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Tensegrity structures have been extensively studied over the last years due to their potential applications
in modern engineering like metamaterials, deployable structures, planetary lander modules, etc. Many of
the form-finding methods proposed continue to produce structures with one or more soft/swinging
modes. These modes have been vividly highlighted and outlined as the grounds for these structures to be
unsuitable as engineering structures. This work proposes a relationship between the number of rods and
strings to satisfy the full-rank convexity criterion as a part of the form-finding process. Using the proposed
form-finding process for the famous three-rod tensegrity, the work proposes an alternative three-rod
ten-string that is stable. The work demonstrates that the stable tensegrities suitable for engineering are
feasible and can be designed.
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1 Introduction

Tensegrities go back to several decades earlier when Buckminster Fuller (1962); Emmerich (1964);

Snelson (1965) developed some of the first structures. Fuller (1961) presented a class of cable-bar

structures where bars were arranged in compression, structural integrity maintained by strings,

known as Tensegrities. In addition, tensegrity structures were defined to have no two rods

joined at the same point. Today, people use both broader and narrower definitions of ‘tensegrity.’

However, in this work, we will consider the definition of Fuller (1961) and Roth and Whiteley

(1981). The structures developed by Snelson (1996) led to a significant renewal in interest related

to tensegrities. However, like the famous łSnelson Towerž, many of these were unstable, making

them harder to use and integrate into actual engineering structures. This work demonstrates that

this is due to these designs developed based on soft elastic strings rather than rigid strings. Over

the years, researchers have focused attention to mathematically understand the source of these

instabilities and develop rigid and stable structures for various applications.

In the last years, there has been a renewed interest in the area of tensegrities, including ideas

and discussions in the areas of tensegrity metamaterials (Fraternali et al. 2012; Liu et al. 2019;

Wang et al. 2020b), bio-tensegrities (Chai Lian et al. 2020), planetary lander modules (Garanger

et al. 2021), tensegrity-inspired structures (Luo et al. 2017; Pajunen et al. 2019; Yıldız and Lesieutre

2020; Ma et al. 2020; Mirzaaghazadeh et al. 2020), foldable structures (Yang and Sultan 2019).

Of particular interest to this work are those that discuss the mechanics of tensegrities and

form-finding methods and shall be highlighted. While the two topics appear diverse, it is

necessary to develop a thorough comprehension of these structures’ mechanics to develop robust

form-finding methodologies.

1.1 Literature review

General discussion and detailed literature reviews on many of the topics of interest to the

tensegrity community have been discussed in (Tibert and Pellegrino 2003; Oliveira and Skelton
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Nomenclature

[𝐴] Matrix representing the rigid-body rotations
[𝐵] Matrix representing the rigid-body translations
[𝐶] Matrix representing the standard basis function of

the motion of points 𝑝 𝑗 and 𝑝𝑘
ℓ𝑘 Length of the member of the tensegrity
v̂𝑖, 𝑗 Unit vector along which the force acts from 𝑝 𝑗

to 𝑝𝑖
R
3𝑁 Space spanning all the 3𝑁 points of the tensegrity

A Small motion prescribed on the tensegrity,

particularly representing the end points of the

rods, points of beads and pivot points related to

the tensegrity
r𝑖 Rigid-body motion vectors; 𝑖 = 0, . . . , 5
r( ·) Compressive force vector acting on the rod
t𝑖 𝑗 Tensile force vector acting on the wire
v𝑗 Vector representing each connection of the

tensegrity and referred to as constraint vector;

𝑗 = 6, . . . , 3𝑁 − 1
R Subspace of all motions of the tensegrity
S Space of all the string index pairs {𝑖, 𝑗}
V Sub-space of all constraint vectors
Π Set of all points in the tensegrity
𝜀 Small motion prescribed on the tensegrity

𝑏 Number of beads in the tensegrity

𝐶 Unordered pairs {𝑖, 𝑗} describing the list of cables

𝑐𝑟 Magnitude of compressive force acting on the rod

in the tensegrity

𝑐𝑖 𝑗 Cable length

𝑑𝑖 𝑗 Distance between any two points 𝑝𝑖 and 𝑝 𝑗
𝑓 𝑘 (v) Functional representation for the 𝑐 − 𝑒 cable

constraints

𝑓𝑘 Force acting on a member of the tensegrity

𝑔ℓ (v) Functional representation for the 𝑒 rod constraints

𝑚 Number of cables in the tensegrity

𝑁 Number of points making the tensegrity

𝑛 Number of rods in the tensegrity

𝑃 , 𝑄 Positions of the tensegrity represented by

3𝑁 -tuples of coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )
𝑝𝑖 Position vector of a point of coordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )
𝑞𝑘 Force density in a member of the tensegrity

𝑅 Unordered pairs {𝑖, 𝑗} describing the list of rods
𝑟𝑖 𝑗 Rod length

𝑆 Plane constraining the motion of a bead

𝑇 Translation vector applied on the tensegrity

𝑡𝑖 𝑗 Magnitude of tensile force acting on the string in

the tensegrity

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 Coordinates of a point in the tensegrity

2009; Fernández-Ruiz et al. 2019; Wang et al. 2021). Some common conclusions common to many

of the studies into the mechanics of the tensegrity structures include:

1. The structures are statically indeterminate and dynamically quasi-stable.

2. Most of the structures have a soft mode, that is also often referred to as infinitesimal flex or

mechanism mode or swinging mode.

3. Such soft modes are reduced by the addition of pre-stress that can also be equivalent to requiring

an additional string.

4. There is a need to understand the source of non-linearity/snapping behavior/instability observed

in the force-displacement curve.

5. There is a need for a solution that can do away with these instabilities to help design stable, rigid

tensegrities that can be used in actual engineering applications.

1.2 Mechanics of tensegrities

The 1980s and 90s saw tremendous growth in the mathematical literature surrounding tensegrity

structures’ mechanics and stability. This included several works from Connelly (Connelly 1982;

Connelly and Whiteley 1992; Connelly and Terrell 1995),Whiteley (Whiteley 1981; Roth and

Whiteley 1981; Whiteley 1982; Whiteley 1984; Connelly and Whiteley 1996), Calladine and

Pelligrino (Calladine 1978; Pellegrino and Calladine 1986; Pellegrino 1992; Kwan and Pellegrino

1994) and several other mathematicians and structural engineers. Connelly and Whiteley

(1992) presented four mathematical concepts to uniquely define the stability of a tensegrity,

i.e. infinitesimally rigid ⊂ pre-stress stability ⊂ second-order rigidity ⊂ rigid. This rigidity

hierarchy has formed the basis for several works to this day, including the present work where a

second-order rigidity is presented.

Alongside the seminal preliminary works of Connelly and co-workers (Connelly 1982;

Connelly and Whiteley 1992; Connelly and Terrell 1995), several recent works from the early

2000s re-visited the mechanics of tensegrities. Oppenheim and Williams (2000) stated that

tensegrities are under-constrained and undergo an infinitesimal flex and displayed nonlinear

geometric stiffening upon loading. Such a definition automatically paves the way for unstable

and soft modes in tensegrities, as this work, later, demonstrates. They discussed instability

in the force-displacement relations by considering the famous 3-rod and 9-string tensegrity.

This was further supported by a vibration analysis (Oppenheim and Williams 2001) where

they demonstrate insufficient damping due to the elastic cables used to build the tensegrity

structure. Oppenheim and Williams (2001) concluded that this inefficient damping that is apparent

in the models is a serious drawback for practical usage of tensegrity structures. The same
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three-rod structure was further again considered for dynamic analysis by Murakami (2001).

They unequivocally demonstrated the soft mode in this structure, which was mentioned as an

infinitesimal mechanism mode of swinging bars. They further demonstrated that the pre-stressing

leads to an increase in the eigen-frequency of the lowest mode of oscillation. As will be discussed

later in this work, this pre-stressing acts as the additional string that would have been required to

build a stable three-rod and ten-string tensegrity. This non-linearity in the force-displacement

behavior of such a tensegrity was again explored and discussed as a snapping instability by Zhang

et al. (2016). Here, they explored the snapping behavior as a function of the applied torque

and the structure’s symmetry. Such a snap behavior is an obvious effect of the soft modes that

are inherent in the structure. Other prominent works that discussed statics and dynamics of

tensegrities include (Murakami and Nishimura 2001a; Oliveto and Sivaselvan 2011; Ashwear and

Eriksson 2014; Li et al. 2016; Hsu et al. 2020).

1.2.1 Tensegrity towers

Another area that has received attention includes deployable structures and tensegrity towers.

Sultan and Skelton (2003) further used the tower, made of three-rod nine-string units and

proposed by Murakami (2001), for the design of a deployable structure. The work starts with the

pre-conceived notion that the tensegrities are composed of soft and hard members. While the

work explored possible deployable paths, such would work in the absence of soft modes. Juan

and Mirats-Tur (2008); Mirats-Tur and Juan (2009) motivated by robotics and controls, discussed

the static and dynamic analysis of tensegrity structures. They used the ideas of Connelly and

co-workers (Connelly 1982; Connelly and Whiteley 1992; Connelly and Terrell 1995; Connelly

and Whiteley 1996) and provided a comprehensive review of the static analysis of such structures

to date. Bel Hadj Ali et al. (2011) proposed an algorithm to consider deployable structures. These

deployable structures are made of unit cells of tensegrities and continuous cables that can be

adjusted to actively deploy and activate structures. However, while they discussed the active

deformation behavior, local soft modes that arise in such structures are not considered, limiting

the serious applicability for tensegrity engineering. Some of the other works that consider the

behavior of tensegrity towers include Luo et al. (2017); Oh et al. (2019); Ben Kahla et al. (2020); Li

et al. (2020); Yıldız and Lesieutre (2020). The concept of deployable tensegrity is re-visited by Liu

et al. (2017) where they proposed the usage of soft elastomers for the programmable deployment

of these tensegrities. The work again considers the famous three-rod and nine-string tensegrity.

