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Finite Element codes used for solving the mechanical equilibrium equations in transient problems
associated to (time-dependent) viscoelastic media generally relies on time-discretized versions of the
selected constitutive law. Recent concerns about the use of non-integer differential equations to describe
viscoelasticity or well-founded ideas based upon the use of a behavior’s law directly derived from
Dynamic Mechanical Analysis experiments in frequency domain, could make the Laplace domain approach
particularly attractive if embedded in a time discretized scheme. Based upon the inversion of Laplace
transforms, this paper shows that this aim is not only possible but also gives rise to a simple algorithm
having good performances in terms of computation times and precision. Such an approach, which
fully relies on the Laplace-defined Behavior or Transfer Function (LBTF) can be promoted if it uses
AutoRegressive with eXogeneous input parametric models perfectly substitutable to the real LTBF. They
avoid the hitherto prohibitive pitfall of having to store all past data in the computer’s memory while
maintaining an equal computation precision.
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1 Introduction

To be firmly characterized, the ViscoElastic (VE) behavior of solidmaterials requires amathematical

model associated to this rheology, as well as a metrological approach to correctly identify the

involved physical parameters. For a Representative Elementary Volume (REV) of viscoelastic

media, the model relates in a biunivocal correspondence both the stress and the strain applying

onto this REV as a function of time. In the case of linear viscoelasticity, these variables are linked

through a simple convolution product in time domain which kernel describes the VE behavior

(relaxation or retardation depending on whether the strain or the stress are considered for the

excitation). Through the convolution theorem, using Laplace or Laplace-Carson transforms of the

behavior’s model -one should call it the łtransfer functionž of the material- is a standard approach

to compute the response (or output) of the material volume to a given time-dependent solicitation

(or input) (Tschoegl 1989). This is particularly true since the development of numerical algorithms

that perform inverse Laplace transform precisely (Davies and Martin 1979; de Hoog et al. 1982;

Dingfelder and Weideman 2014; den Iseger 2006; Stehfest 1970; Talbot 1979). The transfer function

formally corresponds to the output obtained for a Dirac delta distribution (pulse) considered as

input. Inherent to experiments in solid mechanics, the case of the impulse response in quasi-static

conditions1 cannot be obtained as in other scientific fields (the flash method for instance to

measure the thermal diffusivity of materials (Jannot and Degiovanni 2018). Therefore, creep,

relaxation (Dooling et al. 1997; Emri and Tschoegl 1993) or even indentation tests (Uluutku et al.

1 If inertial effects are taken into account, VE materials can be characterized through complex moduli measured with the

vibrational response of beam-like structures where the excitation can be produced in forms of an impulsion (hammer

blow).
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André & Noûs Solving viscoelastic problems with ARX models

2022) are generally preferred to access a retardance or relaxance (Tschoegl 1961), corresponding

respectively to an admittance or to an impedance in the electrical analogy. One interest of

the Laplace formulation of VE behaviors is for the harmonic excitation which corresponds to

the Dynamic Mechanical Analysis (DMA) experimental technique. In that case, the harmonic

modelling corresponds to a reduction of the one-sided Laplace transformed problem where

the Laplace variable (𝑝 notation used in this article) is restricted to the imaginary axis 𝑝 = 𝑗𝜔 ,

where 𝜔 is the harmonic pulsation of the input excitation. But although many DMA devices are

produced by a few worldwide manufacturers, they can still be hardly used for metrological precise

characterizations. Depending on the conducted loading test (bending, torsion, traction, shearing

tests), it is still a research concern to obtain a perfect match of DMA-measured mechanical

parameters and those reached with quasi-static experiments for other type of excitations (ideally

with multisequence loading). The generally small specimen sizes, very weak considered forces

and displacements in linear VE regime, add to this difficulty. These experiments are however

widely used for qualitative purposes, when discrimination between different materials is looked

for, on damping properties typically. DMA is considered to be a very precise tool to investigate

phase transitions (Menard and Menard 2020) for example but, in this case, experiments are rather

conducted at a given frequency for a sweep in temperature (measurement of a glass transition

typically).

Anyway, it would be of great benefit, especially for viscoelastic heterogeneous materials (Ag-

bossou et al. 1993; Shaterzadeh et al. 1998), to make the technique enters in a fruitful interaction

with simulation tools (André et al. 2021; Fuentes et al. 2017; Gallican and Brenner 2019; Trumel

et al. 2019). The perspective that could be draw, is the following. Assuming that DMA could

characterize more efficiently the behavior’s law in terms of transfer function, and that this

transfer function could be implemented directly in a FEM mechanical code through the behavior’s

law module, then simulations at the scale of a structure could be directly performed. The problem

to circumvent is that numerical codes will necessarily proceeds with a time-step algorithm (an

integration scheme in time) which appears incompatible with the use of a Laplace transform

defined behavior’s law. The present paper shows how this can be achieved with a different

philosophy than that implemented in previous works on heterogeneous materials (Lévesque et al.

2007; Rekik and Brenner 2011) or on homogeneous materials by using the classical collocation

method (Schapery 1962) to identify the relaxation kernel from its expression in Laplace domain.

The approach leads to input-output convolution type series, common for Linear Time Invariant

(LTI) systems, which suggests the introduction of AutoRegressive with eXogeneous input (ARX)

models, well known in the field of Control Theory and Automation.

In Section 2, we recall the equations and vocabulary associated to the VE problem and

define the central behavior’s law considered for this study, which can be reduced to either the

simple analogical Standard Linear Solid (SLS) behavior nor asymptotically, to a non-integer or

fractional (NIF) order operator. In Section 3, the incremental approach is built by making use of a

Laplace-defined behavior’s law and of its response to a unitary ramp excitation. This solution is

shown precise but involves all the history of the mechanical variables which makes it inefficient

to use with meshed structures. ARX models’ structure is shown here to be very powerful to avoid

this drawback. Section 4 illustrates how it works and the achieved performances with the three

types of VE behavior considered in this study.

