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This paper is dedicated to our too early departed friend and colleague

Alain Köster who was instrumental in outstanding experiments in the field of

fatigue crack growth.

Fatigue crack growth under large-scale yielding condition is studied for high-temperature loading. The

applied strains are so important that diffuse damage phenomena are visible as a network of micro-cracks

in front of the major crack. The survey of a macroscopic cracked surface is nevertheless possible, and

numerical simulations with explicit representation of this crack are carried out to evaluate crack driving

forces. The proposed numerical scheme takes into account plastic wake in the course of crack growth in a

3D model. A non-local model of fatigue crack growth rate, based on partition of strain energy density into

elastic and plastic terms, yields improved results as compared to classical assessment of Δ𝐽 by numerical

methods.

Keywords: low cycle fatigue, strain energy method, high temperature fatigue, non-local model, adaptive remeshing

1 Introduction

Fatigue crack growth under large scale yielding condition should be considered for many

structures designed in the LCF regime. Cases could be separated in first macroscopic loading with

LCF regime inducing sustained cyclic plasticity at the structure scale (e.g. combustion chambers,

aerospace components, automotive turbocharger...), and second for crack initiated in region where

large scale yielding is induced by stress concentration (e.g. pores, defects, local modification

of the geometry...). Whereas in-depth analysis of short fatigue crack regime accounting for

plasticity has been widely studied since the pioneering works (Miller 1982; Vormwald and Seeger

1991; Doring et al. 2006), most of long crack analyses under fatigue plastic regime correspond to

limited plasticity (Vormwald 2013). Besides, for long crack associated to loading inducing large

scale yielding, fatigue crack growth mechanisms differ to some extent from fatigue crack growth

in small scale yielding condition. Main features observed for fatigue crack growth under large

scale yielding can be summarized as follows:

· crack tip blunting is observed (Tanaka et al. 1984); see the red square in Figure 1;

· plastic wake increases with crack growth (Kolednik et al. 2014); see variation of contrast in

Figure 1(a) and surface variations in Figure 2(b);

· for strain-controlled tests, negative stresses are observed yielding pronounced crack closure and

plasticity in compression (Bhanu Sankara Rao et al. 1988);

· strain localization exceeds the crack vicinity up to so-called general scale yielding (Kolednik et al.

2014);

· microcracks are observed in the strain localization pattern before major crack increment (Maurel

et al. 2017); see red square in Figure 1;

· both transgranular and intergranular cracking (e.g. for ferritic stainless steel tested at rather low

temperature 300 °C (Maurel et al. 2009)), intergranular cracking (e.g. for Co-base superalloys
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Nomenclature

Acronyms
CTOD crack tip opening displacement
dof degree-of-freedom
EDM electro-discharge machining
FCGR fatigue crack growth rate
FEA finite element analysis
HCF high cycle fatigue
LCF low cycle fatigue
LEFM linear elastic fracture mechanics
PLC Portevin Le Chatelier
SENT single edge notch tension
VER representative element of volume

Symbols
Δ𝐽 ∗ Δ𝐽 derived from G-𝜃 method

Δ𝜀 fatigue strain amplitude (total strain)

d𝑎/d𝑁 FCGR

ℓ𝑐 radius of the sphere for averaging strain energy

𝜆 normalizing parameter for FGCR based on

partition of energy

𝑅𝜀 fatigue load ratio for strain-controlled test

𝝈∼ stress tensor

𝜺∼e elastic strain tensor

𝜺∼vp viscoplastic strain tensor

𝑚 exponent for FCGR for Paris’ law

𝑚e,𝑚p exponent for FCGR: elastic and plastic parts

𝑊e,𝑊p elastic and plastic strain energies

𝑤e,𝑤p non-local elastic and plastic strain energies

𝑤∗
e ,𝑤

∗
p non-local FCGR model parameters for elastic

and plastic contributions

at very high temperature 900 °C (Maurel et al. 2017)), brittle particles failure (e.g. for cast

Al-alloys (Dezecot et al. 2019))... are different sources of this micro-cracks pattern;

· the crack growth mechanism implies the coalescence of a major crack to a network of micro-

cracks (Schweizer et al. 2011; Dezecot et al. 2017); see Figure 1(b).

Last but not least, when considering the major crack to micro-crack coalescence, it is worthy that

the stress triaxiality play a key role in that process. Consequently, the mechanisms involved in

fatigue crack growth reaching large and general scale yielding present similarities with ductile

failure, consistently with observed high fatigue crack growth rate, see e.g. (Benzerga et al. 1999;

Zhang et al. 2018).

To illustrate the above features, lets consider in situ observation of a high temperature test

achieved for Ha188 Co-based superalloys, using a SENT specimen of 18mm wide and a crack

length 𝑎 of about 3mm (see testing and geometry details in Section 3), Figure 1. Large crack

(a) (b)

Figure 1 Observation of crack at maximum loading achieved in situ at 900 °C for Ha188 material using a SENT
specimen (a) and detail of red square (b) for Δ𝜀/2 = 0.25 % and 𝑅𝜀 = 0.

opening is observed, Figure 1(a), together with evidence of crack tip blunting, Figure 1(b). Detailed

view of the crack tip, thanks to in situ observation made at maximum applied load, evidences

the micro-cracks network, in which the major crack is prone to grow, Figure 1(b). In this view,

micro-cracks associated to the major crack in previous location are closed (previous location of

the major crack corresponding to a lower number of cycles). This is due to the crack shielding

effect of these micro-cracks by the major crack: only some traces of these micro-cracks can be

observed in this static view. Reader has to refer to previous work to have detailed observation of

this step by step process (Maurel et al. 2017; Trabelsi 2019).