The proposed work’s potential applications are immense but again does not consider the swinging

mode instability in these tensegrities repeatedly discussed in the mechanics’ literature. However,

exploring such deployment for more rigid tensegrities of the kind proposed in this work can help

make deployable tensegrity-based stable space structures.

1.2.2 Design philosophies

Specific designs based on the hypothesis of stability arising due to symmetry have been another

direction of common interest explored in many works on tensegrity structures. Murakami and

Nishimura (2001b); Nishimura and Murakami (2001) considered the regular truncated icosahedral

and dodecahedral shaped tensegrities. The authors again confirmed the presence of 15 distinct

infinitesimal mechanism modes in these structures. The same idea was used by Rimoli and Pal

(2017) to construct tensegrity structures based on truncated octahedron. However, the work

was motivated towards building lattice-based composite structures that show superior impact

behavior. They used a homogenization technique to obtain the dynamic response of a structure

and pitch its potential applications in metamaterials. While the averaged temporal behavior

during impact shows promise, the oscillations in the results indicate several soft modes that

warrant significant further investigations.

1.2.3 Form-finding techniques

While mechanics of tensegrities has been one of the focus areas, the other area remains form-

finding. Various form-finding techniques have been proposed over the years. In general,

the form-finding techniques can be classified based on (a) force method (b) energy method.
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Barnes (1999) discussed the application of dynamic relaxation technique for tensegrity nets and

membranes. The idea here was the application of an explicit solution technique for the static

behavior of structures. In the last two decades, this has been used extensively. A thorough review

of the form-finding techniques till the early 2000s can be found in (Tibert and Pellegrino 2003).

Lu et al. (2017) considered the idea of dynamic relaxation for pre-stressed strut structures and

determined equilibrium configurations for three and four-rod tensegrities. The minimization

starts with a pre-set initial configuration to obtain a relatively near-final configuration.

The force density methods are based on the formulation of a constrained optimization

problem to minimize the overall force density. Here, force density, 𝑞𝑘 , is defined as

𝑞𝑘 =
𝑓𝑘

ℓ𝑘
(1)

where for any member 𝑘 has a member force of 𝑓𝑘 and a length of ℓ𝑘 . Lee and Lee (2016)

considered the constrained optimization problem, aiming to minimize the overall force density in

the cable structures. Similar to Lee and Lee (2016), Cai et al. (2018) also considered a minimization

through grouping of elements. Alternatively, Xu et al. (2018) proposed nonlinear programming as

a possible methodology for minimization of the force density in the cables. Liu and Paulino (2019)

considered ideas from computer graphics to create zones of non-intersection and proposed a

force maximization method of form-finding. The work demonstrated tensegrities with a varying

number of rods and strings. While they denoted the structures as super-stable, the work did not

show any static/dynamic/vibrational analysis to prove the same. Some of the other recent works

using form-finding based on force density idea include (Zhang et al. 2020; Wang et al. 2020a;

Koohestani 2020; Wang et al. 2021). Uzun (2016) used the idea of genetic algorithms to perform

potential energy minimization for various configurations. There are several more that have

explored the concept of form-finding including (Rieffel et al. 2009; Tran and Lee 2010b; Tran and

Lee 2010a; Koohestani 2013; Gan et al. 2015; Yuan et al. 2017; Feng 2017; Dong et al. 2019; Aloui

et al. 2019).

One of the common aspects of all the above literature in form-finding is a general lack

of discussions on the presence or absence of a soft swinging mode discussed thoroughly in

mechanics literature, stated earlier. A general overview of the form-finding papers shows that

most of the structures obtained from these form-finding methods lack stability and have one or

more soft modes. A simple check is the total number of strings in the structure, which will be

discussed in the following sections. Table 1 compares some of the structures produced from the

form-finding techniques that show evidence of string-deficiency and definite inherent soft modes.

While exceptions could exist, most often, the proposed structures are deficient in one or more

strings.

1.3 Overview and need of this work

As evident, most of the designed tensegrities employ methods that lead to łstring-deficientž

structures that have inherent soft swinging modes. Such structures lack the rigidity and are

not suitable for actual engineering structures. As will be discussed in this work, a possible

reasoning for form-finding leading to such string-deficient structures is that many of the designs

are based on usage of elastic/rubbery bands as many researchers have pointed out that the

tensegrities are harder to build with rigid strings. In contrast, the large elastic behavior of

elastic strings can help through small adjustments in length. However, small adjustments in

length automatically introduce such swinging modes. While the obvious question is łwhy can

we not add more cables to stabilize them?ž. Unfortunately, such an addition is not feasible,

without using more cables than required. The only possible way is to design them from the

ground up, considering constraints to eliminate such soft modes. Firstly, this work demonstrates

the mathematical framework that integrates the mechanics into the form-finding process to

ensure robust tensegrity structural designs. Nevertheless, in certain applications, the presence of

swinging modes are a necessity. A simple example is an application to mimic water plants that

sway with the water current; a planetary lander module that can have a soft mode that allows it

to deform and diffuse impact energy; meta-materials that block or allow certain frequency modes.
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Work Figure in cited work 𝑁𝑅 𝑁𝑆 𝑁𝑅𝑆 = 5(𝑛 − 1)

Lu et al. (2017)
11 3 9 10

12 4 12 15

Cai et al. (2018) 7 6 24 25

Xu et al. (2018)

2c 3 9 10

2d 4 12 15

2e 4 11 15

4e 6 9 25

Liu and Paulino (2019) 19

3 9 10

4 12 15

6 15 25

Pajunen et al. (2019) 1 12 32 55

Zhang et al. (2020) 5 4 12 15

Koohestani (2020) 3 20 60 95

Wang et al. (2021)

4 6 24 25

7 30 90 145

7 3 12 10

9 6 24 25

Table 1 Tensegrities proposed in literature using form-finding methods. Number of strings 𝑁𝑆 compared with
actual number 𝑁𝑅𝑆 of strings required for linearization stability. Number of rods in the corresponding
tensegrity given by 𝑁𝑅 . Concept of linearization stability introduced in Section 4.2.

However, if the form-finding technique does not account for the mechanics of the swinging

modes, they cannot eliminate or control them in preferred directions. Thus, this work stems from

the above need for understanding string-deficiency, leading to soft swinging modes, and further

incorporating this into the form-finding process to design robust tensegrity structures suitable for

any engineering application.

It is also important to note here that this work tries to eliminate the assumption that

tensegrity structures are necessarily pre-stressed. It demonstrates that the notion of pre-stressing

arose owing the form-finding and design philosophies that use rubber bands (rather than rigid

ropes/strings).

This work demonstrates the mathematics of mechanics and stability involved in designing

these structures and derives a relation between the number of rods/beads/cables required to

ensure a stable structure. The work also further outlines possible form-finding methods, that

integrate the mechanics, to build larger stable tensegrity structures. To demonstrate the developed

concepts, the work considers the famous three-rod and nine-string tensegrity to compare with

the three-rod and ten-string tensegrity derived from the methods proposed here.

2 Mathematics of tensegrities

It is important to define some terminology required to identify a tensegrity and the space it spans

uniquely. It can be assumed that given some arbitrary 𝑁 points in space, these points need to be

connected by 𝑛 rods, 𝑏 beads, and𝑚 cables. Considering generality, it can be assumed that it is

unknown at this stage as to how the rods and cables need to be placed nor if the selected points

are suitable to form a tensegrity. To illustrate this point with an example, a kite is the simplest

form of a tensegrity. In this case, there are four points and connected by two rods and four

strings. A kite is feasible only if the four points form a quadrilateral. However, if 3/4 points were

co-linear, then it is not feasible to form a kite tensegrity. Thus, it is essential to check if the

selected 𝑁 > 0 points are suitable for forming a tensegrity even before form-finding. In this

endeavor, some relevant mathematical concepts are defined.

The 𝑛 > 0 rods, 𝑏 ≥ 0 beads, and 𝑁 = 2𝑛 + 𝑏 cable attachment points are indexed by

0, 1, . . . , 𝑁 − 1. Here, the relation between the number of cables (𝑚) / rods (𝑛) / beads (𝑏) is
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unknown and yet to be determined. Each rod has two attachments points while a bead has

only one. The topology of rods are uniquely defined by a list 𝑅 of 𝑛 unordered pairs {𝑖, 𝑗}. This
typical pair {2𝑘, 2𝑘 + 1} for 𝑘 = 0, . . . , 𝑛 are to be joined by rods. Similarly, a list 𝐶 defines the𝑚

unordered pairs to be joined by cables. At this point, the dependency between 𝑛 and𝑚 remains

unknown and shall be discussed in the upcoming section.

Topology enforces obvious conditions like length 𝑟𝑖 𝑗 for each rod pair and a length 𝑐𝑖 𝑗 for

each cable pair. Here the position includes specific location given as (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for each node 𝑖 . A

single position 𝑃 shall be defined to include where the tensegrity is and what shape it is, and this

needs to be disentangled to study the shape properly.

Note here that a single tensegrity can occupy multiple positions due to soft modes like

the swinging mode. The set of all these positions are denoted by Π. To be mathematically

precise, Π defines the space of all possible positions where each single position 𝑃 (of a tensegrity)

corresponds to 3𝑁 tuples (𝑥0, 𝑦0, 𝑧0, . . . , 𝑥𝑁−1, 𝑦𝑁−1, 𝑧𝑁−1). In other words, this looks like the

space R3𝑁 of 3𝑁 tuples of real numbers.

It is natural that the position 𝑃 is allowed if it satisfies, the łrod constraintsž

(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑥𝑖 − 𝑥 𝑗 )2 + (𝑥𝑖 − 𝑥 𝑗 )2 = 𝑑𝑖 𝑗 = 𝑟 2𝑖 𝑗 , ∀ {𝑖, 𝑗} ∈ 𝑅 (2)

and the łcable constraintsž

(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑥𝑖 − 𝑥 𝑗 )2 + (𝑥𝑖 − 𝑥 𝑗 )2 = 𝑑𝑖 𝑗 ≤ 𝑐2𝑖 𝑗 , ∀ {𝑖, 𝑗} ∈ 𝐶 (3)

where 𝑑𝑖 𝑗 is referred to as distance between any given ends 𝑖 and 𝑗 , 𝑟𝑖 𝑗 is the length of the rod

and 𝑐𝑖 𝑗 is the original undeformed length of the cable. In addition, łanchorage constraintsž,

or boundary conditions also need to be considered to define the boundary value problem

uniquely. Thus, (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) are also considered into the mathematical description of

the tensegrity.

