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Performance of metallic seals used between face-turned surfaces is related to their abilities to flow
plastically in order to fill up cavities between wedge-shaped asperities. Multiple wedges indentation is
therefore a simple way to investigate what happens at the sealśflange interface. In this paper, finite
element analyses of single and multiple wedges indentations are conducted. A particular attention is paid
to the effects of hardening parameters on the resulting hardness. First, it is observed that single wedge
indentation hardness can be well approximated by the adaptation of analytic models initially developed for
cone indentation problems. Second, it is shown that interaction between indentation-strain field during
multiple wedges indentation starts once the bearing ratio is about 25%. It leads to a significant mean
contact pressure increase, which is strongly dependent upon the strain hardening exponent. Eventually,
for a bearing ratio higher than 75 %, a plastic locking stage occurs, which leads to a fast increase of the
mean contact pressure.

Keywords: wedge, indentation, FEM, roughness interaction, metallic seals

1 Introduction

High-performance sealing applications rely on the use of entirely metallic seals. Their efficiency
is directly related to the ability for the soft metallic outer liner of the seal to plastically flow in
and around the topographical defects of the facing rigid rough surfaces, to reduce the leakage
paths at the sealśflange interface (Pérez-Ràfols et al. 2016). In many applications, the flat surface
of the rigid flanges are obtained through face turning (Robbe-Valloire and Prat 2008). With such a
manufacturing process, the resulting surface possesses a characteristic spiral-grooved texture
and the corresponding topography can be approximated by arrays of wedges, see Figure 1, the
dimensions of which being directly related to the process parameters (feeding rate, cutting depth)
and tool geometry (tool tip radius) as presented in (Dumas et al. 2021). Therefore, modelling

Heights profile

Wedges representation

Measured face-turned surface

Figure 1 Topography of a measured face-turned rough surface. The representation of a radial profile by an array of
wedge indenters is shown on the right.
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of multiple wedges indentation can be of prime importance to better understand the sealing

mechanism of a rough rigid flange by a metallic gasket. The problem of sealing can thus be

viewed as a matter of describing the evolution of the gap at the sealśflange interface (at the

roughness scale) as a function of the applied normal load on the contact. This latter depends on

wedge indentation-induced contact pressure, that is the wedge indentation hardness.

Sharp indentation of elastoplastic solids has been widely investigated during the last three

decades, mostly because of the interest brought by nanoindentation testing to characterize

mechanical properties of materials at a very small scale (Oliver and Pharr 1992; Cheng and Cheng

2004). However, most developments were devoted to conical or pyramidal indentation tests with

only a few related to wedge indentation. Since wedge indenters are self-similar when the contact

is made along the apex of the wedge, the principle of geometric similarity holds provided that the

indented solids are semi-infinite and there is no internal length to account for (Kermouche et al.

2005). Consequently, the hardness (i.e., the mean contact pressure) does not depend upon loading

parameters such as the applied load or the displacement relative to the surface. The hardness

is thus a function of material properties and tip geometry only, here the tip angle for wedge

indentation. In the case of wedge indentation of rigid perfectly plastic solids, a direct relation can

be made between the hardness and the yield stress through the slip lines theory of Hill (1950b).

An exact solution for wedge indentation of linear isotropic elastic solids was also derived from

Boussinesq’s theory by Johnson (1987). Between these two cases, an approximate elastoplastic

solution was derived through the concept of the representative elastic material that makes it

possible to relate the hardness to the yield stress accounting for materials elasticity (Kermouche

et al. 2005). Surprisingly, methods based on expanding cavity analogies (Gao et al. 2006; Feng et al.

2007) were not used to model wedge indentation, although their extension to this framework

seems straightforward. Consequently, there is still a need to investigate which models lead to the

best prediction of hardness of elastoplastic solids when indented by a wedge.

Single wedge indentation corresponds to the first stage of sealing, when the distance between

two successive peaks is significantly larger than the contact length of a single peak. For a

given contact length, the indentation-induced strain fields of the two successive peaks start to

interact, which violates the principle of geometric similarity (Tabor 1951; Cheng and Cheng

2004). Therefore, the hardness becomes a function of the ratio of the contact length and the

distance between the peaks. Only a few papers have dealt with such a problem since it requires an

incremental approach to derive an analytical solution through the slip lines theory (Meguid et al.

1977; Salikhyanov 2019). It is shown that two stages occur after the single wedge indentation

stage. The first stage is the interaction stage that corresponds to the interaction between the

two neighboring indentation strain fields. Within this stage, the hardness increases. This stage

ends when the interaction between the two indentation strain fields result in a global plastic

locking. At this point the sealing cannot be improved anymore but is not terminated. To enter

the last stage of sealing, it is required that the plastic strain field interacts with some interfaces or

boundary conditions that forces the materials to flow up again. Eventually the remaining gap is

filled with the sealing materials and the sealing is over. There is clearly a need to investigate in a

deeper way how to describe these last two stages.

This article is organized as follows. First, we describe two single wedge hardness models

developed for Hollomon-based strain hardening elastoplastic solids. The results are compared to

Finite Element calculations to evidence the limitation of these two models. Then, we propose to

investigate the interactions between two neighboring wedges using a Finite Element Analysis.

Results are given in terms of apparent hardness and compared to single wedge hardness. Attention

is paid to the identification of different interaction regimes from single wedge indentation to final

sealing. Finally, conclusions and perspectives are listed.

2 Theoretical framework

2.1 Single wedge indentation models

As a versatile and easy-to-measure mechanical property, hardness is widely studied in the

literature. Several well-known models predict its value for rigid perfectly plastic solids through
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the slip lines method of Hill (1950b) or the empirical method of Tabor (1996). They lead to the

conclusion that hardness is a measure of the yield stress of a material through

Hmat

𝜎𝑌
= 𝑓 (𝛽) (1)

where Hmat is the material hardness, 𝜎𝑌 is the yield stress of the material and 𝛽 the tip-to-

surface contact angle. However, real engineering materials exhibit non negligible elasticity and

strain hardening so that models developed for rigid perfectly plastic solids can lead to strong

discrepancies. In such case, the hardness is typically formulated as a function of supplementary

material parameters as

Hmat

𝜎𝑌
= 𝑓

(
𝛽,

𝐸

𝜎𝑌
, 𝑛
)
, (2)

with 𝐸, the Young modulus and 𝑛, the hardening exponent. In this work, we propose to compare

two analytical models, the Expanding Cylindrical Cavity model (ECC) from Johnson (1987); Gao

et al. (2006) and the Representative Elastic Material model (REM) derived from Tabor (1951).