For the same set of experiments, detailed in Section 3, plastic wake and transition from large

to general scale yielding can be evidenced. For that purpose, roughness has been measured on one

side of SENT specimens for increasing strain amplitude, see Figure 2. As a first approximation,

these variations of surface roughness could be correlated to strain localization inducing local

necking of the specimen. The increase of surface roughness, in both size and value, with

increasing applied strain, illustrates the transition from relatively small scale yielding to general

scale yielding condition. Besides, the fluctuation from positive to negative displacement observed
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for the largest applied strain, Δ𝜀/2 = 0.45 % Figure 2(c), is associated to flat to slant evolution of

the crack. This crack twisting (corresponding to a crack rotation around the direction of crack

propagation) is again a characteristic of general scale yielding. The observed necking implies that

3D model should be achieved to take into consideration this effect on crack behaviour. The

question of a criterion able to describe fatigue crack growth rate associated to these mechanisms

is still open.

Figure 2 Measurements of surface roughness for
(a) Δ𝜀/2 = 0.0625 %, (b) Δ𝜀/2 = 0.25 % and
(c) Δ𝜀/2 = 0.45 % and 𝑅𝜀 = 0. Adapted from
(Trabelsi 2019). SENT specimen corresponding to
Figure 3.

(a)

(b)

(c)

Furthermore, new tools are now available to describe in a robust manner fatigue crack

growth based on either X-FEM technique (Ribeaucourt et al. 2007) or conform remeshing

technique (Chiaruttini et al. 2012; Vattré and Chiaruttini 2022) to describe explicit 3D crack shape

and its evolution with fatigue crack growth. For elastic-plastic material, the preservation of the

internal variables being essential, both the sub-cutting technique of the X-FEM methods and

conformal remeshing are requiring sounded field transfer operations. Furthermore, this FEA

crack simulation process has already been successfully applied to a wide range of cases, in the

scope of LEFM based on G-𝜃 analysis (Destuynder et al. 1981; Suo and Combescure 1992; Fessler

et al. 2017; Maurel et al. 2020).

This paper develops a 3D FEA method to describe evolution of crack from small to general

scale yielding condition in fatigue and proposes fatigue crack growth rate criterion relevant

to this context. The paper is organized as follows: a review of some criteria highlights their

strength and weakness, then experimental details are recalled from a previous paper, this set of

experiments being used for model identification. The core of the paper being the methodology of

crack growth modelling, based on conform remeshing technique accounting for plastic wake,

and the definition of a FCGR model based on partition of strain energy into elastic and plastic

contribution. The paper concludes with some guidelines for FCGR in the context of FEA and

simplification made for FCGR model.

2 Short review of FCGR criteria applied to general scale yielding

From the fatigue crack mechanisms detailed above, the question of driving forces for fatigue

crack growth under large to general scale yielding could be analyzed through simplified energetic

approach. Basically, the total potential energy of an isolated system Π can defined as the sum of

its elastic energy Πe, its plastic dissipation Πp, and any other sources of dissipation Δ (Doudard
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et al. 2005):

Π = Πe + Πp + Δ. (1)

Besides, within the scope of dissipation analysis, it has been widely commented that the dissipation

is shared into self-heating and damage process (Charkaluk et al. 2002). On the other hand, within

the scope of LEFM concepts, the elastic strain energy is assumed to be stored into the material,

being releasable for crack growth.

These energetic analyses combined to observations of fatigue crack growth mechanisms from

small to general scale yielding conditions are helpful to establish some conclusions: i) in small

scale yielding condition, elastic model are convenient, by the way most of stored elastic energy

remains available for fatigue crack growth ii) in general scale yielding conditions, the presence of

micro-cracks pattern should be a source of dissipation by damage iii) transition from small to

general scale yielding conditions questions the energy fluxes and iv) plasticity induces complex

residual stress state function of crack growth and subsequent stress redistribution.

Both the experimental features of large to general scale yielding fatigue crack growth, and

the above analysis of driving forces for crack growth could be useful to achieve a short overview

of models for FCGR assessment in this context.

A general form, of a fatigue crack growth model is d𝑎/d𝑁 = 𝑓 (driving force). The driving

forces proposed by authors depend on several aspects, including fatigue domain, HCF or LCF,

the possibility of assessment in linear elasticity, non linear elasticity, and general visco-plastic

materials, describing short or/and long crack behavior. Some contributions of FCGR models

suitable for LCF are listed in Table 1.

Model expression 𝑓 driving force crack non-local reference

𝐶Δ𝐽𝑚 Δ𝐽 short/long yes Dowling and Begley (1976)

𝐶 (ΔCTOD)𝑚 ΔCTOD long yes McMillan and Pelloux (1970)

𝛼𝐵Δ𝜀p𝑎 with 𝐵 = 1/cos(𝜋Δ𝜎/(4𝑇 )) − 1 Δ𝜎 and Δ𝜀p long no Tomkins (1968)

𝐶Δ𝐾𝑚
𝜀 with Δ𝐾𝜀 = 𝑓 (𝑎)Δ𝜀

√
𝜋𝑎 Δ𝜀𝑡 short/long no Haigh and Skelton (1978)

𝑊p (cum) ⩾𝑊cr(*) 𝑊p (cum) long yes Cojocaru and Karlsson (2009)

𝜆
[ (𝑤e

𝛾e
𝑎
)𝑚e +

(𝑤p

𝛾p
𝑎
)𝑚p

]

𝑊p and𝑊e long no Maurel et al. (2009)

𝑊p and𝑊e short/long yes Maurel et al. (2017)

Table 1 Model review, d𝑎/d𝑁 = 𝑓 (driving force); (*) the criterion is related to the failure of one finite element
(details in the core of the text).

