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Most of the mechanical models for solid state materials are in a methodological framework where a strain
tensor, whatever it is, is considered as a thermodynamic state variable. As a consequence, the Cauchy
stress tensor is expressed as a function of a strain tensorÐand, in many cases, of one or more other state
variables, such as the temperature. Such a choice for the kinematic state variable is clearly relevant in the
case of infinitesimal or finite elasticity. However, one can ask whether an alternative state variable could
not be considered. In the case of finite elastoplasticity, the choice of a strain tensor as the basic, kinematic
state variable is not totally without issue, in particular in relation to the physical meaning of the internal
state variable describing the permanent strains. In any case, this paper proposes an alternative to the
strain tensor as a state variable, which is not based on the deformation (Lagrangian) gradient: the average
conformation tensor of inter-atomic bonds. The purpose, however, is restricted to (1) a particular type of
materials, namely the pure substances (copper or aluminium, for instance), (2) the nanoscale, and (3) the
case of elasticity. The very simple case of two atoms of a pure substance in the solid state is first considered.
It is shown that the kinematics of the inter-atomic bond can be characterized by a so called łconformationž
tensor, and that the tensorial internal force acting on it can be immediately deduced from a single scalar
function, depending only on the conformation tensor: the state potential of free energy (or interaction
potential). Using an averaging procedure, these notions are then extended to a finite set of atoms, namely
an atom and its first neighbours, which can be seen as the łunit cellž of a pure substance in the solid state
considered as a discrete medium. They are also transposed to the Continuum case, where an expression of
the Cauchy stress tensor is proposed as the first derivative of a state potential of density (per unit mass) of
average free energy of inter-atomic bonds, which is an explicit function of the average conformation
tensor of inter-atomic bonds. By applying a standard procedure in Continuum Thermodynamics, it is then
shown that the objective part of the material derivative of this new state variable, at least in the case
when the pure substance can be considered as an elastic medium, is equal to the symmetric part of the
Eulerian velocity gradient, that is the rate of deformation tensor. In the case of uniaxial tension, a simple
relationship is eventually set out between the average conformation tensor and a strain tensor, which is
correctly approximated by the usual infinitesimal strain tensor as long as the conformation variations
(from an initial state of conformation) are łsmallž. From this latter result, and assuming an elastic behavior,
a simple expression for the state potential of density of average free energy is inferred, showing great
similarities withÐbut not equivalent toÐthe classical model of isotropic, linear elasticity (Hooke’s law).

Keywords: solid state, inter-atomic bonds, conformation tensor, continuum mechanics, Cauchy stress tensor,

continuum thermodynamics, uniaxial tension, elasticity model

1 Introduction

Any mechanical behavior model for a solid state material is defined by a set of constitutive

equations, one of these equations generally linking the Cauchy stress tensor 𝝈 to a strain tensor

𝑺 and, if necessary, to so called internal variables (Coleman and Owen 1974), such as a plastic

strain tensor or a damage variable. In most casesÐand for the constitutive equations to be
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thermodynamically admissibleÐthe stress-strain equation is obtained by differentiating a state

potential of density (per unit mass) of Helmholtz free energy𝜓 , namely

𝝈 = 𝜌
𝜕𝜓

𝜕𝑺
(1)

where 𝜌 is the density of the material. Thus, like the eventual internal variables and, in

thermomechanics, the temperature, a strain tensor 𝑺 is one of the variables on which𝜓 depends,

in other words, it is a state variable. Let us first recall that the tensor field of current strains

𝑺 (𝒙𝑡 , 𝑡) links the current configuration (i.e. the set of position vectors of the particles of a solid at

current time 𝑡 : Ω𝑡 = {𝒙𝑡 } ∈ R
3) to a reference one (Ω𝑟 = {𝒙𝑟 } ∈ R

3), most often equal to the

initial configuration. More precisely, and at the local level, i.e. at any point of the solid, denoting

by 𝝋 the Lagrangian description of the solid motion (such that 𝒙𝑡 = 𝝋 (𝒙𝑟 , 𝑡)), 𝑺 is built from the

gradient of this description, 𝑻 = grad𝐿 𝝋, usually called the local deformation gradient. In other

words, a strain tensor, by construction, is irreducibly linked to a Lagrangian gradient, which itself

links Ω𝑡 to Ω𝑟 , whatever the evolution of the configuration between 𝑡𝑟 and 𝑡 .

Since the pioneer work of Eringen (1980), among others, this way of building a mechanical

model has been widely and successfully used. Most of the proven mechanical models are built in

this way. They are sometimes calledÐat least in the isotropic, elastic case, for which 𝑺 is the

only state variable to be taken into accountÐhyper-elastic models to underline that the 𝝈 − 𝑺

relationship derives from a state potential (Adkins 1961; Fu and Ogden 2001). The important point

that must be emphasized is that all these models are actually based on an implicit assumption,

namely that the only kinematic variable which can be associated with the Cauchy stress tensor

is a strain tensorÐor, in the elastoplastic case, an elastic part of a strain tensor. The fact is

that the multitude of experimental results concerning the mechanical behavior of materials

in the solid state does not disprove this assumption, where some component (in a prescribed

basis) of the stress tensor undoubtedly depends on some component of a strain tensor. It is also

true that the numerical simulations based on mechanical models obeying Equation (1) most

often lead to physically relevant results. However, neither the experiments nor the numerical

simulations definitely prove that a strain tensor 𝑺 is the first and only kinematic variable which

can be associated with 𝝈 . At the very least, the question can be asked about the existence of an

alternative kinematic variable. Although it seems without much interest in the elastic case, the

question of whether an alternative to a strain tensor 𝑺 could be used to express the stress tensor

𝝈 is therefore not without interest.

The same question is both relevant and interesting when mechanical models more advanced

than elasticity models are considered, where, in addition to 𝑺 , other state variables (the internal

variables) have to be taken into account. Such models are clearly outside the scope of this study,

which is only devoted to elasticity. It is however interesting to mention them, but only in this

introduction, because they confirm the interest of looking for an alternative kinematic variable to

a strain tensor. The elastoplasticity models are well known examples of such models. In the

presence of finite strains, elastoplasticity models are generally based on the assumption that

the deformation (Lagrangian) gradient tensor 𝑻 must follow a multiplicative decomposition

into an elastic part 𝑻𝑒 and a plastic part 𝑻𝑝 . In the vast majority of cases, the decomposition

𝑻 = 𝑻𝑒 · 𝑻𝑝 is selected (Mandel 1972; Asaro 1983; Boyce et al. 1989). However, it has to be said

that this choice is never clearly justified, either kinematically or physically. Moreover, this way of

decomposing 𝑻 assumes the existence of a so-called intermediate configuration of the considered

solid, which acts as a reference configuration for the calculation of 𝑻𝑒 .

Nevertheless, when the initial (reference) and current configurations are pure geometrical

and kinematical concepts, the intermediate configuration can be defined only on the basis of

a condition on the internal forces, namely that the stress field vanishes, at least locally. The

definition of the intermediate configuration is therefore constrained by the mechanical model. In

other words, the intermediate configuration for a given model is not the same as that for another

model, when the real configurationsÐinitial and currentÐare always the same, irrespective

of the model. Moreover, apart from some very particular and simple cases, like that of the

uniaxial tension of a laboratory specimen, the intermediate configuration cannot be observed: it

is fictitious and, consequently, physically questionable. It is nevertheless from this ill-defined
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concept that a plastic deformation tensor 𝑺𝑝 and an elastic deformation tensor 𝑺𝑒 are proposed.

As for the elastoplasticity models based on an additive decomposition of the rate of deformation

tensor 𝑫 in an elastic part 𝑫𝑒 and a plastic part 𝑫𝑝 (Rice 1971), they purely and simply ignore

the issue of how the elastic and plastic strains might be described, which does not make it easy to

understand their physical meaning.

At best, these last remarks, linked to the previous ones on the intermediate configuration,

leave open the question of the physical meaning of 𝑺𝑒 and 𝑺𝑝 . At worst, they sow doubt on their

physical relevance. At the very least, this calls for considering that the choice of the deformation

(Lagrangian) gradient tensor 𝑻 as the basic, kinematical quantity, from which all the other

kinematical quantities are deduced, and, in the first place, the strain tensors, raises some difficult,

if not insoluble, issues. In any case, the present paper deals with the problem of the existence of

a state variableÐdenoted by 𝚪 in the continuous caseÐas an alternative to a strain tensor 𝑺

and, more generally, without any connection with the Lagrangian gradient of some vector field.

