensitivity can be observed, especially considering that no

regularization is adopted. For 𝜃 = 0.304𝜋 and 𝜙 = 0.25𝜋 , we show the contour plots of 𝜉1, . . . , 𝜉12
in Figure 8.
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Figure 6 Deformed meshes (10× magnified) and 𝐸𝑝 = ∥𝑬𝑝 ∥ contour plots for {𝜃 }. Three characteristic mesh

sizes ℎ = 3.13 × 10−4, 2.08 × 10−4, 1.56 × 10−4 are tested for 𝜃 = 0.304𝜋 and 𝜙 = 0.25𝜋 and ℎ =

2.08 × 10−4, 1.56 × 10−4, 1.04 × 10−4 for 𝜃 = 0.25𝜋 and 𝜙 = 0. Consistent units are used.
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Figure 7 Effect of ℎ on the average stress 𝜎33 and 𝐸33 for two orientations.

4 Finite element formulation

We adopt the 8-node hexahedron with EAS technology developed in (Simo et al. 1990; Simo et al.

1992; Simo et al. 1993), which is appropriate for strain localization problems. A version based on

the Green-Lagrange strain was introduced by Andelfinger et al. (1993) and it is employed here.

Calculations were performed using Mathematica with the AceGen add-on (Korelc 2002). The

classical formalism and the Euler-Lagrange strains (Andelfinger et al. 1993) yields 𝑬 = 𝑬𝑢 + 𝑬𝛼 .

Classical results for 𝑬𝑢 and 𝑬𝛼 follow:

𝑬𝑢 =
1

2
[∇𝒖 + ∇𝒖⊤ + ∇𝒖⊤ · ∇𝒖] (32)

𝑬𝛼 =
𝐽

𝐽
𝑱
−⊤
· �̃�𝛼 · 𝑱

−1
(33)

where [∇𝒖]𝑖 𝑗 = [𝜕𝑢𝑖/𝜕𝑋 𝑗 ] is the displacement gradient with respect to the undeformed coordi-

nates and �̃�𝛼 is the enhanced strain in parent-domain coordinates (Simo et al. 1993). It is required

to adopt the centroidal Jacobian matrix 𝑱 and the corresponding determinant 𝐽 to ensure the

patch-test satisfaction. The EAS modes are based on the interpolation of the bending deformation

modes. 12 additional, internal element degrees-of-freedom are adopted, which here we denote by
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Y
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𝜉1 𝜉2 𝜉3
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𝜉10 𝜉11 𝜉12

Figure 8 Contour plots of 𝜉1, . . . , 𝜉12 for 𝜃 = 0.304𝜋 and 𝜙 = 0.25𝜋 .

the letter 𝜶 = {𝛼1, . . . , 𝛼12}. Using Voigt form (Belytschko et al. 2000), it follows that

�̃�
voigt

𝛼 =



𝜉2 𝜉3 𝜉2𝜉3 0 0 0 0 0 0 0 0 0

0 0 0 𝜉1 𝜉3 𝜉1𝜉3 0 0 0 0 0 0

0 0 0 0 0 0 𝜉1 𝜉2 𝜉1𝜉2 0 0 0

0 0 0 0 0 0 0 0 0 𝜉3 0 0

0 0 0 0 0 0 0 0 0 0 𝜉2 0

0 0 0 0 0 0 0 0 0 0 0 𝜉1



©­­­­­­
«

𝛼1

...

𝛼12

ª®®®®®®
¬
. (34)

As mentioned, patch test is satisfied a-priori by the the use of 𝐽 and 𝑱 in Equation (33) (Simo et al.