In addition to these aspects, two main points should be considered in the scope of 3D FEA.

First, FCGR models are either local or non-local, however this point is a requirement to limit

the mesh dependency of FCGR assessment. Exception made of 𝐽 and CTOD based models,

most models consider a stress or a strain amplitude, associated to non-linear elasticity to mimic

viscoplastic behavior (Haigh and Skelton 1978; Kamaya 2015; Cussac 2020; Cussac et al. 2020;

Ravi Chandran 2018). This constitutes a second drastic limitation, considering FEA for structure

applications.

On the other hand, strain energy models are straightforward for any mechanical behavior in

the framework of standard generalized materials (Chaboche 1993). It could be either based solely

on plastic strain energy (Cojocaru and Karlsson 2009) or on a partition of strain energy into elastic

and plastic contributions (Maurel et al. 2009; Maurel et al. 2017). These latters are consistent with

general observation in fatigue life similarly to Manson-Coffin partition of mechanical strain into

elastic and plastic terms (Manson 1953; Coffin 1954), and will be detailed in the sequel.

The most standard model is based on energy release rate, assumed to be equivalent to

integral 𝐽 amplitude, Δ𝐽 (Dowling and Begley 1976). The associated model was:

d𝑎

d𝑁
= 𝐶Δ𝐽𝑚 where Δ𝐽𝑚 =

∫

Γ

(

Δ𝑊 d𝑦−Δ𝝈∼ ·𝑛
𝜕Δ𝑢

𝜕𝑥
d𝑠
)

and Δ𝑊 =

∫

Δ𝜀

0
Δ𝝈∼ : d(Δ𝜺∼) (2)
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with 𝐶 and𝑚, the models parameters, Γ, the contour chosen for integration,𝑊 , the total strain

energy and 𝑛, the vector normal to the contour Γ, as detailed in (Vormwald 2013). This model

has been successfully identified for relatively low strain amplitude for isothermal fatigue crack

growth, see e.g. (Haddar et al. 2013). The driving force for fatigue crack growth being either Δ𝐽 as

proposed by Dowling and Begley (1976) or a decomposition into elastic and plastic contribution,

namely Δ𝐽 = Δ𝐽e + Δ𝐽p (Shih and Hutchinson 1976). These models are based on the underlying

framework of non-linear elasticity, which is not able to model a wide range of materials. It is

worth noting that on these basis, associating macroscopic analysis of a given specimen and

non linear elasticity assumption, specific analytical formulations are able to describe short

fatigue crack growth (Vormwald 2013). However, the question of adaptation of these models to

structure are not fully addressed. To get rid of this limitation, numerical model to assess Δ𝐽

are needed, among which the G-𝜃 method is straightforward. This point will be detailed in

Section 4.4. However, for long crack and general scale yielding condition, Kolednik et al. (2014)

have clearly evidenced that strain localization initiated on crack tip could interact with other

strain localization sources in the considered structure, resulting in the lost of consistency of

invariance assumption for contour integral (Kolednik et al. 2014; Simha et al. 2008; Ochensberger

and Kolednik 2015): modifying the integration contour, the numerical evaluation of Δ𝐽 will be

modified.

On the other hand, in the LCF regime, the interest in plastic strain energy, namely Δ𝑤p as

an indirect measurement of dissipation has been widely documented for life model based on

initiation criterion (Charkaluk et al. 2002). Cojocaru and Karlsson (2009) and Nittur et al. (2014)

have proposed a numerical scheme based on FEA, modeling a priori the crack shape with crack

increase driven by debonding of nodes in the crack path, when the crack extension criterion is

reached (Cojocaru and Karlsson 2009; Nittur et al. 2014). This criterion is based on the plastic

strain energy,𝑊p, considered as the driving force for fatigue crack growth, see Figure 4(b), which

is able to account for overload model in the Paris regime (Smith 2011; Nittur et al. 2013). The

associated model was the following: a crack increment Δ𝑎 is considered if𝑊p(cum) ⩾𝑊cr, with

𝑊p(cum) = ∑

𝑤elt
p ,𝑤elt

p being the plastic strain energy in elements located in a chosen domain

used for non-local averaging, and𝑊cr, the critical energy at crack propagation being the model

parameter. Indeed, the plastic strain energy is accumulated cycle by cycle up to reaching the

failure criterion for a given crack increment. The numerical scheme is robust but is limited to a

priori known crack path, and the FCGR model questions the way to reach general scale yielding

condition with a single parameter approach.