These two models take strain hardening into account and are briefly introduced in the following

sections.

2.1.1 Expanding Cylindrical Cavity model

For the ECC model, the stress and strain fields under the apex of the wedge are idealized as the

expansion of a cylindrical cavity subject to hydrostatic pressure. Johnson (1970) first offered this

modelling for conical and wedge indenters in elastic perfectly plastic materials. However, it does

not take into account the strain hardening of real materials. Later, Gao (2003); Gao et al. (2006)

extended the use of such model to obtain an analytical formulation for conical and spherical

hardness for elasto-plastic hardening materials. They especially focus on power-law hardening

materials (Hollomon’s power-law) for which the true stress-true strain relation in uniaxial

traction is

{
𝜎 = 𝐸𝜀 𝜎 < 𝜎𝑌

𝜎 = 𝜎1−𝑛
𝑌 (𝐸𝜀)𝑛 𝜎 ≥ 𝜎𝑌

(3)

with 𝜎 , the equivalent stress, 𝜎𝑌 , the yield stress, 𝐸, the Young modulus, 𝑛, the hardening exponent

and 𝜀, the total equivalent strain. Figure 2 gives a representation of the plane strain cylindrical

expansion of cavity, to be applied to determine the hardness in single wedge indentation of

elastoplastic solids. A summary of the model is given here for general comprehension. Considering

a semi-infinite half space, indentation creates a dead volume which does not deform, joined

together with the tip. This core volume is considered as a cylindrical cavity which expands

itself in the material under a hydrostatic pressure linked to the mean pressure under the tip (i.e.,

material hardness). From the classical solution of an elastoplastic cylinder subject to internal

pressure, stress and displacement fields can be derived (Gao 2003). It yields an elastic zone (𝑟 > 𝑟𝑝 )

where the material remains elastic, and a plastic zone (𝑟𝑐 > 𝑟 > 𝑟𝑝 ) where material undergoes

plastic deformation. The radius of the plastic zone 𝑟𝑝 is determined by the internal pressure and

the radius of the cavity, or core, 𝑟𝑐 . As shown in Figure 2, an increment of indentation 𝛿 induces

an expansion of the core. The volume of material being conserved, this expansion is equivalent to

the volume of material displaced by the wedge which depends of the contact angle 𝛽 . The radial

displacement being known for the cylinder expansion, the quantities 𝑟𝑝 and 𝑟𝑐 can be related

with one another and further with the total displaced volume. Hence, the internal pressure can be

expressed, depending only on the material characteristics and the contact angle of the wedge.

According to our assumption, the internal pressure should be equal to the hardness of the

materialHmat. However, it is known that the model based on Johnson (1970) underestimates

the hardness. To this end, Studman et al. (1977); Gao et al. (2006) proposed a correction to the

expression of this internal pressure based on the stress discontinuity occurring at 𝑟𝑐 . Following a
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Figure 2 Cylindrical cavity expansion under a wedge indenter.

similar correction for the case of wedge indentation, the modified ECC model gives a corrected

hardness

Hmat =
𝜎𝑌√
3

{
1 − 1

𝑛
+
(√3
2

+ 1

𝑛

) ( 2

𝜋
√
3

𝐸 tan 𝛽

𝜎𝑌

)𝑛}
(4)

showing a dependency to the yield stress 𝜎𝑌 , the strain hardening coefficient 𝑛 and Young’s

modulus 𝐸 arising from Hollomon’s and Hooke’s laws. According to principle of geometrical

similarity, the only geometrical parameter is the contact angle 𝛽 .

2.1.2 Representative Elastic Material model

The Representative Elastic Material model is extensively described in (Kermouche et al. 2005) and

thus only the main features are given hereafter. To describe the indentation of materials and

based on empirical considerations, Tabor (1951) proposed to define a representative stress 𝜎𝑟
and a representative strain 𝜀𝑟 , characteristic of the process under concern. The REM model

defines a representative elastic material whose stressśstrain curve passes through the (𝜀𝑟 , 𝜎𝑟 )
couple of the indented material. The Young modulus of the representative material is thus simply

defined as 𝐸𝑟 = 𝜎𝑟/𝜀𝑟 . The representative strain can be split into a an elastic and a plastic part as

𝜀𝑟 = 𝜀el𝑟 + 𝜀
p
𝑟 , with the elastic part being given by 𝜀𝑒𝑟 = 𝜎𝑟/𝐸. Following the suggestion of Tabor,

the representative plastic strain 𝜀
p
𝑟 can be chosen as proportional to the tangent of the contact

angle 𝛽 as 𝜀
p
𝑟 = 𝜁 tan 𝛽 . Note that when the contact angle is łsmallž, only elastic strain may take

place. Hence, a threshold contact angle 𝛽0 has to be considered. The hardness (mean contact

pressure) of the representative elastic material can be formally derived using the linear elastic

contact theory for a wedge as (Sneddon 1965)

𝑝𝑚 =

1

2

𝐸𝑟

1 − 𝜈2𝑟
tan 𝛽 (5)

where 𝜈𝑟 is the representative Poisson coefficient, often taken as 0.5. Then assuming that the

coefficient of proportionality between the hardness and the representative stress is the same for

the representative elastic material and the indented material, the hardness of the latter is given by

Hmat = 𝑝𝑚 =

1

2(1 − 𝜈2𝑟 )
𝜁𝜎𝑟 tan 𝛽

𝜁 tan 𝛽 + (1 − 𝜁 ) 𝜎𝑟
𝐸

(6)

where 𝜁 is a function of the representative Poisson’s ratio and the contact angle. In Equation (6),