2.1 Tensegrity shape coordinates

Further on, here, to avoid the soft modes and help uniquely characterize a tensegrity, it is essential

to define additional mathematical constraints. If the original tensegrity defined by position 𝑃

is moved to 𝑃 ′ due to some combination of translations and rotations, and the only possible

positions 𝑃 ′ are such that they are not near, i.e., 𝑃 ≈ 𝑃 ′ is not true, then 𝑃 represents a uniquely

defined stable tensegrity. In other words, it is necessary to ensure that there are no possible

positions 𝑃 ′ in the proximity of 𝑃 that can be reached without appreciable change in energy (i.e.,

like a swinging mode or soft mode). For example, the famous three-rod and nine-string tensegrity

has a swinging mode instability since there are possible configurations near the equilibrium

position where it can move into.

Given a position 𝑃 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 0, . . . , 𝑁 − 1} then a translation 𝑇 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) moves

each point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), such that the rod and cable constraints are not violated. This is

equivalent to a virtual displacement offered to test the stability of the structure at a particular

position 𝑃 .

Now assuming that a small motion A = I + 𝜀B is applied to position 𝑃 . We can write the

squared distance, originally 𝑑2𝑖 𝑗 = (𝑝𝑖 − 𝑝 𝑗 ) · (𝑝𝑖 − 𝑝 𝑗 ), as

(A𝑝𝑖 − A𝑝 𝑗 ) · (A𝑝𝑖 − A𝑝 𝑗 ) = 𝑑2𝑖 𝑗 + 0 + 𝜀2(B𝑣𝑖 𝑗 ) · (B𝑣𝑖 𝑗 ) (4)

where 𝑣𝑖 𝑗 = (𝑝𝑖 − 𝑝 𝑗 ). It is evident that this is constant to the first order in 𝜀 but has higher order

terms. Thus, turning the tensegrity moves 𝑃 in a vector direction that does not change the 𝑑𝑖 𝑗 or

their match to the constraints. Like all other separations, rods and cables are changing length at

zero rate. At 𝑃 = (𝑥0, 𝑦0, 𝑧0, 𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , . . . , 𝑥𝑁−1, 𝑦𝑁−1, 𝑧𝑁−1), all vectors giving zero
(rate of) change in shape and are exactly the linear combinations of the rigid body motion vectors

given as

r0 = [1 0 0 1 0 0 . . . 1 0 0 . . . 1 0 0]⊤

r1 = [0 1 0 0 1 0 . . . 0 1 0 . . . 0 1 0]⊤

r2 = [0 0 1 0 0 1 . . . 0 0 1 . . . 0 0 1]⊤
(5)
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for translations, and

r3 = [0 𝑧1 − 𝑦1 0 𝑧2 − 𝑦2 . . . 0 𝑧𝑖 − 𝑦𝑖 . . . 0 𝑧𝑁−1 − 𝑦𝑁−1]⊤

r4 = [𝑧1 0 − 𝑥1 𝑧1 0 − 𝑥2 . . . 𝑧𝑖 0 − 𝑥𝑖 . . . 𝑧𝑁−1 0 − 𝑥𝑁−1]⊤

r5 = [𝑦1 − 𝑥1 0 𝑦2 − 𝑥2 0 . . . 𝑦𝑖 − 𝑥𝑖 0 . . . 𝑦𝑁−1 − 𝑥𝑁−1 0]⊤
(6)

for rotations. The 3𝑁 -vector that describes the rigid body motion of the 𝑁 points will necessarily

be a unique combination of the above six vectors.

Further on, one can assume that there exists additional (3𝑁 − 6) vectors v𝑗 with 𝑗 =

6, . . . , 3𝑁 − 1, such that the set comprising of 𝑟0, 𝑟1, . . . , 𝑟5, 𝑣6, 𝑣7, . . . , 𝑣3𝑁−1 span the subspace R,
where R is the subspace of all possible motions for 𝑃 . While the vectors r𝑖 represent the rigid

body motions, the vectors v𝑖 represent the swinging modes or soft modes. A more rigorous

definition is available in the upcoming sections. For now, it can be said that v𝑗 are linearly

independent and that any vector in the space R can be written uniquely as a combination of the

r𝑖 and v𝑗 . This also means that any shape-and-position 𝑄 can be reached from 𝑃 as

𝑄 − 𝑃 = 𝑟0r0 + 𝑟1r1 + . . . + 𝑟5r5 + 𝑣6v6 + 𝑣7v7 + . . . + 𝑣3𝑁−1v3𝑁−1 (7)

for some 3𝑁 tuple (𝑟0, . . . , 𝑟5, 𝑣6, . . . , 𝑣3𝑁−1). The 3𝑁 tuples can be decomposed into rigid body

rotation and translation

𝑃 (𝑟0, . . . , 𝑟5, 𝑣6, . . . , 𝑣3𝑁−1) = 𝑅 (𝑟0,...,𝑟5) (𝑃 + (𝑣6v6 + 𝑣7v7 + . . . + 𝑣3𝑁−1v3𝑁−1))

= 𝑅 (𝑟0,...,𝑟5)
(
𝑃 +

𝑁−1∑

𝑖=6

𝑣𝑖v𝑖

)
.

(8)

The operator 𝑅, for a single point, can be illustrated to be

(𝑥,𝑦, 𝑧)→


1 0 0

0 cos 𝑟3 sin 𝑟3
0 − sin 𝑟3 cos 𝑟3





cos 𝑟4 0 sin 𝑟4
0 1 0

− sin 𝑟4 0 cos 𝑟4





cos 𝑟5 sin 𝑟5 0

− sin 𝑟5 cos 𝑟5 0

0 0 1





𝑥

𝑦

𝑧


+


𝑟0
𝑟1
𝑟2


. (9)

For the 𝑁 tuples of points, 3𝑁 tuples of coordinates, the operator performs the same operation,

though only three at a time. If one were to add and write out the entire 3𝑁 vector, it would lead

to an inelegant and large matrix formula with the result dependent on the order of rotation 𝑟3
around the 𝑥-axis, 𝑟4 around the 𝑦-axis, and 𝑟5 around the 𝑧-axis.

Additionally, since it is known that the position 𝑃 with all 𝑁 points can itself be written as

the vector 𝑃 = (𝑥0, 𝑦0, 𝑧0, 𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑁−1, 𝑦𝑁−1, 𝑧𝑁−1) of size 3𝑁 , it can also be expressed as a

linear combination of the 3𝑁 tuple vectors as 𝑃 = 𝑟0r0 + . . . + 𝑟5r5 + 𝑣6v6 + . . . + 𝑣𝑁−1v3𝑁−1. This
implies that the coefficients (𝑟0, . . . , 𝑟5, 𝑣6, . . . , 𝑣3𝑁−1) can be uniquely determined if the Jacobian

matrix resulting from the column vectors, i.e. [r0, . . . , r5, v6, . . . , v3𝑁−1] has a rank of 3𝑁 . In

such a case, it can also be said that the selected set of points can lead to a stable tensegrity. It is

pertinent to note here that the vectors v𝑖 are yet to be determined and calculated.

2.2 Constraint vectors

Elaborating from earlier, this sub-section outlines the determination of the constraint vectors

[v6, v7, . . . , v𝑁−1]. One reasonable starting point to determine them is to consider the usual basis

vectors that span the space R3𝑁 consisting of the 𝑁 points of the tensegrity. These are



1

0

0
...

0

0

0



,



0

1

0
...

0

0

0



,



0

0

1
...

0

0

0



, . . . ,



0

0

0
...

1

0

0



,



1

0

0
...

0

1

0



,



1

0

0
...

0

0

1



. (10)
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This results in 3𝑁 vectors in addition to the six vectors (r𝑖), for a total of 3𝑁 + 6 vectors. This
implies that six of them need to be discarded to obtain a final set for the basis vectors (v𝑖).
Additionally, the final set of vectors can be set to span a spaceV such that (v6, v7, . . . , v𝑁−1) ∈ V .

The question remains on the conditionality to choose the six vectors that need to be discarded

and yet maintain a rank of 3𝑁 . For example: if one were to discard the first six vectors, this would

allowV to contain any pattern of motion direction for the point 𝑝𝑖 that keeps points 𝑝0 and 𝑝1
fixed. The points are kept fixed by the line 𝑝0𝑝1. Thus, the uniqueness of the configuration 𝑃 is

lost. Similar random omissions can lead to choices that include a non-unique configuration for 𝑃 .

A more systematic manner to choose the set of six vectors to be discarded could be to find the

three points that give the biggest triangle, i.e. to determine the three indices 0 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑁

such that ∥(𝑝 𝑗 − 𝑝𝑖)∥ is greatest. If one were to construct a matrix by just restricting to these

three points, then
[
[𝐴](9×3) [𝐵](9×3) [𝐶](9×6)

]
where [𝐴](9×3) relates to the rigid body rotations

along 𝑥−, 𝑦− and 𝑧− axis; [𝐵](9×3) relates to the rigid body translations about 𝑥−, 𝑦− and 𝑧−
axis; [𝐶](9×3) relates to the standard basis functions to move points 𝑝 𝑗 and 𝑝𝑘 (three each). The

matrices can be elaborated as

[𝐴] =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1



; [𝐵] =



0 𝑧𝑖 𝑦𝑖
𝑧𝑖 0 −𝑥𝑖
−𝑦𝑖 𝑥𝑖 0

0 𝑧 𝑗 𝑦 𝑗
𝑧 𝑗 0 −𝑥 𝑗
−𝑦 𝑗 𝑥 𝑗 0

0 𝑧𝑘 𝑦𝑘
𝑧𝑘 0 −𝑥𝑘
−𝑦𝑘 𝑥𝑘 0



; [𝐶] =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



. (11)

If one were to drop three vectors from the combined matrix, there are a total of 20 possible

combinations (choosing 3 out of 6, without regard to order). This requires calculating the

determinant of these combinations and choosing one that allows for a full-rank matrix. With

these, now one can also determine the the coefficients (𝑣6, 𝑣7, . . . , 𝑣3𝑁−1) that allow 𝑃 to be

represented in a unique manner. If there was any motion that leads to 𝑃 ′, the above ensures
𝑃 ≠ 𝑃 ′. This implies that no soft-modes are present, and the only way to change would be a

completely new shape. The coming sections will discuss how the developed ideas could help

identify actual rod and cable positions, or otherwise commonly known as form-finding, in the

tensegrity literature.