Formally, and due to the fact that this problem is closely linked to that of the definition of the

Cauchy stress tensor 𝝈 , the main question asked in this paper is the following one:

does 𝚪 ≠ 𝑺 exist and does Υ(𝚪, . . .) exist such that 𝝈 = 𝜌
𝜕Υ

𝜕𝚪
? (2)

where Υ denotes the state potential of the Helmholtz free energy density (per unit mass), and where

the state variable 𝚪, if it exists, must be physically relevant and, especially, objective (Eringen

1980; Murdoch 2003; Liu 2004). It should be mentioned that, beyond the above usual mechanical

continuum approaches, other works exist where the problem of defining the Cauchy stress

tensor 𝝈 in terms of quantities other than a strain tensor is addressed. One can quote (Kuzkin

et al. 2015) where 𝝈 is expressed in terms of averaged interparticle distances and forces. In that

paper, the solids are indeed discrete. The approach followed there and the present approach

have a point in common where the basic kinematic quantity, the conformation tensor, is first

defined in the discrete case. However, their purpose is not exactly the same: while the emphasis

is put on the definition of 𝝈 from the interparticle forces in (Kuzkin et al. 2015), the Cauchy

stress tensor is defined in the present study only in the continuous case, and after the notion of

conformationÐinitially introduced in the discrete caseÐhas been transposed to the continuous

case, under precisely defined conditions.

For the sake of enhancement of the main new ideas, the question asked in Equation (2) is

applied only to pure substances in the solid state, in the restricted sense of substances made up of

only one type of atom, and not only one type of molecules. Metallic crystals are a good example

of pure substance, in which defects, punctual or linear (dislocations), can exist. Although it

will be only illustrated for perfect defect-free crystals in this study, the notion of conformation

remains valid for crystals with defects, it is important to underline it. Moreover, the present

study is limited to the elastic case (in the case of a crystal with defects, it must be then assumed

that they are in constant number and, for dislocations at least, immobile). Although the issues

linked to the usual way of modeling the elastoplastic strains are one of the reasons to look for an

alternative to a strain tensor as a state variable, it is indeed necessary to demonstrate that an

alternative variable to 𝑺 can be found in elasticity since, in most of the materials, the mechanical

behavior is first elastic before becoming, possibly, elastoplastic. Another important limitation is

imposed to the purpose of this study. It relates to the spatial scale at which 𝚪 is defined. As will

be seen, the elementary variable from which 𝚪 is deduced is defined for two atoms of a pure

substance in the solid state. As a consequence, a clear physical meaning can be given to this new

state variable only at the atomic scale, and the field described by 𝚪 is really relevant only at the

nanoscaleÐthat of a grain in a metallic material, for instance. No micro-macro methods will be

used in the present paper to investigate the physical meaning of the conformation tensor at

larger scales. By contrast, an equivalent continuous medium (in the sense of an equivalence of

energy, in the present case) will be associated to the real material where the conformation field,

observed at the nanoscale, is discrete.

The paper is organized as follows. Two atoms of a pure substance in the solid state, that is to

say linked by an inter-atomic bond, are considered in Section 2, in order to precisely define the

basic kinematical and force-like quantities, namely, the conformation tensor of the inter-atomic
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bond and the associated, internal force tensor. The discrete modeling of a łunit cellž defined by

an atom and its first neighbours is addressed in Section 3, where an average conformation tensor

is defined, with a clear geometrical interpretation, as well as a tensor of average internal forces.

Section 4 is devoted to the Continuum description of a pure substance in the solid state, where a

continuous, quasi-uniform field of average conformation is first defined. As a direct consequence

of the fact that the energy of the (real) discrete unit cell and that of the (fictitious) continuous one

are equal, an average internal forces tensor (per unit mass) is next proposed. Directly linked to

the latter, a definition is finally proposed for the Cauchy stress tensor. The quantities defined in

Section 4 are considered from a thermodynamic point of view in Section 5. An expression is then

given for the objective part of the material derivative of the average conformation tensor, which

turns out to be the only possible one when the considered pure substance has an elastic behavior.

The uniaxial tension is examined in Section 6, for which a relationship is easily established

between the average conformation tensor and a strain tensor. The particular case of łsmallž,

elastic conformation variations (with respect to an initial state of conformation) is also discussed.

From it, an expression for the state potential of the density of free energy is inferred, which

shows clear similarities withÐbut is not equivalent toÐthat defining the classical model of

isotropic, linear elasticity (Hooke’s law).

Note finally that all the arguments, hypotheses and equations detailed in this study concern a

łfrozenž state of a pure substance in the solid state, observed at the generic time 𝑡 . In other words,

the thermal and viscid effects are not taken into account. As a consequence, the thermodynamic

concepts of internal energy and Helmholtz free energy are equivalent. The latter will be

systematically used in all this paper.

2 Inter-atomic bond conformation tensor and internal force tensor

Let 𝑎 and 𝑏 be two atoms of a pure substance in the solid state, that is to say, two atoms linked

by a so-called łinter-atomic bondž (e.g., a metallic bond). In this section, these two atoms are

assimilated to an isolated system, in the thermodynamic sense of the word. They are therefore

assumed to have no interaction of any kind with the other atoms of the pure substance that

surround them. On the other hand, they do interact with each other, a force resulting from this

interaction.

The characteristic size of these atoms is given by the Bohr radius, which is approximately

5 × 10−2 nm, when the radius of an atomic nucleus is approximately 5 × 10−7 nm: at the atomic

scale, the nuclei can be considered as points. Furthermore, the mass of a nucleon is approximately

10−27 kg when that of an electron is approximately 10−30 kg: the mass of an atom is mainly

concentrated in its nucleus. The distance between the nuclei is denoted by 𝑟Ðwhich has the same

Figure 1 2D representation of two atoms 𝑎 and 𝑏 of a pure
substance in the solid state and of the inter-atomic
bond linking 𝑎 and 𝑏Ðthe scale is thus
approximately 10−1 nm. The mass of each atom is
mainly concentrated in its nucleus, which is
considered as a point. The distance between the
nuclei is 𝑟 and the unit vector of the direction
defined by the nuclei is ±𝒏. The dashed circles
provide a simplistic image of the electron clouds.

±𝒏

𝑟

nucleus (point) of atom 𝑎

nucleus (point) of atom 𝑏

value for all the observers in classical physicsÐand the unit vector of the direction defined by the

nuclei, by ±𝒏, see Figure 1. Both these quantities are objective, and their product, ±𝑟𝒏, is nothing

more than the vector of the relative position of the atomic nuclei. The length of the bond when

no force is applied can be considered as a characteristic length, denoted by 𝑟𝑟 (depending on the

temperature, which however will not be taken into account in this study, where all thermal

effects are neglected). Then, the normalized length of the inter-atomic bondÐor, equivalently, the

Journal of Theoretical, Computational and Applied Mechanics
�� June 2023

�� jtcam.episciences.org 4
�� 18

https://jtcam.episciences.org


Thierry Désoyer Average conformation tensor of inter-atomic bonds

normalized distance between the two nucleiÐis defined by

𝑟 = 𝑟/𝑟𝑟 . (3)

Since 𝑟 and 𝑟𝑟 are objective quantities, so is 𝑟 . The problem of the non-uniqueness of the unit

vector of the direction defined by the two nuclei, ±𝒏, is solved by considering the second-order

tensor

𝑵 = 𝒏 ⊗ 𝒏 = (−𝒏) ⊗ (−𝒏). (4)

As defined by Equation (4), 𝑵 is a symmetric, positive-definite tensor. Its first three invariants are

not independent since

Tr𝑵 = Tr𝑵 · 𝑵 = Tr𝑵 · 𝑵 · 𝑵 = 1. (5)

In other words, 𝑵 is a uniaxial tensor with 1 as sole non-zero eigenvalue. The conformation

tensor1 of the inter-atomic bond is then defined by

𝑪 = ln(𝑟 )𝑵 . (6)

The only non-zero eigenvalue of the symmetric tensor 𝑪 defined by Equation (6) is ln(𝑟 ). In

other words, 𝑪 is a uniaxial tensor. Since it is defined as the product of two objective quantities, it

is also an objective quantity.