Young’s modulus 𝐸 and contact angle 𝛽 are used explicitly. However, the hardening coefficient 𝑛

and yield stress 𝜎𝑌 are implicitly found in the calculation of the representative stress 𝜎𝑟 from the

representative strain 𝜀𝑟 , see (Kermouche et al. 2005) for details.
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2.2 Multiple wedges indentation

To avoid artefacts related to interactions between neighboring indents, the usual rule consists in

separating two successive indents with a distance about twenty times that of the penetration

depth. This empirical rule is actually based on the dimension of the plastic zone beneath an

indent. This zone is often assumed as spherical for pyramidal indentation, cylindrical for wedge

indentation, with a radius about three times the contact radius. For Berkovich and Vickers tips

(𝛽 ≈ 20◦), the contact radius is about three times the penetration depth. This is the reason why

the plastic zone length is often assumed as ten times the penetration depth, which leads to define

a distance between two neighboring indents about twenty times the penetration depth to avoid

interaction artefacts. For a Cube corner tip (𝛽 ≈ 45◦), this distance should be significantly smaller,

but for asperity angles typically found in sealing (𝛽 ≲ 10◦) it should be much larger. Hence, the

validity range of single wedge indentation appears to be very limited to investigate a sealing

process.

Application of slip lines theory to interacting wedges were recently proposed by Salikhyanov

(2019). It was developed for contact cold welding of metallic plates which is somewhat close

to the sealing process. The substrate is a rigid perfectly plastic infinite half-space but such a

theory can be extended to finite media (Hill 1950a). The main drawback is that a perfectly plastic

material does not deform elastically neither harden. Hence it cannot be expected to transpose the

derived results to a real case in a quantitative manner. Such an approach was successfully used

for single wedge indentation (Hill 1950b; Johnson 1987) and allows to highlight some interesting

features, such as the relation between hardness and yield stress, the pile-up geometry or the

wedge angle effect. From this point of view the work of Salikhyanov (2019) pointed out some

interesting features in the framework of the interaction of two neighboring wedges through the

interaction of two wedge indentation slip lines fields.

As expected, the self-similarity is lost when the two slip-line fields start interacting and

the hardnesss (mean contact pressure) starts increasing. This interaction creates an entirely

new slip-line field, as shown in (Salikhyanov 2019), which is a combination of the previous

slip-lines with a growing interaction area in the center of the groove. It effectively transforms

plastic flows under both wedges, from known Hill solution’s pile-up to a uniform rise (wedge

symmetry) of the surface in the groove. With symmetric wedges, previous pile-up is gradually

recovered by the rising surface while the interaction area grows progressively replacing the usual

slip-line fields. A plastic locking stage is reached as the two slip-line fields fully recover, it is

described as the third stage of Salikhyanov (2019). At this point, the surface between wedges is

perfectly flat (by symmetry) and the unified slip-line field does not enable anymore material

flow. Hence, the closing of the groove is stopped. This state is mostly caused by the symmetry

of recovering fields and can not be resolved in the semi-infinite case treated by Salikhyanov

(2019). However, a third interaction (through the presence of the substrate boundary or another

asperity) in a finite space framework as shown in (Hill 1950a) can force the materials to flow up

again. Consequently the contact between the wedge-shaped asperities and the material can

be described through an apparent hardness H , which is a priori higher than the single wedge

material hardness Hmat. This apparent hardness is a function of geometrical parameters (contact

angle 𝛽 , distance between wedges𝑊 , penetration depth 𝛿 and projected contact area 𝐿𝑐 ) as well

as elastoplastic material parameter as

H
𝜎𝑌

= 𝑓
(
𝛽,

𝛿

𝐿𝑐
,
𝑊

𝐿𝑐
,
𝐸

𝜎𝑌
, 𝑛
)
. (7)

3 Numerical framework and simulations

The Finite Element Method (FEM) has been widely used in the past decades to explore the

mechanical response of materials under indentation loading and to check analytical models

derived for that purpose (Cheng and Cheng 2004; Poon et al. 2008). Hereafter, FEM is used

to compare the two analytical models derived for single wedge indentation. Then a FEM

investigation of interacting wedges is proposed to explore how the apparent hardness is affected
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by material properties and geometrical parameters. In this section, the two single and multiple

wedge indentation FE models are described in details.

3.1 Single wedge indentation

Calculations have been performed with the commercial FEM code abaqs® using 2D plane

strain elements to model wedge indentation, and using a large displacementślarge strain option

(updated Lagrangian formulation, logarithmic strain). The mesh is refined enough in the contact

zone to prevent mesh size effects. It then becomes progressively coarser farther away from the

contact zone, and a wide bulk is used to approximate a semi-infinite solid, see Figure 3. A mesh

β

Figure 3 Single indentation FEM simulation in abaqs®. Partial view of the mesh of the indenter (blue) and the
substrate (grey).

convergence study has been performed and is presented in Appendix A. For a good representation

of the contact geometry, the width of the elements has been determined so as to have at least 37

to 66 nodes in contact for the deepest penetration. The whole mesh contains about 4285 elements

and 4374 nodes. The contact between the indenter and the workpiece is assumed to be frictionless

and loading is monitored by prescribing a vertical quasi-static displacement of the indenter

into the surface. Furthermore, the indenter is assumed to be perfectly rigid. The plastic flow is

described by a von Mises yield criterion coupled to isotropic strain hardening. The stressśstrain

curves follows Hollomon’s power-law hardening, in Equation (3), described by three parameters,

namely the initial yield stress 𝜎𝑌 , the strain hardening exponent 𝑛 and the Young modulus 𝐸.