To obtain a clear distinction of driving forces for fatigue crack growth between small scale

yielding and general scale yielding, the partition of strain energy into elastic opening strain

energy and distortion plastic strain energy has been proposed (Maurel et al. 2009). The basic idea

is that both stored elastic strain energy and dissipated plastic strain energy contribute to crack

growth. However, the amount of plastic strain energy available for crack growth could not be of

the same order of magnitude as compared to elastic strain energy, because of dissipation into self

heating, plastic straining and micro-cracks network processing. The associated model was:

d𝑎

d𝑁
= 𝜆

[(𝑊e

𝛾e
𝑎
)𝑚e

+
(𝑊p

𝛾p
𝑎
)𝑚p

]

(3)

where

𝑊e =
1

3

∫

cycle
⟨tr𝝈∼ ⟩ · ⟨tr(d𝜺∼e)⟩ and 𝑊p =

∫

cycle
𝒔∼ : d𝜺∼vp (4)

with 𝑎, the crack length,𝑊e and𝑊p, the elastic and plastic strain energy, respectively, 𝛾e and

𝑚e along with 𝛾p and𝑚p the models parameters associated to elastic and plastic contributions,

respectively. The parameter 𝜆 is used only to address consistency in units. For strain energy

definition, the authors proposed to use 𝝈∼ , 𝜺∼e and 𝜺∼vp corresponding respectively to stress,

elastic strain and viscoplastic strain tensors. The trace of tensor is symbolized by tr, and ⟨·⟩
corresponds to the Macaulay brackets, e.g. ⟨tr𝝈∼ ⟩ = tr𝝈∼ if tr𝝈∼ > 0 and ⟨tr𝝈∼ ⟩ = 0 otherwise.

Considering uniaxial condition,𝑊e corresponds to the area below positive elastic loading curve,
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depicted as the grey area in Figure 4(b) while𝑊p corresponds to the total area delineated by the

hysteretic curve, depicted as the dashed area in Figure 4(b). The enrichment of the above model

considering partitioned strain energy into elastic and plastic terms, together with their distinction

in contribution to FGCR, yields only two additional material parameters to be identified (𝛾e,𝑚e,

𝛾p and𝑚p) as compared to general formulation (𝐶 and𝑚, e.g. Equation (2)), the choice of the 𝜆

parameter, being not independent to the set of other parameters, does not modify the quality of

the model identification. This model has been successfully applied for strain controlled tests

for ferritic stainless steel (Maurel et al. 2009), Ni based superalloys (Heudt 2013) and Al cast

alloys (Dezecot et al. 2019), for uniaxial and multiaxial loading with either sustained plasticity or

decreasing loading conditions (Trabelsi 2019; Heudt 2013; Dezecot et al. 2019).

This first model was considering only macroscopic stress and strain state at the specimen

length, i.e. strain energies were derived from either experimental values or RVE analysis. The

strain energies were deduced for the former from stress-strain hysteretic curve, and for the latter

from simulation using constitutive equations of the tested material. This prescribes the use of

shape factor to account for specimen geometry (Maurel et al. 2009). This point questions the

ability of the model to address structure application. Thus a simple non-local model using volume

averaging, was proposed to model FCGR from small to general scale yielding condition (Maurel

et al. 2017). The associated model was

d𝑎

d𝑁
= 𝜆

[( 𝑤e𝑎

𝛾e(ℓ𝑐)
)𝑚e

+
( 𝑤p𝑎

𝛾p(ℓ𝑐)
)𝑚p

]

with 𝑤e =
1

Ω

𝑛
∑

𝑖=1

𝑊e dΩ𝑖 and𝑤p =
1

Ω

𝑛
∑

𝑖=1

𝑊p dΩ𝑖

(5)

where𝑊e and𝑊p, defined in Equation (4), are determined locally for each of the 𝑛 integration

points within the volume Ω. Also,𝑤e and𝑤p correspond to the non-local strain energy, using a

volume averaging of elastic and plastic strain energies based on finite element shape function.

Others parameters being the same as developed in the first łmacroscopicž version of the model

detailed in Equation (3). The non-local approach implies to characterize the evolution of material

parameters 𝛾e(ℓ𝑐) and 𝛾p(ℓ𝑐) as a function of the non-local length ℓ𝑐 corresponding to the size of

the box used for direct averaging of strain energy. By this way, the model becomes independent

to the mesh size, typically for element sized below the non-local length ℓ𝑐 . Besides, this model

enables to describe local phenomenon, associated to short crack using refined meshÐe.g. crack

to pore interaction (Dezecot et al. 2017)Ðas well as quick evaluation of FCGR, using coarse

meshing (Heudt 2013). However, this non-local model was limited to notch plasticity analysis,

without explicit model of crack growth and subsequently no analysis of plastic wake and stress

redistribution with the crack growth.

To conclude with this review, FCGR models could be divided into different classes:

· Paris like or Δ𝐽 models: limited by underlying assumption of non linear elasticity;

· strain or dissipated energy based model: a priori limited to cover the whole range from small to

general scale yielding condition based on a single driving force term;

· partition of strain energy based models, tested only in notch plasticity cases without explicit

crack growth,

· non-local models relevant within the scope of FEA (including Δ𝐽 assessed by G-𝜃 ).

These last two points are the aim of this paper and will be addressed herein.

3 Experimental conditions

The chosen material, specimens and experimental conditions have been fully detailed in (Maurel

et al. 2017). Thus, only major aspects will be briefly given here. The material used in this study is

the high temperature Co-based superalloys Ha188 widely studied in the scope of high temperature

LCF life, see e.g. (Bhanu Sankara Rao et al. 1997), which composition is detailed in Table 2.

SENT specimens have been machined from round bars, notch being processed by EDM, the

width of the specimen being 18mm, for a thickness of 4mm and a notch sized to 900 µm, see

Figure 3. The temperature was set to 900 °C controlled by a K-type thermocouple welded to the

specimen, heating being obtained by a lamp furnace. All tests have been strain controlled using
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Element Co Cr Ni W C La Si Fe Mn

Weight (%) Base 22.75 21.85 14.80 0.071 0.08 0.33 2.31 0.94

Table 2 Chemical composition of Ha188 superalloy used in the present study (wt %).