The energy of the inter-atomic bond linking atom 𝑎 and atom𝑏 is then classically characterized

by a state potential 𝑝 (𝑟 ) = 𝑞(𝑟 (𝑟 )) commonly called interaction potentialÐa pair potential, in this

case, since the system under consideration reduces to two atoms. No particular expression is

given to 𝑝 (𝑟 ) in this study. It should just be noted that the minimum of this state potential is

obtained for 𝑟 = 1, that is, following Equation (3), 𝑟 = 𝑟𝑟 . In the same classical way, the algebraic

value of the internal force undergone by the atoms is directly given by the first derivative of the

state potential

𝑓 = 𝑝 ′(𝑟 ) =
1

𝑟𝑟
𝑞′(𝑟 ) (7)

since 𝑟 = 𝑟/𝑟𝑟 , see Equation (3). In Equation (7), 𝑝 ′ (resp. 𝑞′) denotes the first derivative of 𝑝 (resp.

of 𝑞). It will be conventionally assumed in the study that 𝑓 > 0 (resp. 𝑓 < 0) when the internal

force is a tensile one (resp. a compressive one). Furthermore, the direction of the internal force is

that defined by the two atomic nuclei, ±𝒏. Hence, the internal force vector is given by 𝒇 = ±𝑓 𝒏.

Like the vector of the relative position of the two nuclei, ±𝑟𝒏, 𝒇 is an objective quantity.

Another expression for the internal force can be proposed, which will make it possible to

once again overcome the problem of the non-uniqueness of the unit vector of the direction

defined by the two nuclei. The state potential is first rewritten as a function 𝑢 (𝑪). For the value

of this function for a given conformation tensor 𝑪 to be an objective quantity, the state potential

𝑢 must depend only on the invariants of 𝑪 , which are linked, as previously mentioned. The

square of the Euclidean norm of the conformation tensor, 𝑪 : 𝑪 = ln2(𝑟 ), is then considered as

the only variable on which 𝑢 depends. Obviously, the state of free energy of the inter-atomic

bond is the same whether the state potential of free energy is expressed as a function of 𝑟 or 𝑟 or

𝑪 . Thus, the relation

𝑢 (𝑪 : 𝑪) = 𝑞(𝑟 ) = 𝑝 (𝑟 (𝑟 )) (8)

is necessarily verified. Given that

2
ln(𝑟 )

𝑟
𝑢 ′

= 𝑟𝑟𝑝
′
= 𝑞′ = 𝑟𝑟 𝑓 (9)

1 In chemistry, the word łconformationž refers to the spatial arrangement of atoms, linked by inter-atomic bonds, in a

given molecule. However, as far as the author is aware, the chemists do not give a tensorial representation to the

conformation.
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where 𝑢 ′ denotes the first derivative of 𝑢, and given also that, in agreement with Equation (6)

𝜕𝑢

𝜕𝑪
= 𝑢 ′ 𝜕 (𝑪 : 𝑪)

𝜕𝑪
= 2𝑢 ′𝑪 = 2 ln(𝑟 )𝑢 ′𝑵 , (10)

the following internal force tensor can then be defined, according to Equation (9):

𝑭 =
1

𝑟

𝜕𝑢

𝜕𝑪
= 𝑓 𝑵 . (11)

Indeed, thus defined, the symmetric tensor 𝑭 has a single non-zero eigenvalue, 𝑝 ′(𝑟 ), which is the

algebraic value 𝑓 of the internal force, see Equation (7). Note also that all the quantities appearing

on the right hand side of Equation (11) are objective. As a consequence, 𝑭 is an objective quantity.

3 Average conformation tensor of inter-atomic bonds and average

internal forces tensor: Discrete case

Any atom of a pure substance has an inter-atomic bond with some of its neighbours, the first ones

but also the second if not the third ones, the fourth... However, the interactions between an atom

and its first neighbours are clearly dominant. In any case, the latter are the only ones which will be

considered subsequently. For metallic materials, at least, this restriction of the range of interactions

allows to consider the domain 𝐷 of the Euclidean space E occupied by an atomÐnumbered 1

throughout this paragraphÐof a pure substance and its first neighbours as a morphological

characteristic of the material (the łunit cellž, in crystallography), see Figure 2. According to

𝒆1

𝒆2

𝒆3

𝑪1
=

1
12

∑12
𝑗=1 𝑪

1, 𝑗+1
=

1
12

∑12
𝑗=1 ln(𝑟

1, 𝑗+1)𝑵 1, 𝑗+1

2

34

5

6 7

𝑟1,2

8, 11

9, 12 10, 13

1

±𝒏1,5

𝐷

Figure 2 Example of a material domain (a łunit cellž) 𝐷Ðan hexagonal close-packed pattern, here. The seven
atomic nucleiÐreduced to points in this studyÐbelonging to the plane of the figure, including the
central one numbered 1, are represented by black discs. An indication of the position of the six other
atomic nuclei, which are out of the plane, is given by the grey discs. Each of them correspond to the
projection, following 𝒆3 and in the plane (1, 𝒆1, 𝒆2) of two atoms, one above the plane (numbered 8, for
instance), the other one below the plane (numbered 11, for instance). Thus defined, the unit cell 𝐷 is a
cuboctahedron, i.e. a convex polyhedron with 14 faces and 12 inter-atomic bonds are to be taken into
account, i.e. that of atom 1 with its 12 first neighbours. Each of these inter-atomic bonds is geometrically
characterized by an elementary conformation tensor 𝑪1, 𝑗+1

= ln(𝑟 1, 𝑗+1)𝑵 1, 𝑗+1, with 𝑟 1, 𝑗+1 = 𝑟 1, 𝑗+1/𝑟𝑟 and
𝑵 1, 𝑗+1

= (±𝒏1, 𝑗+1) ⊗ (±𝒏1, 𝑗+1), see also Equation (6). The average conformation tensor 𝑪1 is built from
these elementary tensors as shown in the figure and Equation (12).

the concepts defined in Section 2, the bond between atom 1 and one of its first neighbours,

𝑗 + 1, is fully characterized by the elementary conformation tensor 𝑪1, 𝑗+1
= ln(𝑟 1, 𝑗+1)𝑵 1, 𝑗+1

where 𝑟 1, 𝑗+1 = 𝑟 1, 𝑗+1/𝑟𝑟 and 𝑵 1, 𝑗+1
= (±𝒏1, 𝑗+1) ⊗ (±𝒏1, 𝑗+1). The average conformation tensor 𝑪1

of atom 1 can then be simply defined as

𝑪1
=

1

𝑁𝑙

𝑁𝑙∑

𝑗=1

𝑪1, 𝑗+1
=

1

𝑁𝑙

𝑁𝑙∑

𝑗=1

ln(𝑟 1, 𝑗+1)𝑵 1, 𝑗+1 (12)

where 𝑁𝑙 is the number of inter-atomic bonds of atom 1 (or, equivalently, the number of its first

neighbours). In Figure 2, 𝑁𝑙 = 12.
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Like 𝑪 in Equation (6), the tensor 𝑪1 is symmetric. Unlike 𝑪 , it has generally three different

non-zero eigenvalues. Since it is defined as the sum of objective quantities, 𝑪1 is an objective

quantity. Its trace is

Tr 𝑪1
=

1

𝑁𝑙

𝑁𝑙∑

𝑗=1

(𝑪1, 𝑗+1 : 𝑮) =
1

𝑁𝑙

𝑁𝑙∑

𝑗=1

ln(𝑟 1, 𝑗+1) (13)

where 𝑮 is the metric tensor. Denoting by �̂� the geometric mean of 𝑟 = 𝑟/𝑟𝑟 , the first invariant of

𝑪1 is then simply such that

Tr 𝑪1
= ln (̂𝑟

1
) = ln(�̂� 1/𝑟𝑟 ). (14)

From this first result, a geometrical interpretation of the three eigenvalues 𝑐1𝑘Ðwhich are real

since 𝑪1 is symmetricÐand the three eigenvectors �̂�1𝑘Ðwhich are mutually orthogonal since

𝑪1 is symmetricÐof the average conformation tensor can be deduced. The partition of 𝑪1 in

spherical and deviatoric parts immediately gives

𝑪1 : (�̂�1𝑘 ⊗ �̂�1𝑘 ) =
1

3
Tr 𝑪1 + dev(𝑪1) : (�̂�1𝑘 ⊗ �̂�1𝑘 ) (15)

or, equivalently, due to Equation (14):

𝑪1 : (�̂�1𝑘 ⊗ �̂�1𝑘 ) =
1

3
ln
( �̂� 1
𝑟𝑟

)
+ dev(𝑪1) : (�̂�1𝑘 ⊗ �̂�1𝑘 ) (16)

from which we get, noting that 𝑪1 : (�̂�1𝑘 ⊗ �̂�1𝑘 ) = 𝑐1𝑘 and dev(𝑪1) : (�̂�1𝑘 ⊗ �̂�1𝑘 ) = 𝑐1𝑘
𝑑
:

𝑟𝑟 exp(3𝑐
1𝑘 ) = �̂� 1 exp(3𝑐1𝑘𝑑 ) (17)

where 𝑐1𝑘
𝑑

denotes the 𝑘−th eigenvalue of dev(𝑪1). The geometrical interpretation of this result

is given in the caption of Figure 3.