This very simple elastic-plastic behaviour can be easily implemented in any FE software such as

abaqs® by tabulating the yield stress as a function of the cumulated plastic strain, i.e. the

uniaxial plastic strain during a monotonous uniaxial tensile test. For that purpose, for a given set

of parameters, the plastic strain is computed from uniaxial stress 𝜎 and uniaxial strain 𝜀 by

𝜀𝑝 = 𝜀 − 𝜎 (𝜀)
𝐸

(8)

where 𝜀 = 𝜀𝑒 + 𝜀𝑝 , 𝜀𝑒 =
𝜎 (𝜀 )
𝐸

being the uniaxial elastic strain. For this given set of parameters, the

uniaxial stress is given by the Hollomon law from Equation (3). The use of this one dimension

relationship to model a two dimensional problem is explained in Appendix C. As shown in (Cheng

and Cheng 2004), the effects of the contact angle 𝛽 and the Young modulus 𝐸 on the hardness can

be deduced from dimensional analysis. As a consequence, it is chosen in the present work to

mostly investigate the effects of Hollomon’s hardening parameters 𝜎𝑌 and 𝑛 on the resulting

wedge hardness. The main advantage of such a law resides in its few parameters which allow for

an extensive parametric study and a simplified use in analytical developments such as ECC and
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REM models. However, it does not describe accurately the real behaviour of materials especially

for high deformations. Young’s modulus and Poisson’s ratio are arbitrarily taken as those of steel

(𝐸 = 210GPa and 𝜈 = 0.3). The value of the contact angle has been fixed to 𝛽 = 20◦. For this
parametric, the (𝜎𝑌 , 𝑛) values are chosen from a regular łgridž, with 10MPa ⩽ 𝜎𝑌 ⩽ 500MPa

by increments of 10MPa and 0.1 ⩽ 𝑛 ⩽ 0.5 by increments of 0.05. This leads to a total of 450

simulations populating the parametric space. Hereafter it is proposed to compare the performance

of the two analytical ECC and REM models (given by Equations (4) and (6), respectively) in

predicting the material hardness for material properties typical of those found in metallic seals

materials (aluminum, copper, silver, etc.)

For each simulation, the total vertical force 𝐹 and the projected contact length 𝐿𝑐 can be

computed. Note that since the problem is treated in plane strain, 𝐹 is homogeneous to a force per

unit depth (direction of the axis of the wedge), but simply denoted as łforcež in the subsequent for

simplicity. The hardness is further obtained as the mean vertical contact pressure and given by

Hmat =
𝐹

𝐿𝑐
. (9)

Single wedge indentation of semi-infinite half space satisfies the principle of geometric similarity,

the hardness is computed for all computational frames and an average is performed on these

frames to eliminate any discrete mesh effects.

3.2 Multiple wedges indentation

In the framework of sealing, interaction between rigid asperities is clearly too complex to be

investigated in a purely analytical way. Hence FEM appears as a method of choice to explore

such phenomena. It has already been used on one hand to deal with interacting flat punches

(Meguid and Klair 1985) or to assess the validity of the slip line fields proposed by Salikhyanov

(2019). In this paper, we design a geometry of multiple wedges indentation based on this latter

approach, see Figure 4. The effects of geometrical parameters that is proposed to be explored in

β β

B

W

S0

Figure 4 Schematic of the multiple wedges indentation geometry. The indenter is shown in blue and the substrate
in grey. The mesh represented here is coarser than that used in the simulations for clarity.

this work are the distance between the two neighboring wedges𝑊 and the contact angle 𝛽 .

Periodic boundary conditions are applied on the left and right side of the model, making the

so-called double indentation a multiple wedges indentation with a virtual infinity of wedge

indenters. Thus the double wedge is viewed as a unit cell for the periodic problem. The bulk

height 𝐵 is also taken into account since it also plays a role on sealing (it can be viewed as the

thickness of the sealing outer liner), in particular at the last stage of sealing. The two wedges

Journal of Theoretical, Computational and Applied Mechanics
�� April 2024

�� jtcam.episciences.org 7
�� 22

https://jtcam.episciences.org


Marthouret et al. Wedge indentation of elastoplastic solids ś from single indentation to interaction between indenters

being similar in this paper, the reader may notice that a supplementary vertical symmetry in

the middle of the two indenters could have been used. This is due to the fact that the present

numerical model was first designed to handle the general case of asymmetrical indenters. We

chose however to focus only the results for the symmetrical case in the present paper.

Similarly to the case of single indentation, the simulations have been performed with abaqs®

using 2D plane strain elements to model wedge indentation and using a large displacementślarge

strain option (updated Lagrangian formulation, logarithmic strain). The contact between the

indenter and the substrate is considered frictionless and the wedge indenters perfectly rigid.

The whole mesh contains about 6420 elements and 6648 nodes (see Figure 4). A convergence

study presented in Appendix B justifies the use of a rather coarse mesh (ratio of element size on

indenter tips distance ≈ 1 %). This trade off is done to permit an extensive parametric analysis of

the multiple wedges indentation which can be quite demanding in terms of computational time,

especially because of contact convergence issues. The mechanical behaviour of the substrate is

described through the same constitutive model than the one used for single wedge indentation

(Hollomon’s power-law hardening).

Hereafter it is proposed to explore the effects of Hollomon’s parameters on the apparent wedge

indentation hardnessH . We choose to focus on hardening parameters in the range 0.05 ⩽ 𝑛 ⩽ 0.4

and 20MPa ⩽ 𝜎𝑌 ⩽ 200MPa in the simulations. Since multiple wedges indentation does not

satisfy the principle of geometric similarity when wedge-induced strain fields start interacting, the

hardness is computed at each computational step. The reaction force of the double wedge is taken

at each increment and divided by the current projected contact area to compute the apparent

hardness of the multiple wedges indentation. As observed in Figure B.3 from the convergence

study in Appendix B, a coarse mesh does not change the average value and evolution of our

quantities. However, the discrete evolution of the contact length produces artificial oscillations

which are quite misleading. A sliding average filter is hence applied. The convergence study

validates this approach with Figure B.4 comparing averaging coarse mesh hardness evolution

with refined mesh one. This new instantaneous hardness is called apparent hardness, H . The

results will be interpreted through the evolution of this parameter as a function of the projected

contact length. With sealing purposes in mind, it is interesting to follow the closing of the

aperture. Consequently, the evolution of the current opening between bulk and indenter 𝑆

(comparable to the free volume under the indenter) is monitored during the indentation process.

Five indenter geometries are investigated to highlight the influence of geometrical parameters

defined in Figure 4. The five sets of parameters employed are summarized in Table 1.