25

22

2

20R=10

90

M
1

8
 x

 2
,5

4

Ø18

0,2

0
,9

AA

A

A

Figure 3 Representative sketch of the SENT specimen with enlarged notched area.

a contact extensometer located on the opposite side of the notch. The tested conditions are

presented in Table 3.

Table 3 SENT test series conditions, number of cycles
𝑁max to reach a crack length of 5mm for SENT
specimen (Maurel et al. 2017).

Δ𝜀/2 (%) Test frequency (Hz) 𝑅𝜀 𝑁max

0.0625 4106
0.125 510
0.25 0.1 0 244
0.375 168
0.45 124

The crack length was measured by potential drop technique, calibrated with in situ optical

microscope using Keyence VHX1000 system. To isolate the lens from heating and to limit air

fluxes through the window used for observation, a quartz glass was glued to the external wall of

the lamp furnace (Maurel et al. 2017).

In Figure 2, the surface roughness measurements show large variation of the surface local

height with the crack growth which are strongly correlated to the local level of accumulated

plasticity and crack plastic wake. Out-of-plane roughness corresponds to flat to slant transition of

the crack, that is to say crack twisting increasing with the crack length, inducing multiaxial

loading and mode mixity (Maurel et al. 2017; Maurel et al. 2020). The crack observation, and

detailed analysis of the crack tip highlights a microcracks’ network which is consistent with the

path of strain localization, see Figure 1. The micro-crack pattern observed in Figure 1 corresponds

to the same specimen where roughness has been measured in Figure 2(b). It is worth noting that

the size of the area of significant variation of surface roughness (here of about 25 to 50 µm of

depression) is consistent with the size of micro-cracks pattern. This point stresses out that large

plasticity induces damage like localization.

Because of this microcracks’ network, the measured crack length by potential drop technique

includes these cracks. Thus, it is rather difficult to determine how the microcracks’ network

impact this measurement. This is the reason why we will only consider in the sequel the crack

length of the major crack including the initial notch length, see arrow 𝑎 in Figure 1(a), measured

by optical microscope. The images have been triggered to maximum applied loading in the

course of the cycling so as to measure the crack length when the crack is fully open.

The range of applied strain is correlated to macroscopic elastic behavior for Δ𝜀/2 = 0.0625 %,

to significant hysteresis for Δ𝜀/2 ⩾ 0.25 % and large hysteresis at maximum strain, Δ𝜀/2 = 0.45 %,

for which stress jumps are observed, Figure 4(a). The latter are associated to dynamic strain

aging, the so-called PLC effect, already observed for this material (Lee et al. 1998).
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Figure 4 SENT specimens tested at 900 °C for a crack length of about 2mm: (a) experimental stress-strain evolution,
(b) schematic evolution and associated energies, stress and strain amplitudes and (c) experimental evolution
of half amplitude stress and strain: black dots correspond to experimental values and blue line highlights
the linear relationship between stress and strain for small scale yielding condition. See Table 3 for details.

However, large scale yielding is consistent with łsustainedž plasticity exhibited by stress-strain

macroscopic hysteresis curves. Besides, from this measurement, corresponding to a given crack

length (here of about 2mm), it is possible to plot the half variation of stress amplitude, Δ𝜎/2, as a
function of applied half strain amplitude, Δ𝜀/2, Figure 4(c). The associated curve delineates a

transition between small scale yielding condition, with a linear relationship between cyclic stress

to cyclic strain, and general scale yielding condition for which the linearity is lost. The associated

łlifež considering the number of cycles to reach 5mm, equivalent to 40 % of the width of the

specimen, corresponds to LCF regime in the range 100ś4000 cycles, see Table 3.

4 Numerical model

FEA was conducted using the finite element code Zset (Mines ParisTech and ONERA 2021).

4.1 Model behavior for Ha188

To describe the mechanical behavior of Ha188 superalloy, it has been shown that using constant

isotropic and non linear kinematic hardening associated to Norton flow was straightforward at

high temperature, ignoring the PLC effect for sake of simplicity (Chaboche et al. 2013). Two

different potentials, respectively associated to a łquickž and a łslowž terms, are sufficient to

model frequency effect, as validated in previous studies (Chaboche et al. 2013; Maurel et al. 2017).

Thus equations are briefly recalled in Table 4.

Strain partitioning 𝜺∼
tot

= 𝜺∼
𝑒 + 𝜺∼

𝑝

Yield function 𝑓 =

√

3
2 (𝒔∼ − 𝑿∼ ) : (𝒔∼ − 𝑿∼ ) − 𝑅 − 𝜎𝑦

Kinematic Hardening ¤𝜶∼ = ¤𝜺∼𝑝 − 𝛾𝜶∼ ¤𝑝 , ¤𝑿∼ =
2
3𝐶 ¤𝜶∼

Isotropic Hardening 𝑅 = constant

Flow Function łquickž term ¤𝑝q = ⟨𝑓 /𝐾𝑞

𝑁
⟩𝑁𝑞

, łslowž term ¤𝑝s = ⟨𝑓 /𝐾𝑠
𝑁
⟩𝑁 𝑠

Total accumulated plasticity ¤𝑝 = ¤𝑝q + ¤𝑝s

Table 4 Mechanical behavior set of equation used for Ha188.