2 Mathematical viscoelastic problem

2.1 Generic equations

The mathematical problem characterizing the viscoelastic behavior is of convolution nature

through the well-known Boltzmann superposition principle (Christensen 1982). The stress for

example is given by the convolution product

𝜎 (𝑡) =
∫ 𝑡

0

𝐻 (𝑡 − 𝜏)𝜀 (𝜏) d𝜏 =

∫ 𝑡

0

𝐺 (𝑡 − 𝜏) ¤𝜀 (𝜏) d𝜏 (1)

where𝐻 (𝑡) figures the relaxance kernel (Tschoegl 1989) and 𝜀 (𝑡) the test function i.e. the excitation
(strain loading path) imposed on the system. Alternatively, in the second equality, 𝐺 (𝑡) figures

Journal of Theoretical, Computational and Applied Mechanics
�� October 2023

�� jtcam.episciences.org 2
�� 18

https://jtcam.episciences.org


André & Noûs Solving viscoelastic problems with ARX models

the relaxation function or relaxation modulus with𝐺 (𝑡) =
∫ 𝑡

0
𝐻 (𝜏) d𝜏 and 𝐻 (𝑡) = d𝐺

d𝑡
+𝐺 (0)𝛿 (𝑡)

as a result of 𝐺 being discontinuous at 𝑡 = 0 but with a definite limit. The lower integral

bound initiates at 𝑡 = 0 as for any causal problem. This expression suggests that the full-time

history dependence of variable 𝜀 (since the experiment starts) contributes to the actual value

of the stress. The VE problem considered here in 1-D is referred to as a SISO model (Single

Input-Single Output) with the vocabulary of control theory and referring to the role it plays in the

historical development of the parametric models used below (Gevers 2006). To this mathematical

formulation corresponds an alternative form in terms of the Ordinary Differential Equation (2),

through a linearity property. With 𝑓 (𝑖 ) denoting the 𝑖-th derivative of function 𝑓 , one can have

the general equation

𝑛∑︁

𝑖=0

𝛼𝑖𝜎
(𝑖 ) (𝑡) =

𝑚∑︁

𝑗=0

𝛽 𝑗𝜀
( 𝑗 ) (𝑡) (2)

which produces a given model structure for the relaxance kernel 𝐻 (𝑡), readily obtained through

Laplace transforming of Equation (2). Laplace-Carson transform is in general invoked in the

mechanical community but is just a commodity practice to access directly the relaxation modulusÐ

or alternatively creep function, considering a permutation of the independent variables 𝜎 and 𝜀 in

Equation (1)Ðwhen a Heaviside function is considered for 𝜀 (𝑡): the measured stress is then the

image of the time-dependent relaxation modulus. However, it is not necessary for the reasoning

and even blurs the full generality achievable with the transfer function concept. In the Laplace

domain, Equation (2) transforms into

L{𝐻 (𝑡)} = 𝐻 (𝑝) = 𝜎 (𝑝)
𝜀 (𝑝) =

∑𝑚
𝑗=0 𝛽 𝑗𝑝

𝑗

∑𝑛
𝑖=0 𝛼𝑖𝑝

𝑖
(3a)

where function 𝐻 (𝑝) describes the Laplace Behavior or Transfer Function (LBTF). Then, from

the convolution theorem, and the selection of the excitation function, the solution is produced

according to

𝜎 (𝑡) = L−1{𝐻 (𝑝)𝜀 (𝑝)}, (3b)

the alternative form of Equation (1). 𝐻 (𝑝) can also be defined directly through a specific

mathematical function and one can think here to the empirical Davidson-Cole relaxation model

or to the more recently promoted models with non-integer exponents leading to fractional

differential operators substituted to integer ones in Equation (2) (Bagley and Torvik 1986; Schiessel

et al. 1995). This aspect is mentioned here to draw attention of the reader to the large application

that can be made from the results presented here. When 𝜀 (𝑝) = 1, 𝐻 (𝑝) is named the transfer

function of the system. Using a metaphorical expression from biology, the transfer function

characterizes the łfull DNAž of the system (material) in terms of frequency information. It

corresponds to the response of the system to the impulse (Dirac Delta) function 𝐻 (𝑝) = 𝜎𝛿 (𝑝)
and is obviously never realized experimentally in mechanics due to an impossibility related to

inertial effectsÐhowever, it is a quasi-systematic approach for thermal systems excited with laser

pulses for example, as exemplified in (Corbin and Turriff 2012). When such a transfer function is

known from the engineer, then it allows computing the response of the system to any input

excitation. If 𝜀 (𝜏) = 𝛿 (𝑡), the multiplicative identity of a convolution product

𝜎𝛿 (𝑡) =
∫ 𝑡

0

𝐻 (𝑡 − 𝜏)𝛿 (𝜏) d𝜏 = 𝐻 (𝑡) (4)

is the realization of the transfer function and then, in any other known specific strain loading

path 𝜀ℓ𝑝 (𝑡), we have

𝜎 (𝑡) = (𝜎𝛿 ∗ 𝜀ℓ𝑝) (𝑡) =
∫ 𝑡

0

𝜎𝛿 (𝑡 − 𝜏)𝜀ℓ𝑝 (𝜏) d𝜏 (5)

fully determined by the impulse response 𝜎𝛿 (𝑡).
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2.2 Description of the considered VE behavior’s laws and loading sequences

For the computations presented later, we will consider as generic viscoelastic transfer function, the

one furnished by the Dynamic of Linear Relaxations (DLR) viscoelastic model (Cunat 2001). This

model originates from a TIP framework (Thermodynamics of Irreversible Processes) combined

to a modal approach of the dissipative processes. To say it shortly, it ends in a finite set of

ODEs identical to Equation (2) but where coefficients 𝛼𝑖 and 𝛽 𝑗 are in auto-recursive geometric

progression, or equivalently, when the Laplace counterpart of Equation (3) exhibits a recursive

Pole and Zero Distribution. This model has been shown efficient to describe and measure

associated material constants of HDPE, a thermoplastic, semi-crystalline polymer (Blaise et al.

2016). Furthermore, it has the proper mathematical structure used in the collocation method and

therefore, Section 4.2 provides some sort of comparison between the latter and the use of ARX

models. This model summarizes to

· DLR constitutive equation

¤𝜎 (𝑡) =
𝑁∑︁

𝑗=1

¤𝜎 𝑗 =

𝑁∑︁

𝑗=1

(
𝑝 𝑗𝐸

𝑢 ¤𝜀 −
𝜎 𝑗 − 𝑝 𝑗𝜎

𝑟

𝜏 𝑗

)
(6a)

· DLR constitutive equation in Laplace Domain (LBTF)

𝐻 (𝑝) = 𝜎 (𝑝)
𝜀 (𝑝) =

𝑁∑︁

𝑗=1

𝑝 𝑗

(𝜏 𝑗𝐸𝑢𝑝 + 𝐸r

1 + 𝜏 𝑗𝑝
)

(6b)

· DLR impulse response in time (Transfer function)