Table 1 Values of geometrical parameters used for the
FEM simulations.

Geometry 𝛽 𝐵 [mm] 𝑊 [mm]

#1 10◦ 1.00 0.10

#2 10◦ 1.00 0.50

#3 10◦ 0.30 0.10

#4 5◦ 1.00 0.35

#5 5◦ 1.00 0.10

4 Results and discussion

4.1 Single wedge indentation

The accuracy of both the ECC and the REM analytical models are assessed with the help of

finite element modeling of single wedge indentation. To do so, the relative error defined in

Equation (10) is used, withHmat the material hardness given by the ECC and REM models of

Equations (4) and (6) respectively, and �Hmat the hardness obtained numerically by the FEM

simulations

𝜖 =

|Hmat − �Hmat |
�Hmat

. (10)

Figure 5 summarizes the main results obtained for 𝛽 = 20◦. Note the region highlighted
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Figure 5 Error maps for single indentation models, with 𝐸 = 210GPa and 𝛽 = 20◦.

in red that corresponds to hardening parameters typical of metallic sealing materials (copper,

aluminum, nickel) with 0.2 ⩽ 𝑛 ⩽ 0.3 and 50MPa ⩽ 𝜎𝑌 ⩽ 200MPa. The ECC model yields very

good results for a hardening exponent close to 0.3. The higher the yield stress, the higher the

precision. However for the extreme case of low yield stress and low hardening exponent, the

relative error can reach 50 %. This corresponds to the asymptotic case of rigid perfectly plastic

solids for which it is well known that expanding cavity based models fail (Johnson 1987). Unlike

the ECC model, the REM model leads to errors lower than 10 % over the whole investigated range

of parameters. It is worth of interest to note that the REM model is almost insensitive to the yield

stress. Its best accuracy is obtained in the range 0.2 ⩽ 𝑛 ⩽ 0.3, which corresponds to the range of

sealing materials. For this latter case, the relative error is lower than 2.5 %.

A wide range of angles is at stake in sealing surfaces so, in addition to 𝛽 = 20◦ (Figure 5),
Figure 6 presents numerical results for angles 𝛽 = 15◦, 10◦ and 5◦, focusing on the region of

sealing materials.
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Figure 6 Error maps for single indentation models, with 𝛽 = 5◦, 10◦ and 15◦.
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Figure 7 shows, for 𝛽 = 20◦, the evolution of hardness according to the studied parameters

(𝜎𝑌 , 𝑛) of Hollomon’s law. The analytical models have an evolution similar to FEM simulations
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Figure 7 Maps of hardness values for REM, ECC models and FEM simulations, with 𝐸 = 210GPa and 𝛽 = 20◦.

especially the REM model. The hardness increases with the elastic limit and the hardening

coefficient as expected by Cheng and Cheng (2004) The angle effect is shown in Figure 8 for

one material. The figure highlights that the two models error is function of the contact angle.
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Figure 8 Hardness for all models and various contact angles for a material with 𝐸 = 210GPa, 𝜎𝑌 = 102MPa and
𝑛 = 0.2.

Indeed, on the presented material, ECC is slightly more accurate than REM model for low angles

(5◦) while REM model is better for higher angles (15◦). The REM model performs well for all

studied angles with some privileged area according to strain hardening coefficient. Overall, its

relative error stays lower than 10 %. The ECC model remains in good agreement near 𝑛 = 0.3 as

previously, but the corresponding zone becomes narrower. It is then outperformed by the REM

model outside this thin and unpredictable area.

From these results it is thus recommended to use the REM model to compute the wedge

hardness in the framework of sealing applications. However this model is restricted to single

indentation (i.e., without interaction between the neighboring asperities). To highlight this point,
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the hardness results obtained by FEM for the single indentation case are compared to those

obtained for the case of multiple wedges indentation as a continuous function of the applied

load on the indenter. The evolution of the dimensionless apparent hardness H ∗
= H/Hmat,

is presented as a function of the applied indentation load in Figure 9. As expected, the single

0 5 10 15 20 25 30 35 40
Indenter force [N]

0.95

1.00

1.05

1.10

1.15

1.20

*

Single indentation
Double indentation

Figure 9 Comparison of the computed instantaneous hardness between single and multiple wedges indentation.

indentation hardness does not depend upon load, while the multiple wedges indentation hardness

increases quite rapidly with the load, indicating more and more prominent interaction effect

between the indenters. Also, both model yield to the same result for the low load range (i.e.,

H ∗ ≈ 1). Results below a given load are not shown since the number of nodes in contact is

not large enough. The increase at larger load is clearly the effect of tip interaction observed

by Salikhyanov (2019). In other words, the single indentation stage is followed by the interaction

stage that leads to an increase of mean contact pressure due to asperity interaction.

4.2 Multiple wedges indentation

Multiple indentation is observed through apparent hardness and dimensionless contact area.

The results are presented using dimensionless quantities for a clarity purpose and to gain

physical insight in the phenomena at play. First, the apparent hardness H is made dimensionless

by the single wedge indentation material hardnessHmatÐcomputed using the REM model of

Equation (6)Ðas

H ∗
=

H
Hmat

. (11)

As observed in the previous section, such a dimensionless parameter will highlight the evolution

of hardness due to interaction and hardening of the material. The dimensionless sealing force 𝐹 ∗

is defined as

𝐹 ∗ =
𝐹

𝑊Hmat
(12)

with 𝐹 , the actual force on the indenter and where𝑊Hmat represents the force that would lead to

full contact in a bearing contact model (Dapp et al. 2012), considering a constant mean pressure

over the contact taken as the material hardness. In addition, note that we have the obvious

relation 𝐹 ∗ = H ∗𝐿∗. The closing index 𝑆∗ = 𝑆/𝑆0 is defined to monitor the evolution of the free

space under the indenter with a scalar value. This gives an idea of the average gap between the

indenter and the substrate, and hence of the sealing progress. In a similar manner, one can derive

the dimensionless (projected) contact area 𝐿∗ defined by

𝐿∗ =
𝐿𝑐

𝑊
(13)

with 𝐿𝑐 the projected true contact length. The evolution of H ∗ as a function of the contact ratio