1992; Simo et al. 1993). Using the undeformed configuration, the full weak form corresponding to

the decomposition is∫
Ω0

𝑺 : (𝛿𝑬𝑢 + 𝛿𝑬𝛼 )d𝑉︸                       ︷︷                       ︸
𝛿𝑊int

=

∫
Ω0

𝜌0𝐵 · 𝛿𝒖d𝑉 +

∫
𝜕Ω0

𝑻 · 𝛿𝒖d𝐴

︸                                    ︷︷                                    ︸
𝛿𝑊ext

(35)

where the Piola stress vector 𝑻 , resulting from integration by parts, is calculated as (Wriggers 2008)

𝑻 = 𝑭 · 𝑺 · 𝑵 where 𝑭 is the deformation gradient and 𝑵 is the outer normal to 𝜕Ω0. The second

Piola-Kirchhoff stress 𝑺 is a function of the total Green-Lagrange strain 𝑬 as 𝑺 ≡ 𝑺 (𝑬𝑢 + 𝑬𝛼 ). Use

of Newton iteration for Equation (35) requires the calculation of the variation

Δ𝑢𝛿𝑊int · Δ𝒖 + Δ𝛼𝛿𝑊int · Δ𝜶 = 𝛿𝑊ext − 𝛿𝑊int (36)
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in both hand-sides, assuming that Δ𝑢𝛿𝑊ext = 0. The source code for this element (forces and

tangent stiffness) is available on Github Areias 2024a. It is worth noting that a development of

EAS has been used with single crystal plasticity by Fohrmeister et al. (2019).

5 Implicit staggered algorithm

Since a decoupled constitutive system, Equations (20) and (21), is solved, corresponding to

the flow law and the hardening evolution, explicit algorithms produce drift, as is the case in

thermoelasticity (Erbts et al. 2012), fluid-structure interaction (Küttler et al. 2008; Degroote et al.

2010) and phase-field simulations (Schapira et al. 2023). The study by Erbts and Düster shows

that dynamic relaxation with appropriate predictors produces efficient and stable results to

remove the drift. We adopt dynamic relaxation and introduce a substep index 𝑖 as a superscript.

Hardening variables 𝝃 are adopted in the relaxation. Index interpretation on 𝝃 𝑖𝑠 is substep 𝑖

of time step 𝑠 . Since the value of 𝝃 depends on Δ𝜸 and this also depends on 𝝃 , the staggered

solution must comply with the original coupled system. To represent these dependencies, we

introduce the operator Ξ★(𝝃 ) as (see (Erbts et al. 2012, Eq. (28)) for a similar operator)

�̃�
𝑖+1

𝑠+1 ← Ξ★(𝝃
𝑖
𝑠+1) = Ξ[Δ𝜸 , 𝝃 𝑖𝑠+1] where Δ𝜸 ≡ Γ(𝝃 𝑖𝑠+1). (37)

Relaxation methods make use of a combination of fixed-point iteration with heuristic acceleration.

The hardening variable residual for substep 𝑖 + 1 is given by

𝒓𝑖+1 ← �̃�
𝑖+1

𝑠+1 − 𝝃
𝑖
𝑠+1 (38)

Updating is based on linear combination of the image (37) and the previous substep:

𝝃 𝑖+1𝑠+1 ← (1 − 𝜔𝑖)𝝃
𝑖
𝑠+1 + 𝜔𝑖 �̃�

𝑖+1

𝑠+1 (39)

where 𝜔𝑖 is the coefficient of the linear combination, 𝜔𝑖 ∈]0, 2[. Heuristics for updating 𝜔𝑖 have

been discussed at length. We here follow (Erbts et al. 2012):

𝜔𝑖+1 ← 𝜔𝑖

[
1 +

(𝒓𝑖 − 𝒓𝑖+1) · 𝒓𝑖+1

(𝒓𝑖 − 𝒓𝑖+1) · (𝒓𝑖 − 𝒓𝑖+1)

]
. (40)

Algorithm 1 is adopted in our code.

1 𝜀 ← 10−5

2 𝝃 0𝑠+1 ← 𝝃 𝑠

3 Newton iteration: Δ𝜸 ← Γ(𝝃 0𝑠+1)

4 Linear solution: �̃�
1

𝑠+1 ← Ξ[Δ𝜸 , 𝝃 0𝑠+1]