The energy of the 𝑁𝑙 inter-atomic bonds of atom 1Ðin other words, the conformation energy

of the discrete domain 𝐷Ðcan be expressed as a function𝑈 of the 𝑁𝑙 elementary conformation

tensors 𝑪1, 𝑗+1. More precisely, so that the value of this function is an objective quantity,𝑈 can

depend on:

• the Euclidean norm of the elementary conformation tensorsÐwhich are objective, see Section 2Ð,

i.e. the distances 𝑟 1, 𝑗+1 between atom 1 and its 𝑁𝑙 first neighboursÐthe single non-zero eigenvalue

of the elementary conformation tensor 𝑪1, 𝑗+1 is indeed ln(𝑟 1, 𝑗+1) = ln(𝑟 1, 𝑗+1/𝑟𝑟 )Ð, and

• the łcrossedž invariants (Spencer 1971; Boehler 1987) of these elementary tensorsÐsince these

tensors are objective, their łcrossedž invariants are also objectiveÐ, i.e. the angles between

inter-atomic bonds. Indeed, the łcrossedž invariant of the uniaxial tensors 𝑪1,𝑝 and 𝑪1,𝑞 simply

reads

𝑪1,𝑝 : 𝑪1,𝑝
= ln(𝑟 1,𝑝) ln(𝑟 1,𝑞) 𝑵 1,𝑝 : 𝑵 1,𝑞

= ln(𝑟 1,𝑝) ln(𝑟 1,𝑞) cos2(𝜔𝑝,𝑞) (18)

where 𝜔𝑝,𝑞 is the angle between inter-atomic bonds 1 − 𝑝 and 1 − 𝑞.

No particular expression of the multi-body potential𝑈 is given in this study. By contrast, it is

postulated that there exists a state potential U of average free energy depending only on the

average conformation tensor of the 𝑁𝑙 inter-atomic bonds belonging to the unit cell 𝐷 , 𝑪1, and

such that

U(𝑪1) =
1

𝑁𝑙
𝑈 (𝑪1,2, 𝑪1,3, . . . , 𝑪1,𝑁𝑙+1). (19)

Following the procedure presented in Section 2, the average internal forces tensor acting on the

inter-atomic bonds is then defined by

𝑭 1
=

1

�̂� 1
𝜕U

𝜕𝑪1
. (20)
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Figure 3 Interpretation of the eigenvalues and eigenvectors of the average conformation tensor. For the sake of
simplicity, the figure is limited to the plane (1, 𝒆1, 𝒆2), see Figure 2. The real (discrete) conformations of
the inter-atomic bonds are on the left part of the figure, their representation according to the average
conformation tensor, on the right part. The averaging process is inevitably accompanied by a loss of
information which makes it impossible to know the position of the first neighbours (grey discs in the real
conformation) of atom 1 (black disc). By contrast, it is possible to define the perimeterÐthe surface in
3𝐷Ðto which they belong on average. Thus, in the spherical case (upper part of the figure) where the

three eigenvalues of the average conformation tensor are equal to 𝑐1𝑘 = 1/3 ln(𝑟 ), the first neighbours of

atom 1 belong in average to the circle of radius 𝑟 = 𝑟𝑟𝑟 = 𝑟𝑟 exp(3𝑐
1𝑘 ). In the non spherical case (lower

part of the figure), they belong to the ellipse with semi-axes 𝑟𝑟 exp(3𝑐
11) and 𝑟𝑟 exp(3𝑐

12) oriented along
�̂�11 and �̂�12Ðin the 3𝐷 case, to the ellipsoid with semi-axes 𝑟𝑟 exp(3𝑐

11), 𝑟𝑟 exp(3𝑐
12) and 𝑟𝑟 exp(3𝑐

13),
oriented along �̂�11, �̂�12 and �̂�13.

For the average free energy of the inter-atomic bonds to be an objective quantity, the state

potential U must actually depend only on the three invariants of 𝑪1 or, equivalently, on its three

eigenvalues. Since 𝑪1 and �̂� 1 are objective quantities, 𝑭 1 is an objective quantity. This symmetric

tensor has generally three different, non-zero eigenvalues.

Three points can finally be emphasized about the average conformation tensor 𝑪1 and the

average internal forces tensor 𝑭 1, namely:

• The average conformation tensor can be defined if the considered pure substance has defects,

punctual (e. g. vacancy defects) or linear (dislocations). In coherence with the assumption of

elastic behavior retained in all these studies, it is only required that these defects are in constant

number and, for dislocations at least, immobile.

• The directions of anisotropy ±𝒏1, 𝑗+1 (those represented by the line segments in Figure 2,

for instance) could be simply taken into account by uniaxial tensors 𝑵 1, 𝑗+1
= (±𝒏1, 𝑗+1) ⊗

(±𝒏1, 𝑗+1), with 1 as the single non-zero eigenvalue. The tensors 𝑵 1, 𝑗+1 would then be new state

variables on which the average free energy U, see Equation (19), would depend, via łcrossedž

invariants (Boehler 1987), such that 𝑪1 : 𝑵 1, 𝑗+1. The immediate consequence of such a choice

would be that the tensor of average internal forces, 𝑭 1, see Equation (20), and that of average

conformation, 𝑪1, would not have the same eigenvectors. Although the mechanical behavior of

crystalline structure, such as the one illustrated in Figure 2, is undoubtedly anisotropic, the

directions of anisotropy 𝑵 1, 𝑗+1 will be ignored in the following sections, in order to focus our

attention on the main concept introduced in this study, namely the average conformation tensor

of inter-atomic bonds.

• From the average internal forces tensor 𝑭 1, the algebraic value of the average force acting on the
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bond between atoms 1 and 𝑗 + 1, whose orientation is characterized by the tensor 𝑵 1, 𝑗+1, is

immediately deduced, which reads

𝐹 1, 𝑗+1 = 𝑭 1 : 𝑵 1, 𝑗+1. (21)

The net force resulting from all the forces exerted on atom 1 by its 𝑁𝑙 neighbours being zero

(static equilibrium), the latter are necessarily such that

𝑁𝑙∑

𝑗=1

𝐹 1, 𝑗+1𝑵 1, 𝑗+1
= 0. (22)

4 Average conformation tensor of inter-atomic bonds, average inter-

nal forces tensor and Cauchy stress tensor: continuum approach

The intrinsically atomistic nature of the matter has been taken into account in the discrete

approach detailed in Section 3. However, this approach leads to a tensorial expression of the

average internal forces from which it is not so easy to study the distribution of the forces in a

given domain (a grain in a metallic material, for instance) and, in particular, how these forces are

mutually balanced. It is therefore interesting to seek to associate to the real, discrete medium

an equivalent continuous medium, fictitious, for which the equilibrium equations (balance of

momentum) are well known, namely div𝐸 (𝝈) + 𝜌𝒇𝑚 = 0 where 𝒇𝑚 is the density (per unit mass)

of body forces ans where div𝐸 denotes the Eulerian divergence.

In the present section and the following ones, any part of a pure substance in the solid state,

whatever its volume, is therefore considered as a continuum medium. A continuous field of

average conformation is supposed to exist in this domain. However, such a field is only physically

relevant if its link with the real, discrete state of inter-atomic bonds is precisely defined. In a very

first step, this requires to precise the scale at which the problem must be addressed. Since the

average conformation tensor has been clearly defined for a nanoscopic domain (the unit cell), and

only in this case, see Equation (12), the nanoscopic scale appears to be the right one. The fact that

the matter, first of all its mass, has undoubtedly a discrete distribution at this scale does not

seem to be a priori compatible with the idea of its description as a continuum. As we will see,

this apparent incompatibility can be overcame, provided that the continuous field of average

conformation is precisely defined, and then physically relevant.