𝐿∗ is shown in Figure 10 to highlight the three main stages of sealing. This curve has been
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Figure 10 Typical evolution of the hardness as a function of the contact width in multiple wedges indentation,
highlighting the three steps with diamond markers for Figure 11 fields.

obtained considering the first geometry in Table 1 and Hollomon’s parameters, 𝜎𝑌 = 100MPa and

𝑛 = 0.2. The first stage is the single wedge indentation stage. As shown previously, the apparent

hardness is well described by the wedge indentation REM model. The transition between the

single indentation regime to the interaction regime is quite smooth. It is considered here that the

interaction regime starts once the increase of the hardness is around 5 %, that corresponds to a

contact ratio 𝐿∗ ≈ 0.25. Within the interaction regime, the hardness seems to be proportional

to the contact ratio. Once a given contact ratio of 𝐿∗ ≈ 0.75 is reached, the hardness starts

increasing dramatically. This last regime is the global plastic locking regime that begins when

the two neighboring indentation-induced plastic flow fully recover. Contrary to slip line field

calculations (Salikhyanov 2019), the sealing keeps increasing but at the cost of a fast increase

of the apparent hardness. At full contact when 𝐿∗ → 1, the hardness reaches a value close to

2.5 that of the single wedge indentation material hardness. The equivalent plastic strain field

associated to each regime is given in Figure 11, diamond markers in Figure 10 specify the position

of strain pictures on the H ∗(𝐿∗) curve. For the sake of illustration, it is possible to associate the

Step 1

Step 2

Step 3

Figure 11 Field of the equivalent plastic strain computed in abaqs® for the three stages of the multiple wedges
indentation.

plastic deformation (Figure 11) to the slip-line fields hence following the expansion of both

influence area and their interaction. This observation backs the point of a three steps closing with
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indenters interaction. However, simulations were made with elasto-plastic hardening materials

while slip-line fields only stands for perfectly plastic materials so this comparison can not be

further extended. Due to the boundary conditions and the isochoric plastic flow assumption,

there is a volumetric change of elastic nature. It implies a rise in hydrostatic pressure, which in

turns leads to a rise of contact pressure. This rise is really significant for the last stage of sealing.

The hydrostatic pressure is also a consequence of indenter interactions. Note that theses results

have been obtained for a given configuration. In the two following sections, effects of indenter

geometry and strain hardening parameters will be investigated in details.

4.2.1 Effects of the geometrical parameters

Figure 12 presents the evolution of H ∗, 𝐹 ∗ and 𝑆∗ as a function of 𝐿∗ for the five multiple wedges

indentation geometries defined in Table 1. The strain hardening parameters remain the same

for each calculation, their values were chosen as 𝜎𝑌 = 100MPa and 𝑛 = 0.2. The three sealing

stages are clearly visible. H ∗ and 𝑆∗ seems to be geometry-independent. Despite a difference of

material behaviour, theoretical investigation of Hill (1950b) in perfect plasticity and Johnson

(1987); Sneddon (1995) in perfect elasticity let us expect a dependence on bulk height 𝐵 which is

not confirmed by our results. It might however not be excluded that 𝐿∗ and 𝑆∗ already include

somehow the influence of the height. Therefore it is recommended to not consider 𝐵 as a driving

parameter for the interaction stage of sealing. The only geometrical parameter which seems worth

of interest is the contact angle 𝛽 . The difference between 10◦ and 5◦ is however not important

enough to be clearly visible in Figure 12. Note that Figure 12(c) points out the closing kinetic

during multiple wedges indentation. The bearing contact model is a purely geometrical model

based on the concept of erosion (Dapp et al. 2012). The indenter displacement consumes material

on its way without provoking any elastic or plastic deformations. A contact pressure is associated

to this contact and corresponds to the hardness of the eroded material Hmat. The response of this

model to multiple wedges indentation is drawn in dashed lines in Figure 12. It further shows the

differences brought by interaction of indenters. These results show that sealing regimes can be

described through dimensionless parameters that are almost geometry-independent.
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Figure 12 Influence of the geometrical parameters (see Table 1) on multiple wedges indentation. The results from the
bearing contact model are given as dashed lines.
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4.2.2 Effects of the material parameters

Let us now vary the strain hardening parameters and fix the geometrical configuration to 𝛽 = 10◦,
𝑊 = 0.1mm and 𝐵 = 1mm (corresponding to geometry #1 in Table 1). The influence of the yield

stress is presented in Figure 13. As expected from Equation (1) the normalization by Hmat totally
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Figure 13 Influence of the yield stress on the multiple wedges indentation, with 𝑛 = 0.2.

transfers the effect of 𝜎𝑌 to the single indentation step. Moreover further steps do not seem

to be modified by a variation in the yield stress. The kinetic of closing in Figure 13(c) is not

significantly influenced by 𝜎𝑌 and is quite similar to the simple bearing contact in this case, it

argues for few sink-in or pile-up behaviour in these material and geometrical conditions.

Figure 14(a) shows the effects of the strain hardening exponent 𝑛 on the evolution of H ∗ as a
function of 𝐿∗. Note that here again, the three sealing stages are still clearly observable. The

strain hardening parameter 𝑛 seems to have a significant influence on both the slope of the

interaction stage and the start of the plastic locking stage. The higher the strain hardening

exponent, the faster the hardness increase. However, this is particularly visible for larger contact

ratio. Let us note that H ∗ is not equal to 1 for 𝑛 = 0.4 at low contact ratio and the expected

plateau-like evolution of single wedge indentation is not visible. This may be a consequence of

the REM hardness model which may lead to some error for such value of the strain hardening

exponent. It can also be a consequence of a smaller single indentation regime when the strain

hardening parameter increases. The finite element mesh might be too coarse to catch this regime

properly as well. For sealing like material (𝑛 ≈ 0.2), the plateau-like regime is clearly visible. It is

followed as expected by a linear, then by a fast increase of the hardness. It is therefore clearly

observed here that the asperities interaction effect is enhanced by the strain hardening ability of

sealing materials. As a matter of fact, it would be better to use materials exhibiting a low strain

hardening exponent for sealing applications. Let us note that this significant effect of 𝑛 prevents

the use of the theoretical frameworks of Hill et al. (1947) or Salikhyanov (2019) to quantitatively

predict the sealing process.