5 Initial substep residual: 𝒓0 ← �̃�
1

𝑠+1 − 𝝃
0
𝑠+1

6 Initial coefficient: 𝜔0 ← 1/2

7 Estimate 𝝃 1𝑠+1 ← (1 − 𝜔0)𝝃
0
𝑠+1 + 𝜔0 �̃�

1

𝑠+1

8 𝑖 ← 0

9 while ∥𝒓𝑖 ∥ ⩾ 𝜀∥𝒓0∥ do

10 𝝃
𝑖+2
𝑠+1 ← Ξ★(𝝃

𝑖+1
𝑠+1)

11 𝒓𝑖+1 ← �̃�
𝑖+2
𝑠+1 − 𝝃

𝑖+1
𝑠+1

12 𝜔𝑖+1 ← 𝜔𝑖 [1 +
(𝒓𝑖−𝒓𝑖+1 ) ·𝒓𝑖+1

(𝒓𝑖−𝒓𝑖+1 ) · (𝒓𝑖−𝒓𝑖+1 )
]

13 𝝃 𝑖+2𝑠+1 ← (1 − 𝜔𝑖+1)𝝃
𝑖+1
𝑠+1 + 𝜔𝑖+1 �̃�

𝑖+2
𝑠+1

14 𝑖 ← 𝑖 + 1

15 end while

Algorithm 1 Dynamic relaxation algorithm for Δ𝜸 and 𝝃 .

The effect of time step size Δ𝑡 in the drifting is assessed in Figure 9. The uncoupled version is

run with two successive passes for Δ𝜸 and 𝝃 𝑠+1 and this is compared with Algorithm 1. The

algorithm is inserted in our in-house code SimPlas (Areias 2024b) and combined with the existing

finite element technology.
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Figure 9 Effect of dynamic relaxation on [𝜀𝑝 ]33 for single crystal FCC.

6 Numerical assessment

We now test a polycrystalline rectangular cuboid as depicted in Figure 10. The initial distribution

of (111) plane in the XYZ space is shown in Figure 10(b). This test was proposed by Alankar et al.

uZ = 0

2
×

1
0
−
4
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×
10−

4

1
×

1
0
−

4

uX = 0

uZ = uZ

X

Y

Z

(a) Geometry and boundary conditions.

- 1.0 - 0.5 0.5 1.0

X

Y

Z

(b) Distribution of (111) planes.

Figure 10 Aluminum polycrystal in the undeformed configuration.

(2009). In contrast with that reference, a free edge with 𝑋 = 2 × 10−4 is left to exhibit the texture.

The contour plots of 𝜉𝑘 and 𝐸𝑝 = ∥𝑬𝑝 ∥ for 80 % compression are shown in Figure 11. These are

close to those reported in (Alankar et al. 2009) but the right edge 𝑋 = 2 × 10−4 is here left free.

Texture evolution is shown in Figure 12 and is similar to that published by Alankar et al.

(2009), who used slightly different boundary conditions. We now assess drifting of 𝜉1, . . . , 𝜉12.

For conciseness reasons, Figure 13 shows the evolution of 𝜉1, 𝜉5, 𝜉6, 𝜉7, 𝜉9 and 𝜉12 using the

classical staggered algorithm and dynamic relaxation. Two time-steps are tested: Δ𝑡 = 0.0025 s

and Δ𝑡 = 0.0075 s. If the traditional staggered decomposition is adopted, with all variables, for

the larger time-step, at a compression value of 55 %, drifting occurs. Dynamic relaxation removes

this effect and allows the use of large time-steps. We also noted that Newton convergence is

improved with dynamic relaxation.

7 Conclusions

We introduced an alternative method to solve FCC single crystal finite strain plasticity problems.

It combines the use of Logarithmic strain additive decomposition, Newton iteration for the plastic

strain, a linear solution for the evolution of the hardening variables and an implicit staggered

algorithm based on dynamic relaxation. Discretization makes use of an EAS formulation based on

the Green-Lagrange strain. Verification tests for mesh size and time step dependences were

successfully performed and a polycrystal example from Alankar et al. 2009 was studied for texture

evolution. We conclude that the dynamic relaxation is effective in reducing drift caused by the

staggered algorithm. Significant savings and computational cost reductions can be achieved and

the procedure can be extended to more intricate constitutive laws.
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Figure 12 Texture (111) planes, see also (Alankar et al. 2009).
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