𝜎𝛿 (𝑡) = L−1{𝐻 (𝑝)}(𝑡) =
𝑁∑︁

𝑗=1

𝑝 𝑗𝐸
𝑢𝛿 (𝑡) +

𝑁∑︁

𝑗=1

𝑝 𝑗 (𝐸r − 𝐸𝑢) 𝑒
−𝑡/𝜏 𝑗

𝜏 𝑗
(6c)

with

ś 𝐸𝑢 , the unrelaxed (Young or glassy) modulus,

ś (𝜏 𝑗 , 𝑝 𝑗 ), the spectrum of relaxation times and weights defined as

𝜏 𝑗 = 𝜏max10
−( 𝑁 − 𝑗

𝑁 −1 )𝑑 and 𝑝 𝑗 =

√
𝜏 𝑗

∑𝑁
𝑗=1

√
𝜏 𝑗

(7)

ensuring
∑𝑁

𝑗=1 𝑝 𝑗 = 1with the recursion 𝑝 𝑗+1/𝑝 𝑗 = 𝛼 and 𝜏 𝑗+1/𝜏 𝑗 = 𝛽 ; also 𝜏max is the material

parameter corresponding to the maximum relaxation time, 𝑑 and 𝑁 are the number of

decades and of relaxation modes of the spectrum, respectively,

ś 𝜎𝑟 (𝑡), the relaxed state defined simply here as 𝜎𝑟 (𝑡) = 𝐸r𝜀 (𝑡) where 𝐸r is the relaxed modulus

(rubber modulus for polymers).

Starting from this generic VE behavior, three other transfer functions are considered. They all

participate to a validation of the incremental approach described next and to the understanding

of its underlying subtilities.

1. The first one is the Standard Linear Solid (SLS) or 3-parameter Voigt model and corresponds to

the reduction of the DLR model to one single relaxation mode. The transfer function and other

formulations of the SLS behavior’s law are directly obtained from Equation (6) by discarding the

summation operator.

2. The second one is obtained when considering asymptotically the case of an infinite number of

modes 𝑁 → ∞ which we have shown earlier to be related to a specific fractional model (André

et al. 2003), i.e. a model based on non-integer derivative operators. It is obtained directly in

Laplace domain without any analytical expression of its original and will be described later

in Section 4.3.1. This case is considered here in view of the abundant literature available on

these NIF (Non-Integer or Fractional) models since the 90’s as they allow for the description of a

plethoric set of VE behaviors.

3. The third one is also a fractional viscoelastic model. Because the previous one stems from the DLR

behavior and remains rather confidential, another fractional law will also be quickly investigated

in the same Section 4.3. Based on Rabotnov’s suggestion in 1948 to use a fraction-exponential

operator, it was widely considered since then (Koeller 1984; Sevostianov et al. 2015).
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Irrespective of the łfractionalž behavior considered, it will next be referred to as a NIF model.

Their natural definition in Laplace domain will legitimate even more the tool raised by this study

in view of an introduction into numerical codes.

For the simulations presented later, we will also consider a set of different loading paths

𝜀ℓ𝑝 (𝑡) presented in Table 1 along with their known Laplace domain expression. This set will

allow a critical appraisal for the methods described later. Case 0 corresponds to a smooth function

in time. Case 1 corresponds to the crenel excitation and Cases 2 to 4 correspond to more complex

sequences made of ramps. The associated graphs of these loading paths (inputs on the system)

will be shown later along with the calculated responses (outputs).

𝜀ℓ𝑝 (𝑡) Time domain Laplace domain

Case 0: "smooth"
2
√
3
𝑒−𝑡/2 sin(

√
3𝑡/2) 1

𝑠2 + 𝑠 + 1

Case 1: Crenel

{
𝜀0 0 ≤ 𝑡 ≤ 𝑡𝑐

0 𝑡 > 𝑡𝑐

𝜀0

𝑠
(1 − 𝑒−𝑠𝑡𝑐 )

𝑡𝑐 = 2𝑠 and 𝜀0 = 1 in the simulations

Case 2: 2 successive ramps 𝑎𝑡 + 𝑏 (𝑡 − 𝑡𝑟1)H (𝑡 − 𝑡𝑟1)
1

𝑠2
(𝑎 + 𝑏𝑒−𝑠𝑡𝑟1 )

𝑡𝑟1: time of first slope change in ramp
𝑏: slope change; 2nd ramp of slope 𝑎 + 𝑏

Case 3: 3 successive ramps 𝑎𝑡 + 𝑏 (𝑡 − 𝑡𝑟1)H (𝑡 − 𝑡𝑟1) + 𝑐 (𝑡 − 𝑡𝑟2)H (𝑡 − 𝑡𝑟2)
1

𝑠2
(𝑎 + 𝑏𝑒−𝑠𝑡𝑟1 + 𝑐𝑒−𝑠𝑡𝑟2 )

𝑡𝑟2: time of second slope change in ramp
𝑐: new slope change

Case 4: 3 successive ramps 𝑎𝑡 + 𝑏 (𝑡 − 𝑡𝑟1)H (𝑡 − 𝑡𝑟1)
1

𝑠2
(𝑎 + 𝑏𝑒−𝑠𝑡𝑟1 + 𝑐𝑒−𝑠𝑡𝑟2 − 𝑑𝑒−𝑠𝑡stab )

and stabilization +𝑐 (𝑡 − 𝑡𝑟2)H (𝑡 − 𝑡𝑟2)
−𝑑 (𝑡 − 𝑡stab)H (𝑡 − 𝑡stab)

𝑡stab: time at which a dwell is imposed to the strain
𝑑 = (𝑎 + 𝑏 + 𝑐)𝑡stab

Table 1 Considered test cases for the loading strain path (H(𝑡) : Heaviside function)

3 Towards an incremental time-step approach of the problem

3.1 The step-approach reached from the unit ramp response

FE codes in solid mechanics and more recent FFT-based spectral solvers are based on a time-

discretization approach for elasto-visco(-plastic) materials submitted to transient excitation.

The equilibrium equations are solved at specific locations of the spatial discretized domain.

For each increment in time step, a call to the behavior’s law computation is required which

is always specified in time discretized version, with different possible schemes (Sorvari and

Hämäläinen 2010). The objective of the present study is to allow the behavior law of the material

be defined directly in the Laplace domain. We describe in this section how to compute precisely

and incrementally the temporal response of a viscoelastic material with its Laplace-defined

Behavior or Transfer Function (LBTF). By incremental we precisely mean running a loop over a

time-discretized vector and calculating the output stress according to 𝜎 (𝑡 + Δ𝑡) = 𝜎 (𝑡) + Δ𝜎𝑡 . For

the different test-cases considered, this incremental computation referred to as step-LBTF, needs

to be validated. To this aim, it will be compared in the whole time interval [0; 𝑡𝑓 ] with:
1. the computation of the response directly in time-domain through Equation (5), with the

convolution product between the transfer function (impulse response 𝜎𝛿 (𝑡))Ðwhen known

mathematicallyÐand the input excitation (strain loading path 𝜀𝑙𝑝 (𝑡)). The Convolution built-in

Matlab function is used to establish this output response and the result will be referred to as

𝜎𝛿 ∗ 𝜀𝑙𝑝) (𝑡) in the curve labels of the coming plots.