4.2 Geometry, boundary conditions and element assumptions

The chosen mesh is deduced from measured specimen geometry, accounting for realistic 3D

shape of the specimen, including the notch and simplifying the zone used for gripping system
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considering only cylindrical shape, Figure 5.

In the initial condition, an elliptical crack has been inserted in the mesh by conform remeshing

technique using the Meshgems Software solution (Distene 2021). The ellipse dimensions and

location are chosen so as to obtain a quasi linear crack with an initial crack length of 100 µm in

addition to the notch. For sake of clarity, the mesh detailed in Figure 5(b) corresponds to a crack

extension of 500 µm, geometrical parameters corresponding to Figure 3.

crack front

crack surface

quarter spheres for 
energy averaging at free 
surface and mid plane

(a)

(b)

(c) (d)

Figure 5 Sketch of geometry, crack and boundary conditions used for FEA: (a) perspective view where sets of nodes
used for prescribed displacement are contoured in red, (b) cropped top-view revealing the crack inserted
crack, (c) side-view exhibiting both notch and crack and (d) quarter sphere set of elements used for strain
energy averaging in red; in all views thick red arrows ended by yellow points correspond to nodes used for
controlled displacement to mimic extensometer.

All the simulations (after initial crack insertion and during the crack growth study) are

performed using quadratic tetrahedron elements. The loading to be modelled by FEA corresponds

to very high strain level, and subsequent high strain rate, in the specimen and especially in the

crack front vicinity. To avoid oscillation of stress field, the quadratic elements are enriched by an

additional dof controlling the pressure and the volume change, namely 𝑃𝑛 , to subsequently insure

the convergence of the trace of the stress tensor and triaxiality (e.g. see Zhang et al. (2018)). The

minimal mesh size is set to ℎ = 50 µm near the crack front and gradually increased up to 1mm,

yielding about 350 × 103 dofs including the pressure field 𝑃𝑛 .

In order to mimic the grip system, the boundary conditions are based on prescribed homoge-

neous displacement on nodes corresponding to screwed part of the specimen on top surface in

the 𝑦-direction, and zero displacement on the bottom surface, see red contours in Figure 5(a).

The magnitude of the applied displacement is prescribed to respect the displacements of the

nodes corresponding to the points of contact with the extensometer in order to represent the

real strain prescribed experimentally, see red arrows ending with yellow points in Figure 5(a)

and (c). A closed loop monitors the displacement of the top part of the specimen, so as to

respect the targeted displacement between this pair of nodes, the displacement being derived

from experimental strain accounting for the initial distance between these nodes. The implicit

convergence is controlled by a Newton-Raphson algorithm.

The contact between the crack lips is managed through a node to face penalisation based

contact algorithm, that neglects any friction between each side of the crack surface.

4.3 Crack growth, remeshing and internal variables

Mostly described for linear elastic cases in (Vattré and Chiaruttini 2022), the proposed method is

an extension to non-linear explicit fatigue crack growth of the algorithms developed in the Z-set

code, based successively for each crack increment on:

(i) fatigue fea: fatigue loading cycling that takes into account crack closure effect and contact;

(ii) post-processing: applying some post-processing computation on the FEA solution of the
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balanced domain, to obtain useful dissipation parameters involved in the studied crack growth

model;

(iii) propagation law: generating a crack front extension built on increment corresponding to the

crack front speed at control points chosen along the crack front;

(iv) remeshing: the remeshing of a given set of elements with conform remeshing of the new

generated crack front location accordingly to control point increments;

(v) field transfer: the projection of the fields of displacement and internal variables from the

previous mesh to the new mesh (which includes the crack growth), evaluated at the end of the

current computed cycle, allowing to continue the calculation at the next iteration starting from

such initial state.

This algorithm is illustrated in Figure 6(a).

Fatigue FEA

Post-processing

Propagation law

Remeshing

Field transfer

Cracked mesh with initial plastic strain

Dissipative quantities of interest

Crack growth increment

Updated mesh with plastic strain 

Updated cracked mesh

Balanced displacement and internal variables

(a) Crack propagation algorithm

Ni
2: new mesh Gauss point

Mj
1: old mesh Gauss point 

nearest to Ni
2

Xp
1: old mesh vertex

Xq
2: new mesh vertex

eq
1: old mesh element 

containing the vertex Xq2 

Ni
2

Mj
1

Displacement from old to new Gauss point positions. 
An additional strain          is applied to correct the 
material behaviour state during the transfer:

where              is the strain computed using the 
transferred new nodal values and     is the old 
nearest Gauss point current strain state.

(b) Data transfer correction process for integration points

Figure 6 Algorithm and mesh transfer details for large scale yielding crack growth.

For the initial crack, a few loading cycles can be applied to generate a more realistic and

stabilised plastic strain field. However, the intent is to analyze crack propagation, which is also

an effective way to account for stress re-equilibrium after each crack increment. Moreover, the

chosen crack propagation procedure preserves internal variables state. As a consequence, a

realistic stabilised plastic fatigue crack closure effect will be obtained after some propagation

increments. Thus, only one cycle has been computed at each crack increment.

The evaluation of the crack increment is based on a G-𝜃 analysis and Paris-like law described

in the sequel, which corresponds to the common practice for small scale yielding condition and has

been already integrated in the Zset code as a standard routine. By this way, the maximum crack

increment Δ𝑎max will correspond to the location where a maximum value of Δ𝐽 , Δ𝐽max, is reached.