2.3 Linear constraints and convexity

At this point, the physical meaning of the vectors v need to be defined. Considering the constraint

equations as a functional representation of the vectors v, they can be given as

𝑔ℓ (v) = 0, ∀ℓ = 0, . . . , 𝑒 − 1 (𝑒 equalities representing rod constraints)

𝑓 𝑘 (v) ≤ 0, ∀𝑘 = 𝑒, . . . , 𝑐 − 1 (𝑐 − 𝑒 inequalities representing cable constraints).
(12)

The functionals 𝑓 𝑘 (v) are given to be

𝑓 𝑘 (v) = 𝑓 𝑘0 𝑣0 + 𝑓 𝑘1 𝑣1 + . . . + 𝑓 𝑘𝑚−1𝑣𝑚−1 (13)

where 𝑓 𝑘 approximates the change in the length from its value at 𝑃 . The above automatically

satisfy the zero vector or otherwise known as the trivial solution. However, the interest is often

in the non-trivial solutions where v ≠ 0. The vectors v ∈ V represent the small changes from 𝑃

under the cable constraints 𝑓 𝑘 (v). As discussed earlier, these cable constraints represent the

change in length of the string/cables from its value at 𝑃 . These are zero when v = 0. This is

feasible only if all coefficients are zero or if the vectors are linearly independent. In the case that

g0, . . . , g𝑒−1, f𝑒 , . . . , g𝑐−1 satisfies the full rank condition and

𝑏0g
0 + . . . + 𝑏𝑒−1g𝑒−1 + 𝑎𝑒f𝑒 + . . . + 𝑎𝑐−1g𝑐−1 = 0 (14)

for some 𝑎𝑒 > 0, . . . , 𝑎𝑐−1 > 0, then it is said to satisfy the spanning convexity test.
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3 Bead-based models

The previous section discussed some mathematical constructs to define a tensegrity uniquely.

The introduction also discussed that many tensegrities designed to date are based on concepts of

using an elastic cable (like an elastic band) rather than actual rigid cables (like the behavior

of an actual rope). Before proceeding further, it is imperative to comprehend the difference

between the behavior ensuing the usage of elastic vs. rigid cables. Here, simple structures with

𝑏 = 1 (not rods but only beads) are considered to illustrate the difference. In a curved space,

such as a sphere’s surface, the bead can be fixed firmly on the surface. However, in 3D space, it

collapses unless anchored at fixed points. While these do not satisfy the conventional definition

of łTensegrities,ž they provide low-dimensional examples to demonstrate the calculations that

can also apply to free-standing stable tensegrities.

Consider a bead 𝑏 held on a table top by 𝑁 cables of length 𝑐 𝑗 as shown in Figure 1. The cable

𝑏

𝑝0

𝑏

𝑝0

𝑝1

𝑏

𝑝0

𝑝1

𝑝2

𝑏

𝑝0

𝑝2𝑝1

𝑝3

Figure 1 Holding bead 𝑏 with one, two, three or four cables.

is anchored to the table at anchor points 𝑝0 = (𝑥0, 𝑦0) up to 𝑝𝑁−1 = (𝑥𝑁−1, 𝑦𝑁−1). To start with,

if the bead was constrained only by a single cable, then it is sure to lie around loose; with two, it

can be held tight between 𝑝0 and 𝑝1 but does not feel very firm in the direction perpendicular to

the line 𝑝0𝑝1. With three, it can be held łratherž securely. However, four gets tricky. In the

case of four cables, if the cable from 𝑏𝑝0 was tightened, then the cable from 𝑝0𝑝3 goes slack and

vice-versa. However, this is different if it was an elastic band where such a configuration with

four cables is possible but can remain unstable.

The case of three strings is a simple case of force balance from engineering mechanics as

shown in Figure 2. For this scenario, considering the force vectors 𝑡1, 𝑡2 and 𝑡3 and the position

Figure 2 Tensions (up to a scale factor) in
the three cables balanced at 𝑏.
Vectors are parallel to the cables
but unrelated to the cable lengths:
we could move t0 twice as far
from 𝑃 and yet pull in the same
direction with the same force t0.

𝑝1

𝑏

𝑝0

𝑝2

𝑡2

𝑡0 𝑡1

vector of bead 𝑏, we can say that (𝑡2 − 𝑏) = 𝑎0(𝑡0 − 𝑏) + 𝑎1(𝑡1 − 𝑏) for unique values of 𝑎0 and 𝑎1.
It is also important to note here that their values are strictly negative since the cables can only

consider tension loads. However, the above discussion on uniqueness fails once four cables are

considered.

We now consider the same in 3D as shown in Figure 3. Four cables in 3D can hold a bead

securely in the same analogy to three in a plane. If 𝑏 is stuck to a plane 𝑆 but cables can reach it

from points above, below and points on 𝑆 , then three cables are sufficient. Each 𝑏𝑝𝑖 sets up a

constraint restricted to 𝑆 , giving a circle centred at the nearest 𝑇 -point to 𝑝𝑖 . Here, the four

inequality constraints (with 𝑝0, 𝑝1, 𝑝2, 𝑝3 not in the same plane) is exchanged for three inequalities

and one 𝑆-defining equality. For example, if 𝑆 is the plane 𝑧 = 0, and suppose 𝑡0 = (−2,−1, 1),
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𝑡1 = (1, 0, 2) and 𝑡0 = (−1, 1,−1), then the constraints on 𝑃 are

𝑍 = 0

(𝑋 + 2)2 + (𝑌 + 1)2 + (𝑍 − 1)2 ≤ 6

(𝑋 − 1)2 + 𝑌 2 + (𝑍 − 2)2 ≤ 5

(𝑋 + 1)2 + (𝑌 − 1)2 + (𝑍 + 1)2 ≤ 3

(15)

and solving first for 𝑍 leads to a two-variable constraint.

Similarly, if 𝑏 was on the end of a free-turning stick with its other end attached at 𝑄 , an

equality ∥𝑏 −𝑄 ∥ = radius holds it to a spherical surface. Thus, three cables can fix its position,

holding it to the tangent plane, near 𝑏, that approximates the spherical surface.

Figure 3 With 𝑏 confined to a plane 𝑆 , three cables (from above,
below or on 𝑆) trap it.

𝑝1

𝑏

𝑝0 𝑝2

𝑆

3.1 Rubber versus cables

There is an easy way to make the situation with four cables right, and that is to use elastic/rubbery

cables, such as elastic bands.

It is fairly easy to show that joining 𝑏 to any number of fixed points 𝑝𝑖 gives an elastic energy

function 𝐸 (𝑃) of the position which is łstrictly convexž as long as all the cables stay stretched.

The configuration also has a unique equilibrium 𝑃0 at the minimum-𝐸 point, which is stable in

two senses: move the bead off 𝑃0, and it will move back (elastically stable); change any of the 𝑝𝑖
or the elastic constants a little, and 𝑃0 will move just a little (structurally stable). Thus, one can

easily get close to the designed system. Hence, it is no coincidence that most of the tutorials

available on building a tensegrity suggest the usage of rubber bands.

This also remains one of the origins for the long-standing notion that tensegrities are

necessarily pre-stressed structures. As iterated in this discussion and mathematically illustrated

in the coming sections, such notion has arisen from the frequent usage of elastic bands for the

design of such tensegrity structures. These elastic bands need to be stretched, at least slightly,

if they are to remain in tension which is a pre-requisite for the balance of forces and static

equilibrium. However, as will be demonstrated in the later sections, the proposed three-rod and

ten-string structure does not necessarily need the strings to be in tension.

4 Mechanics of stable tensegrities

As defined earlier, an 𝑛-rod tensegrity is said to comprise of a set of points 𝑝0 = (𝑥0, 𝑦0, 𝑧0), . . .,
𝑝2𝑛−1 = (𝑥2𝑛−1, 𝑦2𝑛−1, 𝑧2𝑛−1) with a rod between each pair {𝑝0, 𝑝1}, {𝑝2, 𝑝3}, . . ., {𝑝2𝑟 , 𝑝2𝑟+1}, . . .,
{𝑝2𝑛−2, 𝑝2𝑛−1}. The strings in the tensegrity join end pairs 𝑝𝑖 and 𝑝 𝑗 on different rods, for index

pairs {𝑖, 𝑗} ∈ S. For each point 𝑝𝑖 has a set S𝑖 of indices 𝑗 for which 𝑝𝑖 and 𝑝 𝑗 are joined by a

string, of which there are 𝜎 altogether. At present, the relation between 𝑛, 𝑟 and 𝜎 are unknown

and the concepts related to these are introduced here.