2. a full inverse Laplace Transform approach, meaning that the computation will be based on the

Laplace product of Equation (3b) and inverted over the whole discretized vector of the time
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domain under consideration [0; 𝑡𝑓 ]. We will use the Laplace inversion based on De Hoog’s

algorithm (de Hoog et al. 1982). These computations will be labelled in the figures as full-LBTF.

Note that if nothing proscribes the use of De Hoog’s algorithm embedded in a time loop to

calculate incrementally the output stress, this leads to largely increased CPU times (our tests

give a multiplication factor of 50 for a time vector of dimension 7000) and with no significant

enhancement of precision. This certainly precludes any application of the Laplace inverse in the

incremental schemes in times of FEM or Spectral solver codes.

The step-LBTF approach originates from Duhamel’s theorem, see (Özisik 1993) or (Sneddon

1951, Theorem 33, page 164) which allows various different form of the generic convolution

response according to Equation (1). Going one step further, it is possible to express this convolution

in terms of the response to ramp functions. More precisely, we compute the elementary time

response to a Unitary Ramp (ramp of unit slope over [0;Δ𝑡]) which then remains Stucked at a

Stationary value equal to 1 × Δ𝑡 . This input is described as:

𝜀ℓ𝑝 (𝑡) =




0 𝑡 < 0

𝑡 0 ⩽ 𝑡 ⩽ Δ𝑡

Δ𝑡 𝑡 > Δ𝑡 .

(8)

We named it hereafter URSS-Response and noted it 𝜎
0

with subscript 0 referring to the time

origin when this excitation takes place. It can be computed once for all in a preliminary stage

using for example the Laplace inverse

𝜎0 (𝑡) = L−1
{
𝐻 (𝑝) 1

𝑝2
(1 − 𝑒−𝑝Δ𝑡 )

}
(9)

and stored as a vector of the discretized values 𝜎
0

(𝑡𝑘 ) over all time steps. De Hoog’s algorithm

will also be used for this purpose. The loading path is described through the discretized slope

variations Δ𝑆𝑘 = 𝑆𝑘 − 𝑆𝑘−1 at time 𝑡𝑘 , see Figure 1, with 𝑆𝑘 = (𝜀ℓ𝑝 (𝑡𝑘+1) − 𝜀ℓ𝑝 (𝑡𝑘 ))/Δ𝑡 . Hence, it
is approximated as a piecewise-linear function: 𝜀ℓ𝑝 (𝑡𝑘 ) =

∑
𝑘 Δ𝑆𝑘𝑅(𝑡𝑘 − (𝑘 − 1)Δ𝑡).

Figure 1 Discretization of the input 𝜀ℓ𝑝 in terms of
slope variations.

t

εℓp

tk−1 tk tk+1

ε
ℓp
k−1

ε
ℓp
k

ε
ℓp
k+1

∆t

Sk−1

Sk

∆S = Sk − Sk−1

From the Laplace transform application, it can be shown that

𝜎 (𝑡) = L−1
{
𝐻 (𝑝) 1

𝑝2
(1 − 𝑒−𝑝Δ𝑡 )Δ𝑆𝑘𝑒−𝑝Δ𝑡

}
= 𝜎0 ∗ ¥𝜀 ℓ𝑝 (𝑡) (10)

By the time translation invariance property, the incremental scheme 𝜎 (𝑡𝑘 +Δ𝑡) = 𝜎 (𝑡𝑘 ) +Δ𝜎𝑡𝑘
follows with Δ𝜎𝑡𝑘 being obviously the cumulative dot product of the backward URSS-response

originating recursively from time 𝑡𝑘 with the vector of slope increments up to time 𝑡𝑘 . A first

ramp of slope Δ𝑆1 = 𝑆1 acts on the VE response over all subsequent time steps. A second ramp

driven by the slope change pulse Δ𝑆2 acts on the VE response delayed from one time-step, and so

Journal of Theoretical, Computational and Applied Mechanics
�� October 2023

�� jtcam.episciences.org 6
�� 18

https://jtcam.episciences.org


André & Noûs Solving viscoelastic problems with ARX models

on. This makes the contribution to the current output Δ𝜎𝑡𝑘 to be the URSS-response sequence

weighted by the current input Δ𝑆𝑘+1 and past input Δ𝑆𝑘 ,Δ𝑆𝑘−1, . . .

Δ𝜎𝑘 = 𝜎 ,𝑘+1
0

Δ𝑆1 + 𝜎 ,𝑘
0

Δ𝑆2 + . . . + 𝜎 ,1
0

Δ𝑆𝑘+1 (11)

which is some kind of standard primer to derive an ARX model. As first element of comparison

between those three approaches, Figure 2 shows the results in the case where the relaxation

spectrum is limited to one mode (SLS rheological element). The considered excitation is made of

three ramps (Case 3) and is shown in the same figure (right axis). The agreement is very good but

one can notice in the insert of Figure 2 that the step-LBTF approach is even more precise around

discontinuities when compared to the full-LBTF. As second element of comparison, we report in

Table 2 the indicative CPU times for the methods and relative discrepancies quantified with the

following standard quality metrics: RMS-error and fit level (in %) defined as

𝑒RMS =

√︂
1

𝑛
𝐿2
2
(𝑦 − 𝑦ref) and 𝑒fit = 100

(
1 −

𝐿2
2
(𝑦 − 𝑦ref)

𝐿2
2
(𝑦 − ⟨𝑦⟩)

)
(12)

where 𝑦 and 𝑦ref will be defined along the text but refer always to model simulations outputs

taken alternatively as the łmeasurementž signal 𝑦 and the model response signal 𝑦ref. ⟨𝑦⟩ refers
to the mean of signal 𝑦, when averaged over the whole number of points (time steps) considered.