The evolution of the closing index is also affected by the strain hardening ability of the

sealing material as shown in Figure 14(c). At first, it may be surprising to state that the highest

impact is observed during the single indentation and interaction stages and not the plastic locking

stage. Let us remember that the closing index is only related to the shape of the free surface for a

given contact ratio. Therefore piling up and sinking ability of the material will play a significant
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Figure 14 Influence of the strain hardening exponent 𝑛 on multiple wedges indentation, with 𝜎𝑌 = 100MPa.

role. It is well known from single indentation theory that a low strain hardening exponent 𝑛

will lead to the rise up of a ridge whereas a high strain hardening exponent will prevent the

formation of this ridge (Cheng and Cheng 2004). This is illustrated in Figure 15.

Pile-up Sink-in

hc
hc

h

Figure 15 Illustration of the pile-up (blue) and sink-in (red) behaviours of the deformed surface in indentation.

For 𝑛 = 0.3 (consequentially 𝑛 = 0.4), a sink-in is observed in single indentation as shown in

Figure 16. For multiple wedges indentation, sink-in and pile-up are more difficult to detect. Indeed,

Figure 16 Computed vertical displacement field in single indentation with 𝑛 = 0.3. Sink-in is observed as the
displacement is negative.
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the contact depth over penetration depth ratio ℎ𝑐/ℎ is badly defined in this case. Moreover,

some additional factors can be involved in this behaviour with for example the plastic flow of

the material confined by the groove formed by the two neighboring indenters and, in the case

of our simulations, the volumetric change due to the isochoric flow assumption. It makes the

comparison difficult with the classical comprehension of the pile-up or sink-in as presented

in (Bolshakov and Pharr 1998; Cheng and Cheng 2004), since more parameters are at stake.

Therefore we can ascertain that the higher the strain hardening parameter 𝑛, the lower the

closing index for a given contact ratio but it cannot be entirely linked to pile-up (or sink-in)

behaviour. Within the plastic locking stage, the materials generally flows up homogeneously

to fill the remaining free volume for symmetric indenter angles. In Figures 12 to 14, the black

dashed line stands for the bearing contact model. This model is quite satisfying to describe the

closing index, especially for low hardening, but performs poorly when it comes to the prediction

of the force (or hardness), especially at the end of the interaction step and the plastic locking step.

This means that the present simulations can help correct and predict the necessary force for

sealing while the geometrical kinetics of sealing is more difficult to understand through them and

rather be described by a simpler model as the bearing contact one.

Interestingly, the dimensionless sealing force 𝐹 ∗ presented in Figure 14(b) is only slightly

affected by the strain hardening exponent up to the start of the plastic locking stage. The

dimensionless sealing force 𝐹 ∗ corresponds to the elementary force acting over two neighboring

asperities. It is thus prone to be used in a reduced model (Yastrebov et al. 2011) aiming at

predicting the sealing ability of surfaces based on arrays of wedge, typical of face-turned surface.

The present study aims at understanding how sealing materials can flow up to achieve a

full contact between a rigid rough surfaces and a soft material. To this end, a dry contact was

considered, that is no fluid is present and could be entrapped at the interface, especially in

closed cavities resulting from surrounding surface deformation during the indentation process.

The usage of this framework is mainly motivated by the fact that metal seals are generally

installed and compressed under dry conditions in practice. However, when a fluid is present at

the interface, the problem obviously becomes more complicated as simulations accounting for

fluid-solid interactions are required to describe such behaviour (Azushima and Kudo 1995; Bech

et al. 1999). In this case, it might be assumed that the three stages would be greatly modified.

Indeed, an entrapped fluid would bear a part of the load actually decreasing contact pressure on

the material surface and eventually decreasing the resulting contact area. Shvarts and Yastrebov

(2018) however considered that for realistic fluids and material no dramatic opening of the contact

takes place. To extend the use of our work to wet surfaces as such found in lubrication problem,

it would thus be necessary to run additional simulations with entrapped fluid.

5 Conclusions

This article dealt with wedge indentation in the framework of sealing. The objective was to

investigate with the help of the finite element method how the mean contact pressure increases

when two wedge indenters interact up to the full closing of the cavity in-between. Three

successive indentation regimes are clearly evidenced. The first regime is the single wedge

indentation one and is characterized by a constant mean pressure called material hardness. When

approximately 25 % of the total projected area is in contact, the second regime begins. It is defined

as the interaction one and corresponds to a linear increase of the mean contact pressure as a

function of the contact length. The third and last regime takes place after 75 % of contact and is

the plastic locking regime defined by a fast pace increase in contact pressure up to full closing.

The results are rather consistent with slip lines field theory (Salikhyanov 2019). Note that this

theory is restrictive since it is limited to rigid perfectly plastic solids. We should also recall that

the law used in our simulation does not describe well high deformation behaviour so flat value of

apparent hardness at high contact ratio is not accurate. An experimental verification would be of

great interest to measure the resulting error. Nevertheless, although this paper appears as a first

step in this very complex field, some first conclusions of interest can be drawn for the indentation

and sealing communities:

· Single indentation regime
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ś For contact angle of 20◦ and within the range of metallic materials for sealing, the hardness is

modelled with an accuracy of 2.5 % using the Representative Elastic Material model developed

by Kermouche et al. (2005).

ś The adaptation of the Gao et al. (2006) expanding cavity model to wedge indentation leads

also to satisfactory results, with a lesser accuracy regarding sealing materials nonetheless.

· Interaction regime

ś The use of suitable dimensionless quantities leads us to show that the interaction regime is

almost geometry-independent, which is of primary importance regarding the development of

further reduced sealing contact models.

ś The main parameter governing the interaction regime is the strain hardening exponent. A

higher strain hardening exponent leads to the start of the interaction regime for a lower

contact length and a higher increase of the hardness.