A fictitious, continuum domain Δ is thus associated to the real, discrete unit cell 𝐷 considered

in Section 3. These two domains are said to be equivalent if and only if all the following conditions

are verified:

• their volumes are equal: vol(𝐷) = vol(Δ), see also Figure 4,

• the continuous field of average conformation acting in Δ, 𝚪(𝒙), has łslowž spatial variationsÐin

the sense that there exists a constant tensor 𝚪 such that ∀𝒙 ∈ Δ, 𝚪(𝒙) ≈ 𝚪Ðand is equal to the

average conformation tensor defined in the discrete caseÐand therefore has the same physical

meaning as it, cf. Section 3, in particular Figure 3: 𝚪 = 𝑪1,

• the energy of the discrete medium 𝐷Ðwhich reduces to the energy of the inter-atomic bonds in

the present studyÐis equal to that of the continuum medium Δ. The calculation of this latter is

based on the assumption that there exists a state potential of free energy density (per unit mass)

Υ, depending only 𝚪. Thus, from Equation (19), we have

𝑈 (𝑪1,2, 𝑪1,3, . . . , 𝑪1,𝑁𝑙+1) = 𝑁𝑙U(𝑪1) ≈

∫

Δ

𝜌 (𝒙)Υ(𝚪)d𝑉 . (23)

As we will see later, the quasi-uniformity of the average conformation field acting in Δ implies

that of the density 𝜌 , see Section 5 and equation (44). We immediately infer that Equation (23)

can be rewritten as

𝑈 (𝑪1,2, 𝑪1,3, . . . , 𝑪1,𝑁𝑙+1) = 𝑁𝑙U(𝑪1) ≈ 𝜌 vol(Δ)Υ(𝚪). (24)
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2
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±𝒏1,5

1

𝑪1
=

1
12

∑12
𝑗=1 𝑪

1, 𝑗+1

𝐷

real, discrete unit cell

∀𝒙 ∈ Δ, 𝚪(𝒙) ≈ 𝚪 = 𝑪1

Figure 4 [Left] Example of a real, discrete domain 𝐷Ðthe unit cell of an hexagonal close-packed pattern, as in
Figure 2. [Right] Equivalent continuous unit cell Δ. The latter is said to be łequivalentž to the former
insofar as: i) their volumes are equal: vol(𝐷) = vol(Δ); ii) the continuous field of average conformation
acting in Δ, 𝚪(𝒙), is supposed to have łslowž spatial variationsÐconsequently, 𝚪 exists such that ∀𝒙 ∈ Δ,
𝚪(𝒙) ≈ 𝚪; iii) the average conformation tensor associated to the real, discrete unit cell 𝐷 , 𝑪1, and the one
characterizing approximately the continuous field of average conformation acting in Δ are equal: 𝚪 = 𝑪1;
iv) the mechanical energy of the inter-atomic bonds, which is the only energy considered in this study, is
the same in the discrete case and in the continuous case. In other words, the free energy of 𝐷Ð12U(𝑪1),
according to Equation (19)Ðand that of Δ are equal, as shown in Equation (24), where Υ denotes the state
potential of free energy density (per unit mass), supposed to depend only on 𝚪.

The average internal forces tensor acting on the inter-atomic bonds, actually being a density

(per unit mass) of internal forces, is then given by, as in Section 3,

𝚽 =
1

𝑟

𝜕Υ

𝜕𝚪
(25)

where, according to Equation (14), 𝑟 = 𝑟𝑟 exp(Tr 𝚪). In strict logic, the internal forces define a

continuous field in Δ, 𝚽(𝒙). However, like those of average conformation and density, this field

is quasi-uniform and such that ∀𝒙 ∈ Δ, 𝚽(𝒙) ≈ 𝚽.

If the state potential of average free energy density Υ depends only on the three invariants

of 𝚪, the quantity Υ(𝚪) is objective. Since 𝑟 is an objective quantity, 𝚽 is thus also an objective

quantity. The average internal forces tensor as defined in Equation (25), however, is never taken

into account in Continuum Mechanics, where the basic force-like quantity unanimously used is

the Cauchy stress tensor, 𝝈 . It is suggested here that the latter can be directly deduced from

Equation (25), on the basis of a simple dimensional analysis. It reads as

𝝈 = 𝜌𝑟𝚽 = 𝜌
𝜕Υ

𝜕𝚪
. (26)

It has been underlined previously that Υ must actually depend on the three invariants of 𝚪Ðand

only on them if the anisotropy of the pure substance is not taken into account, which is the case

in the present study, as stipulated in the last part of Section 3. If choosing the invariants Tr 𝚪,

Tr(𝚪 · 𝚪) and Tr(𝚪 · 𝚪 · 𝚪), the Cauchy stress tensor then reads

𝝈 = 𝜌
( 𝜕Υ

𝜕 Tr 𝚪
𝑮 + 2

𝜕Υ

𝜕 Tr 𝚪 · 𝚪
𝚪 + 3

𝜕Υ

𝜕 Tr 𝚪 · 𝚪 · 𝚪
𝚪 · 𝚪

)
. (27)

This equation shows that, in the case of isotropic elasticity, the average conformation tensor 𝚪 and

the Cauchy stress tensor 𝝈 have the same eigenvectors. Furthermore, as defined by Equation (26)

or Equation (27), and since 𝜌 , 𝑟 and 𝚽 are objective quantities, 𝝈 is an objective quantity. However,

above all, such a definition of the Cauchy stress tensor is a satisfactory answer to the central

question asked in the present study, as shown in Equation (2): 𝑺 denoting some strain tensor,

𝚪 ≠ 𝑺 existsÐphysically relevant and, especially, objectiveÐand Υ(𝚪) existsÐis only supposed to

exist, at the moment, with the general definition given by Equation (24)Ðsuch that 𝝈 = 𝜌𝜕Υ/𝜕𝚪.

It must be recalled, however, that the stresses defined by Equation (26) are relative to a łfrozenž

state of a pure substance in the solid state, in other words, they do not take into account possible

viscid effects.

There is a clear analogy between the previous definition of the Cauchy stress tensor and that,

usual in Solid Mechanics, where the relation between 𝝈 and a strain tensor 𝑺 is also obtained
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by differentiating a state potential of free energy density, see Equation (1). The two points of

view differ in an essential way: when a strain tensor 𝑺 , whatever it is, is intrinsically linked to a

reference configuration, see Section 1, the average conformation tensor 𝚪 is independent of any

reference configuration: its definition involves only a reference length 𝑟𝑟 ∈ R
+, which has been

precisely defined in Section 2, i.e. for only two isolated atoms, interacting only with each other.

In other words, the average conformation tensor is defined on the current configuration at any

time 𝑡 only (that of Δ on Figure 4 for example, that can be noted Δ𝑡 ∈ R
3)Ðin the sense that it

is not linked to any Lagrangian gradientÐwhen a strain tensor is intrinsically linked to the

transformation between a reference configuration (time 𝑡𝑟 ; Δ𝑟 ∈ R
3 in the case of Figure 4) and

the current configuration since it is built from the deformation gradient 𝑻 , see Section 1, which

irreducibly links these two configurations, whatever the evolution between times 𝑡𝑟 and 𝑡 . It can

be also noted that, more generally, no Lagrangian gradient of any physical quantity has been

used in Sections 2 and 3 of this study, nor in the present section.

It should finally be noted that, if the transposition to the continuous case of the equilibrium

equation of the discrete case, see Equation (22), is none other than the linear balance momentum

equation, that is, in the quasi-static case and neglecting the mass forces, such as those due to

gravity,

div𝐸 (𝝈) = 0, (28)

the relation between the Cauchy stress tensor 𝝈 (continuum case) and the inter-atomic forces

discussed in Section 3, see Equation (21), is far from being obvious. This relation will not be

studied in this paper, where the emphasis is clearly put on the geometrical notion of conformation.

It should be studied in future studies, for instance based on (Parthasarathy et al. 2018) where the

notions of static stress and vibration stress are defined at the atomic scale, on the basis of a

refined description of atomic motions.

5 Thermodynamics and material derivative of the average conforma-

tion tensor of inter-atomic bonds

Like a strain tensor 𝑺 in the classical, thermodynamic approach to the modeling of the mechanical

behavior of materials in the solid state, the average conformation tensor of inter-atomic bonds

defined in Section 4, 𝚪, is now considered as a state variable. By contrast, and unlike the material

derivative of 𝑺 , which is fully determined by the kinematics of the considered body, the material

derivative of 𝚪 is a priori unknown. The purpose of this section is to determine the latter,

following a thermodynamic approach. As previously mentioned, however, it is here restricted to

the elastic case. From a nanoscopic point of view, this means that, at any time of the evolution of

the pure substance considered in the solid state:

• each atom has the same first neighbours. Defects such as dislocations can exist in the lattice, but

in constant number and immobile (in other words, no plasticity),

• each atom is always bonded to its first neighbours by active inter-atomic bonds. These bonds can

vary in length and direction but they cannot disappear or break (in other words, no damage).