The Step-LBTF simulation is taken in Table 2 as the output reference 𝑦ref. We have considered

Method Δ𝑡 (s) CPU time (s) 𝑒RMS (MPa) 𝑒fit (%)

Convolution 0.001 0.0019 40.88 86.4

Convolution (*) 10−5 20.5 3.4 99.90

Full-LBTF (De Hoog) 0.001 0.085 0.45 99.998

Step-LBTF (incremental) 0.001 0.065 ś ś

Step-ARX(1,3,0) 0.001 0.0065 0.28 99.987

Table 2 CPU times, RMS error and Fitting error for the different numerical approaches (DLR model, Case 1
excitation)

here a more refined VE behavior (DLR model) where relaxation runs over a spectrum made of

𝑁 = 50 modes. The simulation holds for the difficult case of the crenel excitation (Case 1), with

Δ𝑡 = 0.001𝑠 and 𝑁 = 7000 time steps. This time step corresponds to a choice which ensures a

negligible error to be made for the material response computed by the three different approaches

and for the full set of excitation types. It is also convenient to produce representative CPU times

to compare the methods. But it must be mentioned that it has no influence on the results, the

‘full’ or ‘step’ Laplace formulations being both based on the Laplace inverse of an exact function,

Equation (3b) or Equation (9). De Hoog’s algorithm behaves equally for any selected sampled

time (with the above-mentioned restriction, that it performs badly near strong discontinuities in

the signal to restore when the full-time vector is passed to it). This effect can be seen in the insert

of Figure 2.

The following comments can be made:

· Firstly, the convolution approach based on a Matlab algorithm appears to be the fastest when

considering the same time step (row 1) as for the other methods. But this approach never supports

the comparison in terms of precision. Generally, time steps more than 100 times smaller (row 2*)

are needed to obtain a solution within the same order of magnitude in precision as for the

present Step-LBTF approach (row 4). Therefore, in the next sections, results obtained with

this convolution routine will be given for Δ𝑡 = 10−5 s to serve as a reference for the different

approaches.

· Secondly, approaches based on Laplace inversion can be compared when looking at row 3

(full-LBTF) and row 4 (Step-LBTF incremental version). The precision appears of same order,

except near discontinuities as mentioned above. For the crenel excitation (Case 1), strong

perturbations over a few time steps around the crenel discontinuity are produced. As outliers due

to a numerical artifact, they have been excluded from the RMS and fitting error computations so
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Figure 2 ARX and LBTF approaches compared in the SLS behavior case, with excitation made of three ramps
(Case 3). Calibration of ARX(1,3,0) model based on Case 4.

as to reflect more exactly the expected performances reached in the case of smooth variations

(like for Case 0). Regarding the CPU times, they also appear of same order but it must be recalled

that the incremental scheme offers a computation by more than 50 times faster when compared

to the repeated application of DeHoog’s algorithm at each time step. Hence the superiority of

the present approach, both in terms of precision and CPU times, keeping in mind that these

simulations are for the homogeneous case.

At this stage, an incremental formulation has been derived from the system input-output

relationship given in Equation (11), assuming zero initial conditions. It produces VE behavior

computations with good accuracy and small CPU times. In itself, this step-LBTF method has

certain advantages. It can be used when the inverse Laplace transform of a relaxation kernel is

not known analytically. It also allows to identify the parameters of the behavior’s law by inverse

method applied to experimental data, for which the łexcitationž signal in deformation would be

described as a piecewise linear function. However, used as is, there is little chance that this

approach will find a useful application by being implemented in a numerical code for applications

to heterogeneous materials, because it formally requires to store in memory all the values of the

variables of previous times; the six components of both the stress and strain tensors stored for

each spatial node point and for each time step may represent a too large amount of data.

Therefore, based on the literature available in control theory for LTI systems, we found the

ARX models an efficient manner to push forward this idea of using an incremental scheme

initially based on the present step-LBTF approach but allowing for a drastic reduction of the

information to be stored in the computer’s memory.

3.2 The step approach achieved with ARX parametric models

ARX AutoRegressive models with eXogeneous inputs (Ljung 1998) are parametric models which

are shown in this paper to be very suited for being substituted to Laplace transforms and at

the same time, providing an incremental approach of time domain computations. When the

convolution problem requires the all input history, autoregressive models provide the model

output at a given time as a linear combination of the only 𝑛𝑎 previous time steps of the output

history and 𝑛𝑏 time steps of the input history. Retardation or delay can be considered using 𝑛𝑘

time steps. The structure of the model is given as

𝜎ARX(𝑡) = −
𝑛𝑎∑︁

𝑖=1

𝑎𝑖𝜎ARX(𝑡 − 𝜏𝑖) +
𝑛𝑏∑︁

𝑗=1

𝑏 𝑗𝜀𝑖𝑑 (𝑡 − 𝜏 𝑗+𝑛𝑘 ) (13)

where 𝜏𝑖 = 𝑖Δ𝑡 for 𝑖 ⩾ 1, 𝜎ARX(𝑡) = 0 for 𝑡 ≤ 0 and 𝜀𝑖𝑑 (𝑡) denotes the ideal (strain) excitation
imposed on the (material REV) system. In command systems vocabulary, the stress figures

the output and 𝜀𝑖𝑑 the input or command signal. Coefficients 𝑎𝑖 ,𝑏 𝑗 are the observer Markov
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parameters. They have to be identified for a selected triplet (𝑛𝑎, 𝑛𝑏, 𝑛𝑘)Ðthus the common

notation ARX(𝑛𝑎, 𝑛𝑏, 𝑛𝑘) used hereafterÐduring a so-called calibration experiment. Providing

this latter to a specially designed optimization procedure2 allows to obtain the optimal set of

parameter vectors 𝑎𝑖 , 𝑏 𝑗 (dimensions and values) in the sense of a minimization of the residuals,

while avoiding any over-adjustment. ARX model identifications are performed in ‘simulation’

mode, that is considering a cost function to minimize which is based on the residuals between the

‘measured’ and ‘model’ signals. We must insist again on the fact that these ARX approaches are

not strictly speaking physical models describing the viscoelasticity phenomenon in connection

with microstructural mechanisms. It is obvious from the mathematical structure of Equation (13),

when compared to the VE behavioral models that are investigated in this study, that the ARX

structure and parameters encode in a compact form the structure of the VE relaxation kernel, its

physical/mechanical parameters and the time step used to produce the calibration experiment.

This latter will be made here from a first simulation obtained in a direct way for a given strain

excitation 𝜀ℓ𝑝 (selected from the test cases referenced in Table 1). Use was made of the step-LBTF

approach to this aim.

The second phase is a validation experiment which aims at quantifying the robustness of the

identified ARX model i.e. its intrinsic character. This means ruling on the fact that parameters 𝑎𝑖
and 𝑏 𝑗 are now able, through the ARX(𝑛𝑎, 𝑛𝑏, 𝑛𝑘) model structure, to reproduce the real behavior

in all situations. We will use the available test cases responses for various input excitations as

data sets for the validation experiment.

It should be noted here that this ARX approach is deployed for a computing strategy but

can be used by experimentalists. In that case a calibration experiment really obtained from a

metrological set-up is necessary and the effect of the measurement noise has to be considered.