An explicit linear approximation of the associated number of cycles Δ𝑁 = Δ𝑎max/(d𝑎/d𝑁 )max is

used with (d𝑎/d𝑁 )max = 𝐶 (Δ𝐽max)𝑚 . The crack increment for this prescribed Δ𝑁 number of

cycles is thus computed for any other control points along the crack front.

During the transfer process, the projection of the internal variables state is based on the

nearest Gauss point from old mesh to the new mesh, while the collocation of the new mesh nodes

to old ones is used to get the values of the displacement field, using the old mesh base functions

to get nodal values at the new mesh vertices coordinates. To insure the consistency between

any Gauss point and the transferred nodal strain field, a correction is performed: it consists

in prescribing the additional strain Δ𝜀 mismatch to every integration point, as illustrated in

Figure 6(b) (for a transfer between an old mesh T 1 to a new one T 2).

The mesh size is set to ℎ = 50 µm and the maximum crack increment Δ𝑎max, to 25 µm. This

yields a satisfactory compromise between mesh quality and quality of fields of internal variables

within the element after field projection. To improve the result quality, the chosen crack increment

is much lower than the process zone associated to cyclic plastic radius. To compute a crack

growth of 5mm at the mid-plane of the specimen, 200 propagation steps have to be calculated.
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4.4 Δ𝐽 from G-𝜃

To evaluate the driving force associated to domain integral, 𝐽 is evaluated through the so-called

G-𝜃 method. This method is based on a domain integral as originally proposed by Destuynder

et al. (1981) and further developed by Suo and Combescure (1992). To limit domain dependency

in the presence of plasticity and FEA simulation, a domain integral is achieved in the volume Ω.

For large and general-scale yielding conditions, the classical 𝐽 integral is known to become path

dependent. Thus, as proposed by Simha et al. (2008), an extended 𝐽 ∗ integral is defined as follows

for incremental plasticity:

𝐽 ∗ =

∫

Ω

1

2
(𝝈∼ : 𝜺∼e) tr(∇𝜃 ) − tr(𝝈∼∇𝑢∇𝜃 ) − 𝝈∼ : ∇𝜺∼ae · 𝜃 dΩ (6)

where tr is the first invariant of the considered tensor, 𝜺∼e corresponds to the elastic strain tensor,

𝜺∼ae, to the anelastic strain tensor, ∇𝜺∼ae, to its gradient, 𝝈∼ , to the stress tensor. Also, ∇𝑢 is the

gradient of the displacement field 𝑢 and ∇𝜃 is the gradient of virtual increment of displacement of

the crack front 𝜃 . Here, 𝜺∼ae = 𝜺∼tot − 𝜺∼e − 𝜺∼th, where 𝜺∼th corresponds to the thermal strain tensor.

Including the term 𝝈∼ : ∇𝜺∼ae · 𝜃 , this formulation yields independence of 𝐽 ∗ assessment to the

domain chosen for integral when at least the first two elements are included in the domain using

a FEA solution. The chosen domain was thus set to contain at least three layers of elements

attached to the crack front. For cyclic loading, those 𝐽 ∗ values are simply computed at both lower

and upper values of the applied fatigue loading conditions, the resulting amplitude is

Δ𝐽 ∗ = max
cycle

𝐽 ∗ − ⟨min
cycle

𝐽 ∗⟩ (7)

where the Macaulay brackets ⟨·⟩ corresponds to the positive part of the minimum value of 𝐽 ∗

computed over the cycle. See Appendix A.1 for the sensitivity analysis to the chosen contour for

domain integration.

4.5 The partition of strain energy

We propose to use here the partition of strain energy described above to infer driving forces for

fatigue crack growth, corresponding to the local elastic strain energy𝑊e and local plastic strain

energy𝑊p in Equation (4). Because we use here a behavior model combining plasticity and

viscosity, we use for sake of simplicity 𝜺∼vp that includes both inelastic strain terms. Using explicit

crack growth by conform remeshing technique, it is possible to evaluate the non-local strain

energy, defined in Equation (5), in a volume located at the crack tip. This was achieved by a direct

evaluation of the averaged strain energy within a half sphere, as depicted in Figure 5(d). The

center of the sphere corresponds to the considered point along the crack front, the half-sphere

being defined by the direction of crack propagation. When considering sides of the mesh, the half

sphere corresponds to a quarter sphere as highlighted in Figure 5(d). This volume of integration

is automatically located at the crack tip.

The non-local averaging is achieved with two half-sphere radii set to 250 and 400 µm respec-

tively. These values were chosen consistently with results obtained on notch plasticity (Maurel

et al. 2017) and will be discussed in the sequel. See Appendix A.2 for the sensitivity analysis to

the mesh size for strain energy analysis.

5 Results

5.1 FEA of strain and stress fields with crack growth

The developed fatigue crack growth methodology combines multiple ingredients to insure a good

quality of FEA with the crack propagation. For sake of simplicity, we propose to analyze only one

of the potential used to describe plasticity (the łquickž term), so-called plastic strain in the sequel

and described by the accumulated variable evrcum, see equations in Table 4. This term has been

observed to be much higher than the łslowž term for all tested conditions.

Perspective views of accumulated plastic strain has been plotted in Figure 7(a). This figure

corresponds to a crack extension of 600 µm on the free side of the specimen and of 1.6mm on the
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mid-plane of the specimen for Δ𝜀/2 = 0.375 %. First, accumulated plasticity evidences that the

whole gage length bears significant plasticity, Figure 7(a). Detailed views are used to highlight

notable features resulting from this FEA, of the free surface for the same crack location are

presented below. A large plastic area is observed, and despite a rapid transition from minimum

mesh size, of 50 µm, to larger mesh size, local variation of plasticity are mostly continuous at few

thousands of microns from the crack tip, Figure 7(b).