· Plastic locking regime

ś Contrary to slip line field prediction, the plastic locking regime is not really łlockedž. The

sealing can proceed up to full closing, at the cost however of a fast increase of the apparent

hardness, up to two to three times the single wedge indentation hardness. It fixes a virtual

limit for closing, hence sealing, to approximately 80 % of total projected area.

ś Here again, the main parameter governing the interaction regime is the strain hardening

exponent 𝑛. A higher strain hardening exponent leads to the start of the plastic regime for a

lower contact length and a higher increase of the hardness.

· About sealing

ś For a given hardness, the best sealing materials are those that can delay the start of the

interaction regime, that is those with the lowest strain hardening exponent 𝑛.

ś The sealing of face-turned surface can be complete only once the plastic locking regime is

ended for one groove.

A Mesh convergence study ś single wedge indentation

The physical quantity studied by the single wedge indentation simulation is the contact pressure

under the tip of the indenter (i.e. the hardness). It is computed by dividing the vertical indentation

force by the projected contact area for multiple penetrations. The average value over these

penetrations is kept to limit mesh effects, and this is valid since the stress and strain fields are

supposed to be geometrically similar. To assess the effect of mesh refinement on the computed

hardness, the following error is defined

𝜖 =

|Hmesh −Href |
Href

, (A.1)

where Hmesh is the hardness computed for a given mesh size and Href is the reference hardness,

chosen as that obtained for the finest mesh. Figure A.1 presents the evolution of this error for

various meshes and materials. The mesh size is expressed in terms of elements at the surface of

the contact area. These elements are responsible for the measure of contact area and contact

pressure and, as such, should be numerous to described the contact properly. It can be observed

that even for a coarse mesh, the error made is less than 0.6%, with few improvement when

elements are doubled from 120 (0.8 % ratio) to 240 (0.4 % ratio). We thus conclude that the mesh is

converged and that even for comparatively coarse mesh the effect is weak. In the present study of

single wedge indentation, 65 elements (1.5 % ratio) in the contact area are utilized.

B Mesh convergence study ś multiple wedges indentation

For the multiple wedges indentation, we define the following error over the entire indentation

regime

𝜖 =

∫
|H ∗

mesh
−H ∗

ref
| d𝐿∗

∫
H ∗

ref
d𝐿∗

, (B.1)
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Figure A.1 Evolution of the error on the single indentation hardness as a function of the relative mesh size, using the
most refined mesh as reference.

where again H ∗
mesh

is the dimensionless hardness for a given mesh size, H ∗
ref

is a reference

dimensionless hardness (that obtained with the most refined mesh) and 𝐿∗ is the dimensionless

contact length. Figure B.2 shows the evolution of the error as a function of the relative mesh size

(ratio of the element size and the distance between the indenters𝑊 ). The error is relatively small
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Figure B.2 Evolution of the error on the multiple wedges indentation hardness as a function of the relative mesh size,
using the most refined mesh as reference.

even for coarse meshes. However, the mesh produces an oscillation-like effect due to the discrete

variation of the contact length (see Figure B.3). This local discrete variation is quite misleading so

the focus of the present study should be laid upon a locally average variation of the quantities

instead. To this end, a sliding average filter is employed so as to use a relatively coarse mesh

while having a reasonable computational time. The effects of using such sliding average filters

are shown in Figure B.4. The hardness for the coarse meshes is then in better agreement with

that obtained with the more refined ones. Nevertheless, the averaging window acts severely on

the first points which were presenting the widest oscillation, and the average value falls below

the ratio H ∗
= 1 at small contact length. Note that this effect is mostly resolved from 𝐿∗ = 0.2

onward, that is the interval of interest of the current study. The mesh convergence holds for

several materials and it can be concluded that the dependencies of the apparent hardness on the

hardening coefficient or yield stress observed in this article are not due to a mesh effect. In this
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Figure B.3 Apparent hardness as a function of the normalized contact area for different mesh size and different
materials without averaging filter
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Figure B.4 Apparent hardness as a function of the normalized contact area for different mesh size and different
materials using an averaging filter

article, a mesh ratio of 1 % relative to the distance𝑊 between indenters is kept.

C Non linear strain hardening in three dimensions

The FEM model of this article is realised on abaqs® software. Thus, the material model for

isotropic elasto-plasticity is already implemented. We detail here some parts of the model to

explain how the one dimension law depicting the behaviour of an elasto-plastic hardening

material in uniaxial traction is used in the resolution of three dimensional problems. First, the

assumption is made that the total strain rate tensor can be decomposed in its plastic and elastic

parts:

¤𝜀 = ¤𝜀el + ¤𝜀p. (C.1)

The stress tensor is decomposed in volumetric and deviatoric parts

𝜎 = 𝑆 − 1

3
tr(𝜎)𝐼 (C.2)

with 𝑆 , the deviatoric part of the stress tensor and 𝐼 , the identity tensor. The von Mises criterion

activates plasticity, the equivalent stress 𝑞 is defined as

𝑞 =

√︂
3

2
𝑆 : 𝑆. (C.3)
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The plastic deformation is then expressed by the plastic flow rule

¤𝜀p = ¤𝜀peq𝑛, 𝑛 =

3𝑆

2𝑞
(C.4)

and the consistency rule

𝑓 (𝜎) = 0 ⇔ 𝑞 − 𝜎 (𝜀peq) = 0 (C.5)

where ¤𝜀peq is the cumulated plastic strain rate defined in

¤𝜀peq =
√︂

2

3
¤𝜀p : ¤𝜀p (C.6)

The consistency rule is defined for an equivalent behaviour in uniaxial stress. This stress-strain

relation is provided to the software by tabulated values which can be of experimental origin for a

real material. In this article, a model (Hollomon’s law) was chosen to describe this reference

behaviour so that 𝜎 and 𝜀
p
eq, cumulated plastic strain in

𝜀
p
eq =

∫ 𝑡

0

¤𝜀peq d𝜏, (C.7)

are tabulated with

𝜎 = 𝜎1−𝑛
𝑌 (𝐸𝜀)𝑛 and 𝜀

p
eq = 𝜀 − 𝜎

𝐸
. (C.8)
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