Neglecting all the thermal effects (that is, in particular, ¤𝑇 = 0, where 𝑇 is the absolute

temperature and where ¤𝑇 denotes its material derivative), the first law of the Thermodynamics

reduces to (Coleman and Gurtin 1967; Garrigues 2007)

𝜌 ¤𝑒 = 𝝈 : 𝑫 (29)

where 𝑒 is the state potential of the density (per unit mass) of average internal energy, depending

only on 𝚪 in the present case, and 𝑫 , the rate of deformation tensor, i.e. the symmetric part of the

Eulerian velocity gradient.

The state potentials of the density of average internal energy 𝑒 and of the average free

energy Υ are related by 𝑒 = Υ + 𝑠𝑇 where 𝑠 is the state function of the density (per unit mass)

of entropy. An alternative and local expression for the first law of the Thermodynamics, see

Equation (29), is then immediately deduced, namely

𝜌 ¤Υ + 𝜌𝑇 ¤𝑠 = 𝝈 : 𝑫 (30)
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which can be rewritten, since Υ, like 𝑒 , depends only on 𝚪, as

𝜌𝑇 ¤𝑠 = 𝝈 : 𝑫 − 𝜌
𝜕Υ

𝜕𝚪
: ¤𝚪. (31)

The local expression of the second principle of the ThermodynamicsÐwhich expresses that the

(per unit volume) dissipated power or intrinsic dissipation, 𝜔 , is non-negativeÐreads, in the

isothermal case,

𝜔 = 𝜌𝑇 ¤𝑠 ⩾ 0, ∀𝚪, ∀𝑫 (32)

where the quantifiers indicate that this inequality must always be fulfilled, that is, whatever the

mechanical state, 𝚪, and whatever the evolution, 𝑫 . From Equation (31), Equation (32) can be

immediately rewritten as

𝜔 = 𝝈 : 𝑫 − 𝜌
𝜕Υ

𝜕𝚪
: ¤𝚪 ⩾ 0, ∀𝚪, ∀𝑫 (33)

or, equivalently, due to Equation (26),

𝜔 = 𝝈 : (𝑫 − ¤𝚪) ⩾ 0, ∀𝚪, ∀𝑫 . (34)

Therefore, the material derivative of the average conformation tensor turns out to be constrained

by the Thermodynamics, that is to say that 𝚪 is an internal state variable (Coleman and Owen 1974).

By definition, the mechanical behavior of a material is referred to as elastic when the intrinsic

dissipation 𝜔 is zero for all the states and evolutions. However, it should be kept in mind here

that the material derivative of an objective, non scalar quantity, cannot be objective (Garrigues

2007). As is also the case for ¤𝚪, which is necessarily the sum of an objective part �̂�Ðdirectly

linked to the material derivative of its eigenvalues which, on the contrary, are objectiveÐand a

non objective part �̌�Ðdue to the material derivative of its eigenvectors, which cannot be objective.

With the hypothesis of elasticity, this latter remark makes it possible to write

𝜔 = 𝝈 : (𝑫 − ¤𝚪) = 𝝈 : (𝑫 − (�̂� + �̌�)) = 0, ∀𝚪, ∀𝑫 . (35)

A first condition for this equality to be ever verified is easy to get since the rate of deformation

tensor, 𝑫 , is objective. It simply reads

�̂� = 𝑫 . (36)

It is not so immediate to give a mathematical expression for �̌�, knowing that its scalar product

with 𝝈 must always be equal to zero, see Equation (35). The skew-symmetric part of the Eulerian

velocity gradient,𝑾 , is here helpful. It is such that, whatever the vector 𝒂, the vector defined by

𝑾 · 𝒂 is orthogonal to 𝒂. Applied to the eigenvectors of 𝚪, 𝑷𝑘Ðwhich are the same as those of

the Cauchy stress tensor in the isotropic case, see Equation (27)Ðthis inherent property of the

skew-symmetric tensors ensures that the following symmetric tensor (𝛾𝑘 denote the eigenvalues

of 𝚪):

�̌� =

3∑

𝑘=1

𝛾𝑘 ((𝑾 · 𝑷𝑘 ) ⊗ 𝑷𝑘 + 𝑷𝑘 ⊗ (𝑾 · 𝑷𝑘 )) (37)

is such that its scalar product with 𝝈 is always equal to zero, whatever the observer. Since𝑾

is a non objective quantity, �̌� as defined by Equation (37) is a non objective quantity. From

Equations (36) and (37), we immediately get that

¤𝚪 = 𝑫 +

3∑

𝑘=1

𝛾𝑘 ((𝑾 · 𝑷𝑘 ) ⊗ 𝑷𝑘 + 𝑷𝑘 ⊗ (𝑾 · 𝑷𝑘 )) (38)

is a condition for the intrinsic dissipation 𝜔 , see Equation (35), to be always zero, whatever

the observer. It must however be noticed that this condition is sufficient but not necessary: by
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multiplying the second term on the right hand side of Equation (37) by any real number, another

expression for �̌� is obtained which is also such that its scalar product with 𝝈 is equal to zero. In

any event, the expression for �̌� must be such that its scalar product with 𝝈 is equal to zero.

Accordingly, the power density (per unit volume) of internal forces, 𝜋int = −𝝈 : 𝑫 , can always be

written as

𝜋int = −𝝈 : ¤𝚪. (39)

It may also be noted that, from the expression of the average conformation tensor in the

orthonormal basis defined by its eigenvectors, namely

𝚪 =

3∑

𝑘=1

𝛾𝑘 (𝑷𝑘 ⊗ 𝑷𝑘 ) (40)

which immediately gives the material derivative form

¤𝚪 =

3∑

𝑘=1

¤𝛾𝑘 (𝑷𝑘 ⊗ 𝑷𝑘 ) +

3∑

𝑘=1

𝛾𝑘 ( ¤𝑷𝑘 ⊗ 𝑷𝑘 + 𝑷𝑘 ⊗ ¤𝑷𝑘 ) (41)

the objective part of ¤𝚪, according to Equation (36)Ðand due to the fact that the material derivatives

of the eigenvalues 𝛾𝑘 are objectiveÐ, is such that

�̂� = 𝑫 =

3∑

𝑘=1

¤𝛾𝑘 (𝑷𝑘 ⊗ 𝑷𝑘 ) (42)

and the non objective part of ¤𝚪, according to Equation (37)Ðand due to the fact that the material

derivatives of the eigenvectors 𝑷𝑘 are non objectiveÐis such that

�̌� =

3∑

𝑘=1

𝛾𝑘 ((𝑾 · 𝑷𝑘 ) ⊗ 𝑷𝑘 + 𝑷𝑘 ⊗ (𝑾 · 𝑷𝑘 )) =

3∑

𝑘=1

𝛾𝑘 ( ¤𝑷𝑘 ⊗ 𝑷𝑘 + 𝑷𝑘 ⊗ ¤𝑷𝑘 ). (43)

As defined by Equation (37) or Equation (43), �̌� is a traceless tensor, i.e. Tr ¤𝚪 = Tr𝑫 .

Furthermore, from the local expression of the law of conservation of mass, we also have

Tr𝑫 = − ¤𝜌/𝜌 . Consequently,

Tr ¤𝚪 = −
¤𝜌

𝜌
(44)

or, equivalently, due to Equation (14)Ðwhere 𝚪 can be substituted to 𝑪1 since these two tensors

are equal, see Section 4:

¤̂𝑟

𝑟𝑟
= −

¤𝜌

𝜌
. (45)

Denoting by 𝜌0 (resp. by �̂�0) the density (resp. the average distance between the atomic nuclei) at

some initial time, Equation (45) immediately gives

�̂�

�̂�0
=
𝜌0

𝜌
(46)

which means that, if 𝜌 → 0, then �̂� → ∞, and if 𝜌 → ∞, then �̂� → 0. Since the mass of an atom

is essentially concentrated in its nucleus (see the very first part of Section 2), these two limit

cases are formally satisfactory. It must be underlined, however, that they are physically irrelevant,

at least in the present study: the first one, �̂� → ∞, because the length of an inter-atomic bond,

that is to say, the distance between two atomic nuclei, is always finite in the solid state; the

second one, �̂� → 0, because the fusion of atomic nuclei is obviously not an elastic phenomenon.
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6 Example of an elasticity model based on the conformation tensor