Practically, the identification of the observer Markov parameters (polynomial structure of

Equation (13)) will allow the computation of the system Markov parameters which correspond to

a classical state-space representation of the system in control theory. This means that, rather

than Equation (13), we implemented the first-order matrix difference equation

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝜀 (𝑘)
𝜎 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝜀 (𝑘)

(14)

with 𝑥 (𝑘) the state of the system, 𝜎 (𝑘) the output stress observable, 𝜀 (𝑘) the input strain. Matrix

𝐴 is 𝑛×𝑛, 𝐵 is 𝑛× 1 because only one input signal is considered,𝐶 is 1×𝑛 because a single output

signal is considered and𝐷 is 1×1. These matrices will be fully determined from identified observer

Markov parameters and directly given with Matlab System Identification Toolbox. The formulation

of Equation (14) is preferred in our codes because Equation (13) leads to a reconstruction of the

validation experiment which depends from a deadbeat observer gain (not given by the Matlab

System Identification Toolbox) and which is inherent to the compression mechanism that limits

this input-output model to a small number of parameters (Phan and Longman 1996; Wu 2022).

Additionally, we observe that this formulation produces smaller computation times than with

Equation (13). Although both are of the same order, ARX formulations reduce them by a factor 10

compared with the Step-LBTF approach, see last row of Table 2.

4 Simulation results on three VE behavior

In this section, we validate the step approach reached by substituting ARX models to the Laplace

inversion of behavior’s law formalized in Laplace domain. Three VE behaviors will be considered

to assess the methodology which correspond to the three previously introduced behaviors: SLS,

DLR and NIF models.

4.1 SLS model

The response to the SLS model with parameters 𝐸𝑢 = 1000MPa, 𝐸r = 100MPa, 𝜏SLS = 1 s is

computed using Full-LBTF, convolution and Step-LBTF approaches. Figure 2 illustrates how well

2 The functions made available by Ljung from the Identification Toolbox of Matlab will be used for this purpose (Ljung
1998).
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these approaches compare in test case 3 (three successive ramps). We use then the Step-LBTF

approach as the reference output 𝑦ref to identify an ARX model. The basic ARX(1,3,0) is shown in

Table 3 to produce very high level of precision. Of course, for a given calibration experiment

(rows of Table 3), the highest performances are obtained when the case considered for the

validation experiment (columns) is the same (diagonal of Table 3). It is also clear that case 4 used

as calibration experiment (Calib4SLS) offers the best matching conditions for all other cases

considered for the validation. Hence the identified ARX model used for the incremental strategy

will be retained from this test case. For the validation test case Nr3 (Valid3SLS), Figure 2 shows

that the ARX model is perfectly able to compute the expected response incrementally using

only three historical values of the input and Table 2 reports an excellent fitting performance of

99.987 %. Indeed, the RMS error appears more than ten times smaller than with the convolution

product approach (row 2) for a CPU times reduces by a factor larger than 3000. The same applies

for all other validation cases.

validation

Valid0SLS Valid1SLS Valid2SLS Valid3SLS Valid4SLS

ca
li
br
at
io
n

Calib0SLS 99.68 96.89 96.5 98.81 95.14

Calib1SLS 99.68 99.97 99.85 99.93 99.84

Calib2SLS 98.95 98.26 99.99 99.89 99.84

Calib3SLS 98.9 95.91 99.72 99.98 99.63

Calib3SLS 99 96.49 99.83 99.98 99.98

Table 3 Fitting error for the various test cases (0 to 4) and for the different sets of Calibration/Validation numerical
experiments for the SLS behavior’s law

4.2 DLR model

To go beyond the simple SLS case, we consider now the more complex DLR viscoelastic behavior.

It relies on Equation (6a) with a relaxation spectrum described over 𝑑 = 6 decades, with a

discrete set of 𝑁 = 50 relaxation modes and parameters defined like for the SLS simulation:

𝐸𝑢 = 1000MPa, 𝐸r = 100MPa, 𝜏max = 1 s. The Step-LBTF approach is chosen again to identify

the two ARX(1,3,0) and ARX(2,4,0) models considered here. Table 4 gives the fitting error obtained

after identification of ARX(2,4,0) model. It is still clear that Test Case 4 offers a signal with

sufficiently broad information in frequency domain to cover correctly other types of excitation.

Table 4 also illustrates that for this VE behavior, fitting performances, if still excellent, decrease

when compared to the simple SLS behavior. That is also the reason why the simple ARX(1,3,0)

structure now fails in describing accurately the response in various other situations. Figure 3

compares all approaches in test case 1: the input excitation is a crenel of duration 𝑡𝑐 = 3.2 s and

amplitude 𝜀0 = 1 (Right axis). Figure 4 plots the residuals obtained for the different methods

(always considering the Step-LBTF approach for 𝑦ref).

validation

Valid0DLR Valid1DLR Valid3DLR Valid4DLR

ca
li
br
at
io
n Calib0DLR 99.36 89.56 96.89 91.09

Calib1DLR 97.7 96.8 99.15 96.13

Calib3DLR 97.99 87.43 99.93 99.54

Calib4DLR 98.14 86.39 99.85 99.82

Table 4 𝑒fit errors (%) obtained when using the different test cases for calibration and validation experiments to
identify the ARX(2,4,0) model substitutable to the DLR behavior’s law.

The sudden input step induces an instantaneous response. A relaxation stage is then observed

and fully completed here because 𝑡𝑐 > 𝜏max before it restarts oppositely at 𝑡𝑐 when the applied

excitation ceases. It can be observed, especially at discontinuities, that for this more complex
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Method Full-LBTF Convolution Step-LBTF ARS(1,3,0) ARX(2,4,0)

CPU 0.08 21.8 0.19 0.006 0.011

𝑒fit (%) 99.96 98.96 Ð 99.88 99.96
𝜀ℓ𝑝

Case 0
𝑒RMS (𝑀𝑃𝑎) 1.53 1.41 Ð 2.6 1.52

CPU 0.074 1.062 0.161 0.005 0.008

𝑒fit (%) 98.68 99.94 - 112 95.24
𝜀ℓ𝑝

Case 1
𝑒RMS (𝑀𝑃𝑎) 22.98 4.6 Ð 291 43.7

Table 5 Comparison of LBTF and ARX approaches for different excitations with Δ𝑡 = 10−3 s except for the
convolution Δ𝑡 = 10−5 s. DLR behavior’s law.
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Figure 3 Case 1: Crenel strain excitation and DLR viscoelastic behavior response (Valid1DLR). Comparison of LBTF
approaches and ARX(1,3,0) and ARX(2,4,0) parametric models identified on test case 4 (Calib4DLR). Curve
resulting from the convolution 𝜎𝛿 ★ 𝜖ℓ𝑝 obtained for a time step Δ𝑡/100.

behavior’s law involving a spectrum of relaxation times, the ARX(2,4,0) has superior abilities

than ARX(1,3,0). This is clearer from the values of errors reported in Table 4 and the graph of

residuals in Figure 4. Because the ARX mathematical structure does not change and involves very

few time steps, the CPU times are of same order, see Table 5, much less than other approaches,

especially the Step-LBTF which requires the full history of the input command.
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Figure 4 Residuals corresponding to Figure 3. Step-LBTF łsignalž is used as reference for the calibration of ARX
models.