Irrespective of whether the pair {𝑖, 𝑗} belongs to rod or string, it is possible to define a

vector such as v𝑖, 𝑗 = 𝑝 𝑗 − 𝑝𝑖 and v𝑗,𝑖 = 𝑝𝑖 − 𝑝 𝑗 and its modulus as𝑚𝑖, 𝑗 =𝑚 𝑗,𝑖 = ∥v𝑖, 𝑗 ∥ and the

corresponding unit vectors as

v̂𝑖, 𝑗 =
v𝑖, 𝑗

𝑚𝑖, 𝑗
and v̂𝑗,𝑖 = −v̂𝑖, 𝑗 . (16)

Assuming no inelastic effects like buckling, each rod has a compressive force 𝑐𝑟 and each string

has a tensile force 𝑡𝑖 𝑗 . The compressive force acts on the points 𝑝2𝑟 and 𝑝2𝑟+1 along the rod and
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given to be

r2𝑟 = 𝑐𝑟 v̂2𝑟,2𝑟+1 =
𝑐𝑟

∥v2𝑟,2𝑟+1∥
v2𝑟,2𝑟+1 = 𝑐𝑟v2𝑟,2𝑟+1,

r2𝑟+1 = 𝑐𝑟 v̂2𝑟+1,2𝑟 =
𝑐𝑟

∥v2𝑟+1,2𝑟 ∥
v2𝑟+1,2𝑟 = 𝑐𝑟v2𝑟+1,2𝑟 .

(17)

Similarly, the tensile forces can be given to be

t𝑖 𝑗 = 𝑡𝑖 𝑗 v̂𝑖, 𝑗 =
𝑡𝑖 𝑗

∥v𝑖, 𝑗 ∥
v𝑖, 𝑗 = 𝑡𝑖 𝑗vi,j. (18)

It is also evident that r2𝑟+1 = −r2𝑟 and t𝑖 𝑗 = −t𝑗𝑖 and the equilibrium at any point p𝑖 requires

r𝑖 =
∑

𝑗 ∈S𝑖
t𝑖 𝑗 . (19)

4.1 Constraint matrices

Considering the vectors in terms of constraints, the configuration change vector can be given as

𝛿p = (𝛿p1, . . . , 𝛿p2𝑛) = (𝛿𝑥1, 𝛿𝑦1, 𝛿𝑧1, . . . , 𝛿𝑥2𝑛, 𝛿𝑦2𝑛, 𝛿𝑧2𝑛). (20)

The change in distance between the points p𝑖 and p𝑗 , to the first order, can be given to be

v̂𝑖, 𝑗 · (𝛿p𝑗 − 𝛿p𝑖) = v̂𝑖, 𝑗 · 𝛿p𝑗 + v̂𝑗,𝑖 · 𝛿p𝑖

= [0 0 0 . . . 0 v̂𝑥𝑖,𝑗 v̂
𝑦
𝑖,𝑗 v̂

𝑧
𝑖,𝑗 0 . . . 0 v̂𝑥𝑗,𝑖 v̂

𝑦
𝑗,𝑖 v̂

𝑧
𝑗,𝑖 0 . . . 0 0 0]



𝛿𝑥0
𝛿𝑦0
𝛿𝑧0
...

𝛿𝑥2𝑛−1
𝛿𝑦2𝑛−1
𝛿𝑧2𝑛−1


= [𝐶𝑖, 𝑗 ] [𝛿p] .

(21)

The non-zero entries are at the locations 3𝑖, 3𝑖 + 1, 3𝑖 + 2 and their negatives at 3 𝑗, 3 𝑗 + 1, 3 𝑗 + 2.
This can also be re-written as

v𝑖, 𝑗 · (𝛿p𝑗 − 𝛿p𝑖) = v𝑖, 𝑗 · 𝛿p𝑗 + v𝑗,𝑖 · 𝛿p𝑖 = [𝐶𝑖, 𝑗 ] [𝛿p] . (22)

This leads to the equality constraint [𝐶2𝑟,2𝑟+1]𝛿p = 0 for each rod 𝑟 and inequality constraint

[𝐶𝑖, 𝑗 ]𝛿p ⩽ 0 for each string {𝑖, 𝑗}. Additionally the rigid body translation vectors, given earlier,

considers the net axis translations [𝑋 ]𝛿p, [𝑌 ]𝛿p and [𝑍 ]𝛿p of the centroid 𝑝 of the point set.

Similarly, the rotation vectors, given earlier, consider (to linear order) the net turns [�̃� ]𝛿p, [�̃� ]𝛿p
and [𝑍 ]𝛿p around the axes.

4.2 Linearization stability criterion

It is hypothesized here that a stable tensegrity needs to satisfy the linearization stability criterion

stated as follows.

(a) The set of all rod or string constraint covectors [𝐶𝑖, 𝑗 ] along with the translation and rotation

vectors span the 6𝑛-dimensional space L𝑛 of all possible linear constraints on the configurations

p. Thus, for any 𝛿p ≠ 0, there is at least one non-zero value Δ𝑖, 𝑗 = [𝐶𝑖, 𝑗 ] 𝛿p. If 𝛿p is not the

translation or rotation, then this Δ𝑖, 𝑗 must be for a string {𝑖, 𝑗} and in that case, Δ𝑖, 𝑗 < 0. In other

words, if any 𝛿p ≠ 0 leads to Δ𝑖, 𝑗 = [𝐶𝑖, 𝑗 ] 𝛿p = 0, then this 𝛿p is a null eigenvector. Since null

eigenvectors represent the soft modes, these cannot be permitted.
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(b) The row vector 0 can be expressed as a linear combination with all 𝑎𝑖, 𝑗 > 0

0 = 𝜌0 [𝐶0,1] + . . . + 𝜌𝑟 [𝐶2𝑟,2𝑟+1] + . . . + 𝜌𝑛 [𝐶2𝑛−2,2𝑛−1] +
∑

{𝑖, 𝑗 }∈S,𝑖< 𝑗
𝑎𝑖, 𝑗 [𝐶𝑖, 𝑗 ] . (23)

From the equality constraints, it is known that [𝐶2𝑟,2𝑟+1]𝛿p = 0 and thus

∑

{𝑖, 𝑗 }∈S,𝑖< 𝑗
𝑎𝑖, 𝑗 [𝐶𝑖, 𝑗 ]𝛿p = 0. (24)

However, from the inequality constraint Δ𝑖, 𝑗 = [𝐶𝑖, 𝑗 ]𝛿p ⩽ 0. For all 𝑎𝑖, 𝑗 > 0, the Δ𝑖, 𝑗 ≠ 0 cannot

all be negative. Thus, only possible solution would be if 𝛿p = 0.

In the 6𝑛-dimensional space, there are six co-vectors from the rigid body translations and

rotations, 𝑛 from the rods, and 𝜎 from the strings. To satisfy condition (a), it is necessary to satisfy

6 + 𝑛 + 𝜎 ⩾ 6𝑛 which implies 𝜎 ⩾ 5𝑛 − 6. However, the exact equality constraint is satisfied only

if the rod and string co-vectors, together with those from the rigid body modes for a basis in L𝑛 .
In such a case, Equation (23) implies that 𝜌𝑟 and 𝑎𝑖, 𝑗 are all zeros. This contradicts the second

criterion (b). Thus, if the constraints form a basis, there necessarily exists a 𝛿p which satisfies all

the equalities and inequalities and thus leading to an unstable structure.

However, alternatively, if 6 + 𝑛 + 𝜎 = 6𝑛 + 1 ⇒ 𝜎 = 5(𝑛 − 1), then the stability condition (a)

implies that there is only one row vector that is a linear combination of the other and this is

unique, with exactly one set of coefficients. Thus, for some {𝐼 , 𝐽 } between any two points p𝑖 and

p𝑗 , there exists a non-zero value

[𝐶𝐼 ,𝐽 ] =
∑

rod or string
{𝑖, 𝑗 } ≠ {𝐼 , 𝐽 }

𝑏𝑖, 𝑗 [𝐶𝑖, 𝑗 ] 𝛿p. (25)

Such a set of coefficients 𝑏𝑖, 𝑗 can be easily found using Gauss elimination. If 5(𝑛 − 1) strings are
considered, the test simplifies to the fact that łall 𝑏𝑖, 𝑗 for string {𝑖, 𝑗} are negativež. For such a

structure, the coefficients 𝜌𝑟 and 𝑎𝑖, 𝑗 are also directly related to the compressive and tensile

forces in the member and given to be

𝜌𝑟 =
𝑐𝑟

∥v2𝑟,2𝑟+1∥
and 𝑎𝑖, 𝑗 =

𝑡𝑖 𝑗

∥v𝑖, 𝑗 ∥
. (26)

Since one of the rows is a linear combination of the others, it is possible to obtain a common

scalar multiplier, say 𝜆, for all the coefficients. If this holds and all the constraints are in the set,

whether or not the rank is maximum, then by uniqueness these coefficients must correspond to

the tensions and compressions, up to some 𝛾 . Without loss of generality, this multiplier can be

𝛾 =
1

√
𝜌20 + 𝜌21 + . . . + 𝜌2𝑛−1 +

∑
{𝑖, 𝑗 }∈S,𝑖< 𝑗 (𝑎𝑖 𝑗 )2

. (27)

The compressions and tensions can then read 𝑐𝑟 = 𝛾𝜌𝑟 ∥v2𝑟,2𝑟+1∥ and 𝑡𝑖 𝑗 = 𝛾𝑎𝑖, 𝑗 ∥v𝑖, 𝑗 ∥.
If more than 5(𝑛 − 1) strings are used, then setting the tensions are more complicated. Thus,

adjusting the stiffness for a over-determined tensegrity can require a lot of careful tension

adjustment and maintenance. Thus, one can conclude that for stability of a 𝑛-rod tensegrity, at

least 5(𝑛 − 1) strings are required. However, as seen in the earlier sections, most of the designed

tensegrities satisfy the condition of 6 + 𝑛 + 𝜎 ⩽ 6𝑛 and thus leading to unstable configurations.

5 Form-finding strategy

Consider the regular dodecahedron with ten rods shown in Figure 4. The shape has several

options for strings that include 30 face edges, 60 face diagonals, and another 90 connections (not

shown in the figure) that cross via the inside of the shape. As discussed in the earlier sections,

5(𝑛 − 1) = 45 strings are required to obtain linearization stability in the model. If one were to
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Figure 4 Regular dodecahedron tensegrity with ten rods.

allow only the face edges for strings, this is already 53 trillion ways. If face edges and diagonals

were allowed, there are 1026 possible options, and allowing all the inner strings means 6 × 1042
options. This combinatorial nightmare means that a simple one-by-one test is not feasible, and a

better form-finding strategy is necessary.