As noted previously, the average conformation tensor, 𝚪, is not a strain tensor, 𝑺 , because its

definition does not depend upon any Lagrangian gradient. However, from an experimental

point of view, it is not without interest to seek for a relationship between 𝚪Ðat least some of its

componentsÐand 𝑺 , whatever this strain tensor is: at the microscopic scale, the tensor 𝑺Ðat

least some of its componentsÐis indeed measurable when the tensor 𝚪 is only accessible by

measurements at the nanoscale. Such a relationship can be easily defined in the case of uniaxial

tension, which is also interesting when the conformation variations (from an initial state of

conformation) are łsmallž and reversible, in the sense that it suggests a certain mathematical

expression of the state potential of specific free energy Υ introduced in Section 4. Consider the

𝒆2

𝒆1

𝐿
0

𝑊0

𝒆3𝑂

𝑥01 ∈ [0, 𝐿0]

𝑥02 ∈ [−𝑊0/2, 𝑊0/2]

𝑥03 ∈ [−𝑇0/2, 𝑇0/2]

𝑡 ⩾ 0

𝑑𝐿1 (0, 𝑥02, 𝑥03, 𝑡) = 0

𝑑𝐿1 (𝐿0, 𝑥02, 𝑥03, 𝑡) = 𝐿0𝛼𝑡 with 𝛼 > 0

Figure 5 2D representation of the gauge section of a flat tensile specimen. The Lagrangian displacement field is
denoted by 𝒅𝐿 (𝒙0, 𝑡), where 𝒙0 is the initial position vectorÐfor the observer defined by point 𝑂 and
the orthonormal basis (𝒆1, 𝒆2, 𝒆3)Ðof some point of the gauge section, and where 𝑡 denotes the time.
The lateral edges of the gauge section are free from external stress while its upper and lower edges are
such that only the components following 𝒆2 and 𝒆3 of the external stress vector are zero. Moreover, the
constraint 𝑑𝐿2 (𝑥01, 0, 𝑥03, 𝑡) = 0 is added to the kinematic boundary conditions to avoid any rigid body
motion. All these boundary conditions and constraints are such that the Lagrangian gradient field of
𝒅𝐿Ðand consequently, any strain field, whatever the considered strain tensor 𝑺 isÐis uniform in the entire
gauge section. Eventually, it may be noted that, from the kinematic boundary condition on the upper edge
of the gauge section, it is immediately deduced that 𝛼𝑡 is nothing else than the axial strain of the gauge
section, usually denoted by 𝜖11 in the case of infinitesimal strains.

gauge section of a flat tensile specimen whose dimensions are defined in Figure 5 and whose

constitutive material is a pure mono-atomic one. The pure metals are an example of such materials,

which are however often, at the microscopic or larger scale, in the form of polycrystals, i.e. a set

of crytallites or grains of varying sizes and orientations, and separated by grain boundaries.

Obviously, the concept of conformation, and even more this of average conformation, introduced

in the present study do not make sense physically on the interfaces that are the grain boundaries.

So we must also assumed that the constitutive material of the specimen has no grain boundaries,

which means that it is not only mono-atomic but also monocrystalline. In other words, the

characteristic size of the specimen (e.g. 𝐿0, see Figure 5) must be approximately this of the crystal

of its constitutive material.

Due to the kinematic boundary conditions, the Lagrangian description of the displacement

field of the points of the gauge section, 𝒅𝐿 , is simpleÐfor the observer defined by point 𝑂 and the

orthonormal basis (𝒆1, 𝒆2, 𝒆3), see Figure 5. It reads

𝒅𝐿 (𝒙0, 𝑡) = 𝑥01𝛼𝑡𝒆1 + 𝑥02𝑔(𝑡)𝒆2 + 𝑥03𝑔(𝑡)𝒆3 (47)
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where 𝛼 > 0 and where the function 𝑔(𝑡), such that 𝑔(𝑡0 = 0) = 0 and 𝑔′(𝑡) < 0, ∀𝑡 , does not

have to be more specified here. From the Lagrangian gradient of 𝒅𝐿 , which defines a uniform

field in the gauge section, the field of deformation gradient is immediately deduced, namely

𝑻 = grad𝐿 (𝒅) + 𝑮 = (1 + 𝛼𝑡) (𝒆1 ⊗ 𝒆1) + (1 + 𝑔(𝑡)) (𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3). (48)

It may here be noted that any strain field, whatever the considered strain tensor 𝑺 , inherits the

property of uniformity of 𝑻 , including the infinitesimal strain field:

𝝐 = 𝛼𝑡 (𝒆1 ⊗ 𝒆1) + 𝑔(𝑡) (𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) . (49)

From Equation (47), the uniform field of the Eulerian velocity gradient 𝒗 is also deduced:

grad𝐸 (𝒗) =
𝛼

1 + 𝛼𝑡
(𝒆1 ⊗ 𝒆1) +

¤𝑔(𝑡)

1 + 𝑔(𝑡)
(𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3) . (50)

Hence, since the tensor grad𝐸 (𝒗) thus defined turns out to be symmetric:

𝑫 = sym(grad𝐸 (𝒗)) = grad𝐸 (𝒗), 𝑾 = skw(grad𝐸 (𝒗)) = 0. (51)

The solution to Equation (38) governing the material derivative of 𝚪 is then immediately obtained.

It reads at any time (and at any point, since the field defined by 𝚪 is uniform in the entire gauge

section)

Γ11(𝑡) − Γ11(0) = ln(1 + 𝛼𝑡),

Γ22(𝑡) − Γ22(0) = ln(1 + 𝑔(𝑡)) = Γ33(𝑡) − Γ33(0),

Γ𝑖 𝑗 (𝑡) − Γ𝑖 𝑗 (0) = 0 when 𝑖 ≠ 𝑗 .

(52)

There is no physical argument to claim that the initial state of average conformation 𝚪(0)

vanishes. Quite the contrary, from Equation (17) and Figure 3, 𝚪(0) ≠ 0 describes a quite realistic

physical condition, namely that the first neighbours of some atom initially belong to the ellipsoid

with semi-axes 𝑟𝑟 exp(3𝛾
1
0 ), 𝑟𝑟 exp(3𝛾

2
0 ) and 𝑟𝑟 exp(3𝛾

3
0 ), oriented along 𝑷 1

0 , 𝑷
2
0 and 𝑷 3

0 (here, 𝛾𝑖0
denotes the 𝑖-th eigenvalue of 𝚪(0) and 𝑷 𝑖

0, its 𝑖-th eigenvector; it can also be recalled that 𝑟𝑟 is a

reference length). However, and in order to facilitate the presentation of the main results, it

will be assumed here that 𝚪(0) = 0Ðwhich is also a realistic condition, but very particular in

the sense that the first neighbours of some atom initially belong to the sphere with a radius 𝑟𝑟 .

With this initial condition, Γ11(𝑡) is nothing else than the true (natural) longitudinal strain, and

Γ22(𝑡) = Γ33(𝑡), the true transverse strain. But it is well known that the true strains, as long as

they remain łsmallž, are adequately approximated by the corresponding components of the

infinitesimal strain tensor, see Equation (49). Thus, when 𝛼𝑡 ≪ 1 and |𝑔(𝑡) | ≪ 1, Equation (52)

simply becomes

Γ11(𝑡) ≈ 𝜖11(𝑡) = 𝛼𝑡,

Γ22(𝑡) = Γ33(𝑡) ≈ 𝜖22(𝑡) = 𝜖33(𝑡) = 𝑔(𝑡),

Γ𝑖 𝑗 (𝑡) = 𝜖𝑖 𝑗 (𝑡) = 0 when 𝑖 ≠ 𝑗 .

(53)

In other words, in the case of uniaxial tension restricted to small strains, and for the observer

defined by point 𝑂 and the orthonormal basis (𝒆1, 𝒆2, 𝒆3), see Figure 5, 𝚪 ≈ 𝝐 . In no way can this

particular result be generalized, mainly because, as already mentioned, 𝚪 is not a strain tensor.