For the smooth excitation (case 0), Figure 5 reports the stress output for all approaches and

Table 5 reports the achieved performances. In that case, both ARX identified models give similar
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Figure 5 ARX and LBTF approaches compared in the DLR behavior case, with excitation made of the smooth
excitation 𝜀ℓ𝑝 = 𝑓 (𝑡) (Case 0). Calibration of ARX models on Case 4.

performances. The RMS errors of 2.6 and 1.5MPa for respectively the ARX(1,3,0) and ARX(2,4,0),

when compared to the maximum signal amplitude of 250MPa correspond to about 1 % and

0.6 %. They were 16.5 and 2.5 % for the crenel excitation. ARX(2,4,0) can then be favored in case

of expected discontinuities in the strain input path, for nearly equal and small CPU times in

any case. The residuals between the reference Step-LBTF signal and all other approaches (not

shown here) behave similarly as those shown in Figure 4 for the crenel excitation, except where

discontinuities take place.

Through these results obtained for the DLR viscoelasticity model, we compare in a way

the ability of this ARX approach to substitute for a collocation method. Of course, if the true

behavior of a material is perfectly described using collocation, then the incremental scheme for

numerical computation follows. Regardless of the CPU time issue, to be considered only from

the perspective of heterogeneous viscoelastic microstructures, it will produce very accurate

simulations. For some materials, other strategies to model viscoelasticity can be favoured such as

the use of fractional derivatives (Friedrich et al. 1999) and lead naturally to consider such non

integer or fractional (NIF) models in the next section.

4.3 NIF models

Finally, the so-called fractional models are considered i.e. models involving a frequency LBTF

with non-integer exponents in terms of the Laplace (or frequency) variable. These later imply a

non-integer differentiation operator in temporal domain. We will consider two of them, having

distinct conceptual basis.

4.3.1 Non-integer Oustaloup model

The first model was proposed initially by Sabatier et al. (2015) to represent recursive schemes of

the impulse response of a LTI system whose mathematical structure is made of Prony series

with recursive factors. We proved that such a model can be related to the DLR approach in the

asymptotic limit of infinite modes of relaxation (André et al. 2003). The formal expression of the

behavior law in Laplace domain is known directly as

𝑌𝑛 (𝑝) =
𝜎 (𝑝)
𝜀 (𝑝) = 𝐸𝑢 + (𝐸r − 𝐸𝑢)

(1 + 𝑝

𝜔high
)𝑛−1

(1 + 𝑝

𝜔low
)𝑛

(15)

with 𝜔high = 1/𝜏min, 𝜔low = 1/𝜏max defining the bounds of a spectrum of relaxation times covered

by the Laplace variable range. The values 𝐸𝑢 = 1000MPa and 𝐸r = 100MPa are the same as

those taken for the previous SLS and DLR behaviors. The relaxation component of the transfer

function 𝑌𝑛 depends on the last three parameters appearing in Equation (15). We consider the

case of 𝑛 = 0.62, 𝜏min = 0.01 s, and 𝜏max = 16 s.
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This transfer function is rather elaborated, see (André et al. 2003) for details. In the limit

𝜔high → ∞, it reduces to the well-known Davidson-Cole approach in frequency domain. In

temporal domain, this transfer function implies non-integer derivatives. Therefore, the simulation

presented in this section with such a transfer function and its łreductionž to ARX models will

illustrate how non-integer models of viscoelasticity, formulated in Laplace domain, can be used

easily in incremental time domain computations. Tables 6 and 7 give the 𝑒fit errors obtained for

the different possible combinations of the set of calibration and validation simulations for both

ARX(1,3,0) and ARX(2,4,0) respectively. The ARX(2,4,0) model appears of course superior to the

ARX(1,3,0). It is seen when comparing the results of line 2 versus column 2 in both tables that it

validation

Valid0Yn Valid1Yn Valid3Yn Valid4Yn

ca
li
br
at
io
n Calib0Yn 99.11 36.77 99.31 97.08

Calib1Yn 96.36 95.13 99.67 95.01

Calib3Yn 95.44 61.2 99.87 99.31

Calib4Yn 97.67 37.12 99.7 99.31

Table 6 Identification of ARX(1,3,0) model: 𝑒fit errors (%) in test cases for calibration and validation experiments.

validation

Valid0Yn Valid1Yn Valid3Yn Valid4Yn

ca
li
br
at
io
n Calib0Yn 99.78 91.37 99.39 97.52

Calib1Yn 98.53 98.5 99.38 99.16

Calib3Yn 99.02 90.93 99.99 99.0

Calib4Yn 99.28 88.54 99.96 99.93

Table 7 Identification of ARX(2,4,0) model: 𝑒fit errors (in %) obtained when using the different test cases for
calibration and validation experiments.

is preferable to consider the test case 1 (the crenel) as calibration test to qualify the ARX model. It

covers better the other validation cases although test case 4 is superior if the input signal is free

of any discontinuity.

Table 8 gathers CPU times, 𝑒fit and RMS errors for different test cases with the specified

ARX calibration model. The 𝑒fit and RMS errors are established with reference taken from the

Step-LBTF. The residuals RMS error given in the 6th and last sub-line corresponds to test case 1

and 4 respectively and can be compared by looking at the signal response variation shown in

Figures 6 and 7. CPU times for ARX models are greatly diminished, by an order of magnitude of

10 in average between the Full-LBTF and ARX(2,4,0) model. Looking at lines 3 and 4 (same test

case 4 but calibration of ARX models from case 1 or 4) show again that the calibration performed

with the reference crenel excitation gives results as good as for the proper test case.