If the two ends of each rod 𝑟 are indexed as 2𝑟 and 2𝑟 + 1, then the unordered list of 2𝑛 end

locations 𝑝𝑖 are given to be 𝑝2𝑟 = (𝑥2𝑟 , 𝑦2𝑟 , 𝑧2𝑟 ) and 𝑝2𝑟+1 = (𝑥2𝑟+1, 𝑦2𝑟+1, 𝑧2𝑟+1), 𝑟 = 0, 1, . . . , 𝑛 −
1. As earlier, the configuration of the tensegrity can be given to be 𝑃 = (𝑝0, 𝑝1, . . . , 𝑝2𝑛−1).
Additionally, the tangent vectors 𝛿p = (𝛿𝑥0, 𝛿𝑦0, 𝛿𝑧0, . . . , 𝛿𝑥2𝑛−1, 𝛿𝑦2𝑛−1, 𝛿𝑧2𝑛−1) representing the

motion at 𝑃 are all defined in the 6𝑛-dimensional spaceV .

Linearizing each rod 𝑟 = 0, 1, . . . , 𝑛 − 1 gives the co-vector

e𝑖 = [0 . . . 0 𝑥2𝑟 − 𝑥2𝑟+1 𝑦2𝑟 −𝑦2𝑟+1 𝑧2𝑟 − 𝑧2𝑟+1 𝑥2𝑟+1 − 𝑥2𝑟 𝑦2𝑟+1 −𝑦2𝑟 𝑧2𝑟+1 − 𝑧2𝑟 0 . . . 0] (28)

to be used in the equality constraint [𝐶2𝑟,2𝑟+1] 𝛿p = 0. These vectors {e𝑖} from Equation (28) are

automatically independent and mutually orthogonal. Additionally, they are also orthogonal

and independent to the rigid body motion co-vectors unless all the rod ends are co-linear. The

complete set comprising of 𝑛 + 6 co-vectors from rods and rigid body motions can be denoted by

the set E.
There are a total of 2𝑛(𝑛 − 1) unordered pairs possibilities {𝑖, 𝑗} ≠ {2𝑟, 2𝑟 + 1}, ∀𝑟 , for the

string connections. For the above dodecahedron in Figure 4, this implies 180 possibilities, as

discussed earlier. It is possible that one might aim to select string locations from all these pairs or

from a subset T chosen by some adhoc criterion that limits the length or the position. Without

loss of generality, the size of this subset can be stated to be 𝐿 + 1. If each of the pair is listed as

{𝑖ℓ , 𝑗ℓ } ∀ ℓ = 0, 1, . . . , 𝐿, then there exists a set (ℓ0, ℓ1, . . . , ℓ𝐿) associated with the vectors vℓ and

given as ℓ0v0 + . . . + ℓ𝐿v𝐿 .
Equation (23) states that

0 = 𝜌0 [𝐶0,1] + . . . + 𝜌𝑟 [𝐶2𝑟,2𝑟+1] + . . . + 𝜌𝑛 [𝐶2𝑛−2,2𝑛−1] +
∑

{𝑖, 𝑗 }∈S,𝑖< 𝑗
𝑎𝑖, 𝑗 [𝐶𝑖, 𝑗 ] (29)

and since it known that 𝑎𝑖, 𝑗 > 0, it can be re-written as

0 = 𝜌0 [𝐶0,1] + . . . + 𝜌𝑟 [𝐶2𝑟,2𝑟+1] + . . . + 𝜌𝑛 [𝐶2𝑛−2,2𝑛−1] +
𝐿∑

𝑘=0

𝜆𝑘 [𝐶𝑘 ] (30)

which implies

X = −𝜌0 [𝐶0,1] − . . . + 𝜌𝑟 [𝐶2𝑟,2𝑟+1] − . . . − 𝜌𝑛 [𝐶2𝑛−2,2𝑛−1] =
𝐿∑

𝑘=0

𝜆𝑘 [𝐶𝑘 ] (31)

where all 𝜆𝑘 ⩾ 0 and 𝜆0 + 𝜆1 + . . . + 𝜆𝐿 = 1 without loss of generality. Here, a mapping is used to

relate the unordered pairs with the coefficients of the string co-vectors.

The coefficients (𝜆0, 𝜆1, . . . , 𝜆𝐿) form a (𝐿 + 1)-dimensional subspace known as 𝐿-simplex.

Since the interest is to determine 5(𝑛−1) non-zero and positive values, this implies the intersection
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of the above defined simplex S with a space E of dimension 5𝑛 − 4. The intersection of this space

E and the simplex S at a face leads to some 𝜆ℓ to be zero and one can leave out the corresponding

vℓ , i.e. the string inequality constraint.

For example, for the dodecahedron from Figure 4 and if all ordered pairs are considered, then

𝐿 = 180. It is evident that visualizations of such larger dimensional spaces can be harder and thus

Figure 5 Affine plane 𝐻 contains all the (𝜆0, 𝜆1, 𝜆2) with∑
𝐾 𝜆𝐾 = 1. Triangle 𝑆 shows where they are all

positive. If 𝐿 = 3, the set 𝑆 becomes a tetrahedron
in the 3D hyperplane 𝐻 of (𝜆0, 𝜆1, 𝜆2, 𝜆3)-space
and so on.

(0,0,1)

(1,0,0)
(0,1,0)

𝜆0

𝜆1

𝜆2

𝑆

𝐻

it is prudent to develop the concept using a lower dimensional simplex. Figure 5 shows the

simplex for 𝐿 = 2. Figure 6 shows the intersection of a space with the simplex. Only here, the

space E is a line 𝐸 intersecting with a simplex S in 2D and 3D and ensure one or more 𝜆’s to be

zero.

𝜆1 < 0

𝜆1 = 0 𝜆2 < 0
𝜆3 < 0

𝜆2 = 0

𝜆0 < 0

𝜆3 = 0

𝜆0 = 0

(1,0,0)

(0,0,1)

(0,1,0)

(0,0,0,1)

(1,0,0,0)
(0,0,1,0)

(0,1,0,0)

𝑆
𝑆

𝐸 𝐸
𝐻

𝐻

Figure 6 Intersection of line with a 2- (left) and 3- (right) simplex.

The search, posed as a nonlinear iterative procedure depicted in Figure 7, is described below.

· Define the centroid of the simplex. The centroid 𝑞 ∈ S can be defined as 𝑞 = (𝑚, . . . ,𝑚) where
𝑚 = 1/(𝐿 + 1).

· Determine a point, say 𝜀 = (𝜀0, . . . , 𝜀ℓ , . . . , 𝜀𝐿+1) such that there exists 𝜌𝑟 that satisfies

X = −𝜌0 [𝐶0,1] − . . . + 𝜌𝑟 [𝐶2𝑟,2𝑟+1] − . . . − 𝜌𝑛 [𝐶2𝑛−2,2𝑛−1] =
𝐿∑

𝑘=0

𝜀𝑘 [𝐶𝑘 ] (32)

and 𝜀 ∈ H is the nearest point to 𝑞 ∈ S.
· If the chosen point 𝜀 is a point of the simplex S, then the search is complete

· If the chosen point 𝜀 is not a point of the simplex S, then it is necessary to determine the

face 𝐹 through which the line 𝑄 from 𝑞 to 𝜀 leaves S. If r is the vector from 𝑞 to 𝜀, then

𝑄 = {𝑞 + 𝑡r | 𝑡 ∈ R}. Here, each hyperplane 𝜆ℓ meets 𝑄 at

𝜌 = 𝑞 + 𝑞 + 𝑡ℓr =
( 𝑚

𝑚 − 𝜀ℓ

)
r (33)

and the segment 𝑞𝜀 leaves S at the smallest positive 𝑡ℓ and this corresponds to the most negative

𝜀ℓ . Referring to this index with ℓ , one would consider the space Σ as the convex set of all points

where 𝜆ℓ≠ℓ ⩾ 0. Here, either 𝜀 is in Σ with 𝜆ℓ as the only negative 𝜆ℓ or not.

· If 𝜀 ∈ Σ, then the string vℓ can be dropped and the remaining set of strings leave the search as

viable as it was.

· If 𝜀 ∉ Σ, then this implies that E does not meet E at a face. Thus, one of the 𝜀ℓ < 0 is safe to omit.
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· The procedure terminates when at least one branch reaches a solution with 𝜀ℓ > 0. If every

branch ends with a solution that is 𝜀ℓ < 0, then there is no solution to the original problem.

The above provides a recursive strategy that facilitates a solution with every step with branching,

if required to omit ℓ with 𝜀 < 0. This procedure is much faster than a brute force approach that

tries all combinations of 5(𝑛 − 1) strings among the candidate set T .

(0,0,1)

(1,0,0) (0,1,0)

(0,0,0,1)

(1,0,0,0)
(0,0,1,0)

(0,1,0,0)

𝜆1 < 0

𝜆2 < 0

𝜆2 = 0

𝜆3 = 0

𝜆3 < 0

𝜆0 < 0

𝑆

𝐹

𝑞

𝜌

Σ

𝜌

𝜀
𝜀

Σ

𝑞

Figure 7 Determination of the point 𝜌 which is on the face of the Simplex S and also on the line segment 𝑞𝜀. The
point 𝜀 is the nearest point to the centroid of the simplex.

6 Results and discussions

The famous three-rod tensegrity that has been often used in studying the mechanics of tensegrity

structures has been considered here to demonstrate the applicability of the developed methods to

find stable structures. In order to differentiate between the stable and unstable structure, the

below nomenclature is employed for convenience.

1. Three-rod with nine-strings (which has a swinging mode): 9-segrity.

2. Three-rod with ten-strings (fully stable): 10-segrity.

The rod length for both the models are considered to be 4 units to provide a one-to-one comparison.