However, this same result suggestsÐbut definitely not provesÐthat, in the case of small, elastic

variations of conformation, that is to say when the eigenvalues of 𝚪 are such that |𝛾𝑘 | ≪ 1, an

expression of the average specific free energy of the inter-atomic bonds could be analogous to

that underlying the very classical isotropic, linear elasticity model, namely

Υ(𝚪) =
1

2𝜌0
(𝜆(Tr 𝚪)2 + 2𝜇 Tr 𝚪 · 𝚪) with 𝜇 > 0 and 𝜆 > −

2

3
𝜇 (54)
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where 𝜌0 is the initial density, and where 𝜆 and 𝜇 are analogous to the Lamé parameters. From

Equation (54), and in agreement with the general expression of the Cauchy stress tensor previously

defined, see Equation (26), we get

𝝈 =
𝜌

𝜌0
(𝜆 Tr 𝚪𝑮 + 2𝜇𝚪). (55)

With the additional hypothesis that 𝜌/𝜌0 ≈ 1, which is not inadmissible in the case of infinitesimal

strains, Equation (55) is therefore equivalent to the famous Hooke’s law, where the infinitesimal

strain tensor is replaced by the average conformation tensor 𝚪. But when Hooke’s law is such

that the initial stresses are zeroÐsince, from the definition of the strains with respect to an initial

state, the latter are zero at initial time ś, the stresses defined by Equation (55) might well be non

zero since the initial state of conformation has no reason to be zeroÐin Equation (53), it has been

assumed that 𝚪(0) = 0 only for the sake of brevity.

If one accepts, for łsmallž conformation variations, Equation (55) as isotropic, elasticity

model, a generic structural problem based on the average conformation tensor can be formulated.

In agreement with one of the main hypotheses adopted in this study, it relates only to structures

whose constitutive material is a pure substance in the solid state. As always in the field of

Mechanics, two equivalent formulations of the problem can be envisaged, a Lagrangian one and

an Eulerian one. To highlight the fact that 𝚪 is without any connection with the Lagrangian

gradient of some vector field, the problem is here written in Eulerian description, for the material

fieldsÐsuch that 𝚪𝐸 (𝒙𝑡 , 𝑡), Eulerian field of the average conformation existing in the current

configuration, Ω𝑡 , of the considered structureÐas well as for the differential operatorsÐsuch that

div𝐸 (𝝈), Eulerian divergence of the stress field. The Eulerian field of the current position vector

of the points of the considered structure is denoted by 𝚵𝐸 (𝒙𝑡 , 𝑡) (thus, trivially, 𝚵𝐸 (𝒙𝑡 , 𝑡) = 𝒙𝑡 ).

The data of the problem are:

• the material parameters 𝜇 > 0 and 𝜆 > −(2/3)𝜇,

• the initial configuration for any observer of the considered structure, Ω0,

• the initial fields of density 𝜌0(𝒙0) = 𝜌0 of average conformation 𝚪0(𝒙0) = 0, and of Cauchy

stresses 𝝈0(𝒙0) = 0,

• the velocity field, 𝑽𝑡 (𝒙𝑡 ), acting on the part 𝜕Ω𝑉
𝑡 of the current boundary 𝜕Ω𝑡 of the structure,

and the stress vector rate field, 𝒇𝑡 (𝒙𝑡 ), acting on the part 𝜕Ω
𝑓
𝑡 of 𝜕Ω𝑡 ,

• the field of density of body forces, 𝒇𝑚 (𝒙𝑡 ), acting in Ω𝑡 , e.g. 𝒇
𝑚
= 0 or 𝒇𝑚 = 𝒈, gravitational

acceleration.

The static equilibrium problem is then to find the current configuration, Ω𝑡 , and the fields defined

on the whole configuration 𝚵𝐸 (𝒙𝑡 , 𝑡), 𝜌𝐸 (𝒙𝑡 , 𝑡), 𝚪𝐸 (𝒙𝑡 , 𝑡) and 𝝈𝐸 (𝒙𝑡 , 𝑡) such that

Ω𝑡 = {𝚵𝐸 (𝒙𝑡 , 𝑡) = 𝒙𝑡 }

¤𝜌𝐸 = −𝜌𝐸 Tr grad𝐸 ( ¤𝚵)

¤𝚪𝐸 = sym(grad𝐸 ( ¤𝚵)) + 2

3∑

𝑘=1

𝛾𝑘𝐸sym((skw(grad𝐸 ( ¤𝚵)) · 𝑷 𝑘
𝐸 ) ⊗ 𝑷𝑘

𝐸 )

𝝈𝐸 =
𝜌𝐸

𝜌0
(𝜆 Tr 𝚪𝐸𝑮 + 2𝜇𝚪𝐸)

div𝐸 (𝝈) + 𝜌𝐸𝒇
𝑚
= 0

(56)

satisfying the initial conditions (𝑡0 = 0)

Ω0 = {𝚵𝐸 (𝒙0, 0) = 𝒙0}

𝜌𝐸 (𝒙0, 0) = 𝜌0(𝒙0) in Ω0

𝚪𝐸 (𝒙0, 0) = 𝚪0(𝒙0) in Ω0

𝝈𝐸 (𝒙0, 0) = 𝝈0(𝒙0) in Ω0,

(57)

along with the boundary conditions (𝒏𝐸 is the outward unit normal vector to 𝜕Ω
𝑓
𝑡 )

¤𝚵𝐸 (𝒙𝑡 , 𝑡) = 𝑽𝑡 (𝒙𝑡 ) on 𝜕Ω𝑉
𝑡 , ¤𝝈𝐸 (𝒙𝑡 , 𝑡) · 𝒏𝐸 (𝒙𝑡 , 𝑡) = 𝒇𝑡 (𝒙𝑡 ) on 𝜕Ω

𝑓
𝑡 (58)
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with 𝜕Ω𝑉
𝑡 ∩ 𝜕Ω

𝑓
𝑡 = ∅ and 𝜕Ω𝑉

𝑡 ∪ 𝜕Ω
𝑓
𝑡 = 𝜕Ω𝑡 .

In Equation (56), the number of equations is equal to the number of unknown fieldsÐthat is,

16 scalar fields, taking into account the symmetry of 𝚪 and that of 𝝈Ð, which is a necessary

condition for the static equilibrium problem to be well-posed. However, existence and uniqueness

of solutions would require further study, which could be subjected to some constraints, in addition

to that on the Lamé parameters, see Equation (54), and that on the boundary conditions, see

Equation (58). In any case, it must be again emphasized that the structural problem here defined

is different from the usual one, based on the infinitesimal strain tensor. Thus, it is inevitable

that the solution of the latter, which involves only the symmetric part of the displacement

Lagrangian gradient, is generally different from that of Equation (56), where both the symmetric

and skew-symmetric parts of the velocity Eulerian gradient appear.

7 Conclusion

The three main results achieved in this study, in the case when a pure substance in the solid state

is considered as a Continuum, are the following ones.

1. As a state variable, the average conformation tensor of inter-atomic bonds is an objective and

relevant variable. Furthermore, and as opposed to a strain tensor, the average conformation

tensor is independent of the transformation linking the current configuration to the reference (or

initial) one.

2. Apart from the viscid effects, the Cauchy stress tensor can always be expressed as a function of

the average conformation tensor, which is the first derivative of a state potential of the free

energy density (per unit mass) of the inter-atomic bonds.

3. When the mechanical behavior of a pure substance can be considered as elastic, the objective part

of the material derivative of the average conformation tensor is equal to the rate of deformation

tensor.

However, for these results to be of a real importance in the field of Solid Mechanics, they must be

expanded and/or enhanced from two points of viewÐin addition to the consideration of the

second, the third, ..., the umpteenth neighbours, which, however, is not a real problem, since an

average conformation tensor, quite similar to that defined in this study, can be easily defined for

each of these neighbours. The first is related to the class of materials to which these results can

be actually applied. In the present paper, this class was restricted to pure substances in the solid

state, in order to focus on the main idea of this study, as noted in Section 1. Nevertheless, the

process followed in Sections 2 to 5 seems to be broad enough to be applied to materials which are

not pure substances, that is to say, materials composed of at least two types of atoms. A precise

theoretical study, however, aiming to prove that the notion of the average conformation tensor of

inter-atomic bonds is relevant for this kind of materials in the solid state, still remains to be done.

Future studies should also investigate the problem of the irreversible mechanical behaviorÐin

the sense of a non-zero intrinsic dissipationÐof materials, which is always observed, whatever

the material, when the supplied, mechanical energy becomes too high. More precisely, and

considering that the thermodynamic results obtained in this study are valid in the only case of an

elastic behavior, the following questions must be answered.

1. Which state variable(s) must be added to the average conformation tensor of inter-atomic bonds

in a physically relevant model of the irreversible mechanical behavior (elastoplastic, for instance)

of materials?

2. How is (are) the material derivative(s) of this (these) state variable(s), including that of the

average conformation tensor of inter-atomic bonds, constrained by the Thermodynamics?

If precise and rigorous answers can be given to these questions, the average conformation tensor

of inter-atomic bonds might become, as an alternative to a strain tensor, an interesting new state

variable, in the essential sense that it is independent of the transformation linking the current

configuration to the reference configuration, like the absolute temperature and the density.
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