4.3.2 Fractional Rabotnov model

The second considered model relies on the use of a relaxation kernel noted ∋∗𝛼 (𝛽, 𝑡) which was

proposed by Rabotnov and Scott-Blair (Sevostianov et al. 2015). Like the previous one, it is based

on a very tractable analytical expression in Laplace domain which leads to the LBTF

𝑌𝛼 (𝑝) =
𝜎 (𝑝)
𝜀 (𝑝) = 𝐸𝑢 + (𝐸r − 𝐸𝑢)L[∋∗𝛼 (𝛽, 𝑡)] = 𝐸𝑢 + 𝐸r − 𝐸𝑢

𝑝1−𝛼 + 𝛽
. (16)

It does not correspond to the same mathematical structure as given by Equation (15). In the above

expression, 𝛼 denotes the non-integer exponent, 𝛽 the inverse of a (relaxation) time, and the

Rabotnov kernel is defined in temporal domain by

∋∗𝛼 (𝛽, 𝑡) = 𝐸𝛼+1,𝛼+1(𝛽 𝑡𝛼+1) = 𝑡𝛼
∞∑︁

𝑛=0

(𝛽𝑡1+𝛼 )𝑛
Γ [(𝑛 + 1) (1 + 𝛼)] (17)
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Method Full-LBTF Step-LBTF ARS(1,3,0) ARX(2,4,0)

CPU 0.2034 0.1325 0.0054 0.01

𝑒fit (%) 99.99 Ð 99.64 99.9995
𝜀ℓ𝑝

Case 0
Calib0

𝑒RMS (MPa) 1.7 Ð 3.37 0.4

CPU 0.085 0.126 0.005 0.0076

𝑒fit (%) 99.6 Ð 99.65 99.87
𝜀ℓ𝑝

Case 1
Calib1

𝑒RMS (MPa) 26.4 Ð 23.9 14.7

CPU 0.08 0.25 0.006 0.009

𝑒fit (%) 99.99 Ð 99.97 99.99
𝜀ℓ𝑝

Case 4
Calib1

𝑒RMS (MPa) 0.54 Ð 5.8 3.3

CPU 0.079 0.23 0.0065 0.009

𝑒fit (%) 99.99 Ð 99.99 100
𝜀ℓ𝑝

Case 4
Calib4

𝑒RMS (MPa) 0.54 Ð 2.36 0.25

Table 8 Comparison of LBTF (NIF-Yn) and ARX approaches for different excitations (time step Δ𝑡 = 10−3 s) and
ARX calibration models.
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This kernel is expressed through the 2-parameters Mittag-Leffler function 𝐸𝛼+1,𝛼+1 and Γ denotes

the Gamma function. Figure 8 provides an example of the Mittag-Leffler function calculated from

Equation (17) and by performing De Hoog’s inverse Laplace algorithm on the second term of the

rhs of Equation (16). Mittag-Leffler functions are evident functions arising from irreversible
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𝑝1−𝛼 +𝛽

𝛼 = 0.8, 0.6, 0.4, 0.2

Figure 8 Rabotnov Kernel Ð Comparison of expression ∋∗𝛼 (𝛽, 𝑡) defined as a Mittag-Leffler function in Equation (17)

and the Laplace inverse of 1
𝑝1−𝛼+𝛽 : 𝛼 = 0.8 to 0.2 and 𝛽 = 1 i.e. characteristic relaxation time of 1 s).

dynamics like relaxation phenomena in disordered systems under various physical approaches of

‘slow-dynamics’ type. For example in (Weron and Kotulski 1996) the Fractal Time Random Walk

model of dynamical phenomena in complex condensed matter systems is shown to produce

the Mittag-Leffler function, as the inverse Fourier transform of the Cole-Cole function. When

random walks are used to approach anomalous diffusion or relaxation in complex systems,

the introduction of statistically distributed waiting times before each walk step has been also

shown to produce dynamics described by ML functions (Metzler and Klafter 2000). They appear

as the formal solution of Fokker-Planck equations used in a subdiffusion (i.e. non Brownian)

phenomenon (Metzler and Klafter 2002).

Concluding the study with this example presents the interest of being able to produce the

temporal expression of the impulse response and then a convolution product just as it was

possible for the SLS and DLR models but not with the NIF ‘Oustaloup’ model. We simply have in

that case for the ‘Rabotnov’ impulse response:

𝜎𝛿 (𝑡) = L−1𝐻 (𝑝) (𝑡) = 𝐸𝑢𝛿 (𝑡) + (𝐸r − 𝐸𝑢)𝑡−𝛼𝐸1−𝛼,1−𝛼 (−
1

𝜏
𝑡1−𝛼 ) (18)

As a recall, this leads for any loading path 𝜀ℓ𝑝 (𝑡) to compute the convolution product 𝜎 (𝑡) =
(𝜎𝛿 ∗ 𝜀ℓ𝑝) (𝑡). Within a full identical strategy, we just show in Figure 9 the performance of

ARX(1,3,0) model in this new case of wide interest in the field of relaxation phenomena. ARX(1,3,0)

parameters were identified from the simulated outputs to 𝜀
ℓ𝑝
4 (Case 4 of the multisequence loading

path). Simulations were performed for the same values of 𝐸𝑢 = 1000MPa, 𝐸r = 100MPa as

before, with 𝛽 = 1 s−1 and the four 𝛼 values 0.2, 0.4, 0.6, 0.8 considered in Figure 8. The identified

ARX(1,3,0) models gave respectively a fit error of 98.05 %, 98.3 %, 99 % and 99.58 % and were then

used to compute the output to 𝜀
ℓ𝑝
3 . Figure 9 reports the four sets of curves obtained to compare

the Step-LBTF and the ARX responses. Even with this low parameterized ARX structure, all

approaches (Full-LBTF, Convolution, Step-LBTF, ARX) compare again very well in all cases (error

fit above 99.99 %).

5 Conclusion and perspectives

We presented a strategy for solving the quasi-static mechanical problem under any kind of

excitation for a linear viscoelastic material which constitutive law is prescribed in Laplace

domain but usefully substituted by parametric models. For the simple problem of a homogeneous
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calibrated on Case 4.

body, ARX models could provide an interesting alternative to the use of the exact models in the

case where very short computation times are required. For example, an UMAT subroutine in

Abaqus could work as a generic behavior’s law with the ARX parameters being introduced

by the user according to the ARX structure he decided to use. ARX models have been shown

here to perform remarkably well for all types of responses in a mechanical VE problem, in

the linearity domain w.r.t. the input signals. But the more promising interest lies probably

in the use of ARX parametric models as proxy models for behavior’s laws defined in terms

of their Laplace transform (in the frequency domain as produced by DMA for example) that

cannot be readily used in incremental schemes of numerical codes. Therefore, it could provide

straightforward alternatives in the case of heterogeneous media with viscoelastic phases to

produce the homogenized response of the REV or to simulate a complex structure.
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