The geometry of the 9-segrity considered is as given below. Consider a scale that puts the bottom

points on the unit circle at height 𝑧 = 0. The bottom three points are

𝑝0 = (1, 0, 0)
𝑝1 = (cos ( 2𝜋3 ), sin (

2𝜋
3 ), 0) = (−1/2,

√
3/2, 0)

𝑝2 = (cos ( −2𝜋3 ), sin (−
2𝜋
3 ), 0) = (−1/2,−

√
3/2, 0) .

(34)

The top three points are given to be

𝑞0 = (cos𝜃, sin𝜃, ℎ)
𝑞1 = (cos(𝜃 + 2𝜋

3 ), sin(𝜃 +
2𝜋
3 ), ℎ)

𝑞2 = (cos(𝜃 − 2𝜋
3 ), sin(𝜃 −

2𝜋
3 ), ℎ) .

(35)

Here, two configurations are considered with 𝜃 = −100° and 210°. The height of the tensegrity is

adjusted to ensure a rod length of 4 units using the relation 2(1 − cos𝜃 ) + ℎ2 = 𝑟 2.

As shown in Figure 8, the rods are positioned such that the pairs of rod ends are given by

(𝑝0, 𝑞0), (𝑝1, 𝑞1) and (𝑝2, 𝑞2) and the nine string pairs, without repetition, are given by (𝑝0, 𝑝1),
(𝑝0, 𝑝2), (𝑝0, 𝑞1), (𝑝1, 𝑝2), (𝑝1, 𝑞2), (𝑝2, 𝑞0), (𝑞0, 𝑞1), (𝑞0, 𝑞2), (𝑞1, 𝑞2).

6.1 9-segrity: Theoretical observations

The 9-segrity has an inherent symmetry. Considering the squared distance of the point 𝑞0 w.r.t.

𝑝0, and a fixed rod length of 𝑟 units for all rods,

(cos𝜃 − 1)2 + (sin𝜃 )2 + ℎ2 = 2 − 2 cos𝜃 + ℎ2 ⇒ 2(1 − cos𝜃 ) + ℎ2 = 𝑟 2. (36)
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Figure 8 9-segrity: coordinates ℎ and 𝜃 on a
subset of the possible shapes with
ends on the radius-1 cylinder. Lower
and top ends are all

√
3 apart,

respectively. Rod and cable lengths
follow from how far 𝜃 at the top
twists relative to the base.

𝑥𝑝2
𝑝0

𝑞0

𝑞2

𝑝1

𝑦

𝑞1

ℎ

𝜃

Similarly, the squared distance of point 𝑞0 from 𝑝1 is

(cos𝜃 + 1
2 )

2 + (sin𝜃 −
√
3
2 )

2 + ℎ2 = 2 − 2 cos(𝜃 + 2𝜋
3 ) + ℎ

2 (37)

and thus joining them by a cable of length 𝑐 gives the constraint 2[1 − cos(𝜃 + 2𝜋
3 )] + ℎ2 ⩽ 𝑐2. It

is easier to see how these two constraints interact if one unrolls the cylinder onto a flat diagram

as shown in Figure 9. For any particular rod length 𝑟 , the rod forces the upper end to be on the

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

← 𝑃

← 𝑄

angle 𝜃

h
ei
g
h
t
ℎ

Rods

Cables

Figure 9 Variation of ℎ vs. 𝜃 . Along each particular solid curve, the square of the distance from 𝑝0 to 𝑞0 is constant.
Along each dashed curve, the square of the distance between 𝑝1 to 𝑞0 is a constant.

particular corresponding red curve, but able to move along it as 𝜃 changes. Similarly, upon

choosing a particular cable length 𝑐 , the cable forces the upper end to be on or below a particular

corresponding green curve. Wherever a red and green curve cross at an angle, 𝜃 can be varied to

move along the red curve, and go downward from the green one. Thus, the point is not fixed and

can move without violating the constraints. At a point like 𝑃 , the two curves are tangent and the

shape is free to move along the common tangent line. The linear approximations are given by

[ 𝜕(red)
𝜕𝜃

𝜕(red)
𝜕ℎ

]
= [2 sin𝜃 2ℎ] and

[ 𝜕(green)
𝜕𝜃

𝜕(green)
𝜕ℎ

]
= [2 sin(𝜃 + 2𝜋

3 ) 2ℎ] . (38)
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The above functions are identical at points like 𝑃 where 𝜃 = 210° and the above reduces to

−𝛿𝜃 + 2ℎ𝛿ℎ = 0 and −𝛿𝜃 + 2ℎ𝛿ℎ ⩽ 0 where the second automatically holds true if the first does.

Looking beyond the linear approximation at 𝑃 , the green curve is tangent to the red curve from

below. Thus, to second order, therefore, following the red curve strictly increases the cable length,

moving to higher green curves. This is forbidden by the constraint, so the shape is fixed.

However, there are also points like 𝑄 , where a green curve touches the red from above. This

gives another situation where a linear analysis, like above, has a constant tangent and thus

requires higher order terms. In this case, moving along the red curve quadratically lowers the

green value from a maximum at 𝑄 and the tensegrity can fall apart. However, if build exactly,

while the forces will balance each other but lead to an unstable equilibrium.

Further, as iterated throughout literature, firm tensegrities are hard to make, except with

elastic bands. If 𝑟 and 𝑐 do not lead to curves that meet exactly and tangentially at 𝑃 , they will

likely either cross each other (twice) or fail to meet at all. If they do not meet, then the measured

cable is too short, and the tensegrity cannot be made with it. Figure 10 shows the area near the

point 𝑃 . Here, the crossing pair of curves is shown distinctly. A small perturbation from passing

Figure 10 Perturbation from the rod and cable curves tangent
at 𝑃 . A similar shape occurs if they both move up,
or both down, by different amounts.
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through 𝑃 produces a much larger gray area between the curves. This amplification comes

precisely from the ideal tangency. As second order contact is perturbed the widest separation

of the two curves, near the contact point, grows like the errors in 𝑟 and 𝑐 . If the perturbation

produces crossings, then the distance between the crossings grows like the square root of this

separation. Note here, that if the cross is a small number 𝛿 , then its square root is bigger than 𝛿 .

Thus, the distance grows drastically with fabrication error. All of this allows a large amount of

łswingingž, compared to the fabrication error. Very careful fabrication is necessary to avoid this.

As proposed in several literature, one intends to use such a tensegrity as a deployable

structure, particularly of interest to space applications. If the number of length constraints are

too small to meet the full-rank convexity condition, their typical situation automatically allows

movement away from the target shape. The lengths must be very precisely and non-linearly

coordinated to keep them in the relationship needed for the degenerate condition of tangency and

a swinging-free shape. At every stage of adjusting them, they must not deviate into the typical

kind of crossing. Further on, any adjustment mechanism has moving parts, and is thus subject to

wear. Preserving tangency through the process of mutually non-linear length adjustments, and

maintaining this precision through a lifetime of service cycles, is a narrow and expensive target.

Thus, such structures are not optimal nor suitable as deployable structures.

6.2 9-segrity with an additional cable is still a 9-segrity

A stable and firm tensegrity is possible with three rods and ten cables. However, as shown later

in Figure 14, this cannot be achieved by just adding one cable to the linearly degenerate system of

the three-rod and nine-string tensegrity. This section outlines the discussion and reasoning

behind this conclusion. From a simple observation of the top view of the 9-segrity shown in

Figure 11, it is evident that there are no cables that can prevent it from swinging inwards.
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𝑝0 𝑥

𝑝1
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𝑞1𝑞0
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𝑝1

𝑝2

𝑥

𝑦 𝑦

𝜃 = −100°

𝜃 = 210°

Figure 11 View of the 9-segrity from above (left). There are clearly no cables that can hold rods in these positions
against an inward swing. Only equilibrium angle allowed is 𝜃 = 210° (right).

Hypothetically, if one were to add one additional string to the 9-segrity, the stability at point

𝑃 is as shown in Figure 12. Here, one additional cable 𝑑2 is added from 𝑡2. This stops the point 𝑃

Figure 12 Point 𝑃 upon addition of one additional
cable 𝑑2 from 𝑡2.

𝑡0

𝑡2

𝑡1

𝑑2

𝑑1

𝑑0

𝑃

from going up the line of degenerate vector. While, it cannot cross the tangent to the 𝑑2 circle

centered at 𝑡2, it can still move along the gray area outlined earlier. The system fails the full-rank

convexity test. A tenth cable, unless can be tightened enough to change the length of the existing

nine cables, would have zero tension, and be almost slack. This is further illustrated by rolling

out the constraint equations, as earlier, in Figure 13. Using three equal cables to join more ends

(𝑝2 as well as 𝑝1 to 𝑞0 , plus 𝑝0 to 𝑞1 and 𝑝1 to 𝑞2) will over-constraint the system but still does

not get the structure out of the certainly-soft, hard-to-build zone. From Figure 13, if neither the

green function nor the blue can increase, and one can move only along a particular red curve, still

any motions that these constraints do permit, definitely leads to an instability. If none of these

motions are permitted, that does not prove stability either.

In Figure 13, one can see that not increasing the blue values also prevents 𝑃 from moving to

the right along its red equality curve, but not to the left! Holding 𝑃 against this motion depends

on higher order terms. Again, anywhere between 𝑃 and 𝑅, moving to the left along a red curve

actually decreases both the green and blue values and thus these constraints cannot hold a

point still either. In the wide band on the left, between 𝑆 and 𝑄 , moving right along a red curve

decreases both green and blue, and is allowed by the cables. Between the lines through 𝑃 and 𝑄 ,

however, not increasing the green values prevents leftward motion along any red curve, while

not increasing blue values blocks it on the right.

A target range is in the strip 150° < 𝜃 < 210° between 𝑃 and𝑄 . Suppose there is a small error

in choosing (𝜃, ℎ) and instead one chooses (𝜃 ′, ℎ′), then this small error is sufficient to cause a

soft motion or collapse. In other words, if 𝑃 ′ is obtained instead of 𝑃 such that ∥𝑃 ′ − 𝑃 ∥ < 𝜀 , then

the convexity condition holds true for 𝑃 ′ too and thus allows for the swinging between 𝑃 and 𝑃 ′.
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Figure 13 Curves of equal distance (through the unit cylinder) from 𝑞0 to 𝑝0 (solid red), 𝑝1 (dashed green) and 𝑝2
(dotted blue). It is easy to check that the green and red curves are tangent at 𝜃 = 30°, 210°, the blue and red
curves at 𝜃 = 150°, 330°.

6.3 10-segrity: A stabilized model

Using the proposed form-finding technique, an alternative three-rod model consisting of ten

strings is proposed here, as shown in Figure 14, that is stable and free of swinging modes. The

configuration of the 10-segrity is given by the unordered sets for one set of rod ends

𝑝0 = (0.5, 0,−2)
𝑝1 = (0,−2, 0.5)
𝑝2 = (2, 0.5, 0)

(39)

and the other set of rod ends given by

𝑞0 = (0.5, 0, 2)
𝑞1 = (0, 2, 0.5)
𝑞2 = (−2, 0.5.0) .

(40)

The rods are position such that the pairs of rod ends are given by (𝑝0, 𝑞0), (𝑝1, 𝑞1) and (𝑝2, 𝑞2)
and the set of string pair ends are given by (𝑝0, 𝑝1), (𝑝0, 𝑝2), (𝑝0, 𝑞1), (𝑝1, 𝑞0), (𝑝1, 𝑝2), (𝑝1, 𝑞2),
(𝑞0, 𝑝2), (𝑞0, 𝑞2), (𝑞1, 𝑝2) and (𝑞1, 𝑞2).

In order to demonstrate the stability of the proposed 10-segrity, a modal analysis is considered

and discussed here.

6.3.1 Modal analysis without constraints

In order to compare the stability of the proposed model with the original 9-segrity with the

proposed 10-segrity, a modal analysis is performed to extract the first 12 eigenmodes.

The 9-segrity considered here has a 𝜃 = 210° since this is the most stable configuration

possible. In order to keep the comparison acceptable, both the models are considered with

the same rod lengths, i.e. 4 units. The rods are considered to be made of steel and strings

of Kevlar. Both as assumed to have a circular cross-section. The materials are considered to

be linearly elastic in nature. The properties of the steel rod is considered to have a Young’s
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Figure 14 Firm three-rod tensegrity with ten
cables. Looking down (left) and from
front (right).

modulus of 210GPa, Poisson ratio of 0.3, density of 8000 kgm−3 and a cross-sectional radius of

0.01m. The Kevlar strings are considered to have a Poisson ratio of 0.36, density of 1440 kgm−3

and cross-sectional radius of 0.001m. Four values of Young’s modulus of the Kevlar string are

considered to check the influence of material properties: 112GPa, 10GPa, 1 GPa and 10MPa.

However, the strings are considered to have no stiffness under compression. The rods and strings

are modeled using 3D, second-order Timoshenko beam elements. In this work, we consider B32

element from Abaqus standard ABAQUS 2019. The rods are discretized with 20 elements and the

strings with 14-15 elements.

In this first case, there are no boundary conditions applied on both the models. As expected,

the natural frequencies for the first six modes are zeros indicating a rigid body mode. Thus, only

the modes 7-12 are considered for analysis. The variation of the natural frequency of vibration for

modes 7-12 as a function of the Young’s modulus of Kevlar are shown in Figure 15. As discussed

in earlier literature, it is clearly evident here that the lowest mode (other than the rigid body

modes) is a soft/swinging mode of deformation with a natural frequency at 0.3655 rad s−1, i.e.
nearly zero.
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Figure 15 Comparison of natural frequencies for the 9- (with 𝜃 = 210°) and 10-segrity for various modes. The first six
modes represent rigid body motions. String modulus = (a) 1.12 × 1011 MPa, (b) 1010 MPa, (c) 1.1 × 109 MPa,
and (d) 107 MPa.

The original shape and the 7/8/9-th mode shapes for both the 9-segrity and the 10-segrity

are visualized in Figures 16 and 17. The visualization is considered only for the case with

Young’s modulus of Kevlar being 112GPa. Mode 7 for the 9-segrity shows the famous swinging

mode, originally discussed by Connelly and co-workers. However, the other higher modes relate

direction to individual motion of the string elements rather than the overall structure itself. In

contrast, the 10-segrity proposed in this work shows no sign of a soft mode similar to that in the

9-segrity.
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(a) (b) (c) (d) (e) (f) (g)

Figure 16 Various modes of deformation of the 9-segrity. No boundary condition is applied. Two levels of
deformations are shown for each eigenmode. (a) Original shape, (b) Mode 7 (0.3655 rad s−1), (c) Mode
7 (0.3655 rad s−1), (d) Mode 8 (7.6274 rad s−1), (e) Mode 8 (7.6274 rad s−1), (f) Mode 9 (7.7131 rad s−1), (g)
Mode 9 (7.7131 rad s−1)

(a) (b) (c) (d) (e) (f) (g)

Figure 17 Various modes of deformation of the 10-segrity. No boundary condition is applied. Two levels of
deformations are shown for each eigenmode. (a) Original shape, (b) Mode 7 (7.1414 rad s−1), (c) Mode
7 (7.1414 rad s−1), (d) Mode 8 (7.5383 rad s−1), (e) Mode 8 (7.5383 rad s−1), (f) Mode 9 (8.1529 rad s−1), (g)
Mode 9 (8.1529 rad s−1)

It is further important to note here that once the strings are slack, they are under a compressive

load and thus do not have any stiffness. The whole concept of stability of a tensegrity is based on

the idea that the strings are always in tension and rods in compression. Once the strings are in

compression, they have zero stiffness and they can deform and maintain a deformed configuration

without any external work. This also means that they are in continuous equilibrium over a finite

range of motion. This is also what can be physically seen that once a string is slack, they can

occupy several positions. The positions for the strings shown in higher modes would be only one

representation of the several finite shapes that the string can attain.

However, the primary noteworthy point here is that at the first eigenmode of deformation,

the slackness of the string can result in the structural instability in the 9-string rather than

the 10-string configuration. There are no strings available to prevent the swinging mode of

deformation. In contrast, the first eigenmode of the 10-string configuration requires much higher

energy and can be prevented by usage of stiff strings and no pre-stressing.

6.3.2 Modal analysis with constraints

In order to visualize the swinging mode better, one end of each of the rods are fixed. This is

equivalent to fixing one end of the tensegrity on the ground or to another structure. The lowest

mode for the 9-segrity and the 10-segrity are visualized in Figures 18 and 19 respectively. The

videos of these visualizations are also enclosed along with this paper. The 9-segrity shows a twist

in its top surface with the rods moving apart. As discussed in the earlier section, no 10-th string

can be added to this structure that can prevent this torsional motion. In contrast, the proposed

10-segrity demonstrates are more stable behavior.

As discussed in the previous sub-section, it is again important to note here that once a string

is slack, they can occupy several positions. The positions for the strings shown in higher modes

would be only one representation of the several finite shapes that the string can attain. However,

the primary noteworthy point again is that such weaker configurations are possible easily in the

lower-energy modes in the existing 9-string rather than the 10-string structures.

7 Conclusions and future work

This work presents a mathematical framework for the design of tensegrities. The famous three-rod

tensegrity, used here, shows a vividly clear torsional mode of vibration, often also referred to

as a swinging soft mode. The proposed form-finding strategy facilitates to find three-rod and
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Figure 18 Lowest (swinging) mode of deformation of the 9-segrity at 0.3655 rad s−1. One end of each rod is fixed.

Figure 19 Lowest mode of deformation of the 10-segrity at 7.1414 rad s−1. One end of each rod is fixed.

ten-string structures that are stable to the second-order and suitable for engineering.

The proposed form-finding methodology uses mechanics as a foundation to ensure that the

resulting designs are stable and free of swinging modes. The work provides a simple to use

relation between the number of rods, beads and strings to check for the stability of the resulting

structure. This is demonstrated through the famous three-rod tensegrity. Further on, this work

also provides a comprehensive review to show that most of the designs produced till date do not

satisfy this relation and thus, significant room for improvements exists. Such a mathematical

framework has the potential to be further extended to introduce swinging modes to leverage the

instabilities for engineering purposes as well.

One of the areas for the future includes consideration of contact behavior at the joints of rods

and strings. This work uses beam models and considers a common node at the ends. Joining the

strings through a common node, instead of joint constraint, is expected to allow the bending

mode of deformation to be transferred to the strings as well. This has been addressed in this

work through the usage of no-compression constitutive model for the strings. Any bending

deformation will necessarily introduce compression but however such compressive loads cannot

be sustained by the strings and are thus non-physical and will not be permitted. However, a string

element as introduced in (Crusells-Girona et al. 2017) would be more appropriate alongside usage

of appropriate joints and will be considered in the future work. Further on, contacts at joints

can introduce additional non-linearities that warrants additional future investigation. Recent

works (McBane and Choi 2021; McBane et al. 2022) in this area demonstrate novel modeling

architectures that can facilitate modeling of such lattice structures by considering the role of

joints.

One of the areas for application of such stable tensegrity towers is as deployable space

structures. Deployable space structures can help save space and weight, that form the primary

constraints for space engineering. While mechanisms have been explored for deployment of these

structures, extremely fine tuning is required to actually maintain them if unstable configurations

were used. The proposed mathematical framework can be used to design and develop stable

tensegrity designs that can be used in deployable space structures.

In the recent years, lattice-based metamaterials have been proposed as viable alternatives for

impact absorbers or to selectively shield certain frequencies. With the advent of 3D printing,

tensegrity structures will find many potential applications in these areas. Thus, the above

proposed mathematical framework can provide an easy way to design them from ground-up.
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