(b)(a)

Figure 7 Accumulated plasticity for Δ𝜀/2 = 0.375 % and 𝑅𝜀 = 0: (a) perspective view and (b) detailed view of the
free surface.

The stress component are known to be very sensitive to the quality of the mesh and FEA. Here

detailed view of both Von Mises equivalent stress and trace of stress tensor exhibit continuous

field, Figure 8(a) and (b), respectively. If additional dof for pressure convergence was not used,

and even using a quadratic mesh, higher stress triaxiality levels together with oscillations from

element to element of both stress triaxiality and stress component would have been obtained.

Besides, local maximum of the trace of the stress tensor is observed at approximately 2mm from

the crack tip, which is fully consistent with observed micro-crack pattern in front of the major

crack tip, see Figure 1. Strain and stress fields confirm that the chosen methodology for field

transfer is straightforward in the context of general scale yielding.

(b)(a)

Figure 8 Stress at maximum loading for Δ𝜀/2 = 0.375 % and 𝑅𝜀 = 0: (a) Von Mises equivalent stress and (b) Stress
tensor trace tr𝜎 .

A quantitative evaluation of the previous fields has been plotted as a function of the distance

from the crack tip 𝑟 for two levels of loading, for both free surface(s) and mid-plane locations

in Figure 9. Von Mises equivalent stress 𝜎VM in Figure 9(a), stress component in the loading

direction 𝜎22 in Figure 9(c) and accumulated plasticity evrcum in Figure 9(d) are monotonically

decreasing from the crack tip. While, low stress triaxiality level 𝜎H in Figure 9(b), defined here

as 𝜎H = tr𝝈∼ /𝜎VM, is observed on free surface, close to 0.5, and reaches asymptotic values for

distances from the crack tip higher than 1.5mm. The location of minimum stress triaxiality

is function of applied strain level, and is of about 250 µm for Δ𝜀/2 = 0.125 % and 500 µm for

Δ𝜀/2 = 0.375 %. At the mid-plane, 𝜎H reaches its highest values, and decreases monotonically

from the crack tip. All these plots correspond to the time of maximum loading, and for all

observed quantities, asymptotic values are reached after 1ś2mm distance from the crack tip. It is
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worth noting that stress quantities are continuous function of the abscissa. Oscillations are

more pronounced for accumulated plasticity which appears to be more sensitive to the chosen

projection methodology with crack growth and associated remeshing technique.
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Figure 9 Evolutions of (a) Von Mises equivalent stress 𝜎VM, (b) stress triaxiality 𝜎H, (c) stress component in the
loading direction 𝜎22, (d) accumulated plastic strain ‘evrcum’, (e) elastic strain energy We and (f) plastic
strain energy Wp for 𝑅𝜀 = 0.

Last but not least, plasticity and higher compressive residual stress level on free surface

impacts the crack front curvature (Fessler et al. 2017): the higher the applied strain level, the

higher the curvature is assessed. Subsequently, an offset distance is observed between crack

tip-location from the surface to the mid-plane of 370 µm for Δ𝜀/2 = 0.125 % and of 690 µm for

Δ𝜀/2 = 0.375 % for the same crack extension on the mid-plane of the specimen (here of 1.25mm).

5.2 Paris’ law from G-𝜃

Δ𝐽 ∗ is derived from G-𝜃 as a function of the crack length for each tested loading level, Figure 10(a).

Thus, it is possible to determine FCGR using Paris’ law based on Δ𝐽 ∗ evaluation following

d𝑎

d𝑁
= 𝐶 (Δ𝐽 ∗)𝑚 (8)

where𝑚 and 𝐶 are the Paris’ law parameters adapted to the Δ𝐽 ∗ analysis. They were identified

on the applied strain loading corresponding to Δ𝜀/2 = 0.125 %. The associated parameters are

detailed in Table 5. Using this Paris’ law yields excellent evaluation of FCGR for the two lowest

applied strain values. This is obvious for the evolution of measured FCGR as a function of Δ𝐽 ∗,
Figure 10(b). However, the modelled FGCR is one order of magnitude higher than the measured

FCGR values for Δ𝜀/2 ⩾ 0.025 %. This result is a direct consequence of the limitation of the Δ𝐽 ∗

analysis as a driving force for crack when plasticity impacts drastically the evaluation of Δ𝐽 ∗, i.e.,
at the transition between large to general scale yielding condition.

It is worth noting that a convergence is observed for the two highest loading conditions, that

could have been used to identify the Paris’ law parameters, using a much lower value of the 𝐶

parameter and keeping the same exponent𝑚. However, such an identification would have led to

a large underestimation of modelled FCGR in small scale yielding condition, and subsequently a

loss of conservatism of the associated approach. Thus, a Paris’ law associated to a standard

practice to assess Δ𝐽 ∗ does not fit to FCGR in a large range of loading.
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Figure 10 Δ𝐽 and Paris-model assessments. (a) Δ𝐽 ∗ as a function of crack length 𝑎; (b) FCGR as a function of Δ𝐽 ∗.
Legend symbols common to both subfigures.

5.3 Partition of strain energy in a presence of a crack

Strain energy density As a first result, it is of interest to detail strain energy density field,

Figure 11. For sake of figure clarity, the proposed fields correspond to a non-local averaging using

a characteristic length of 400 µm. The elastic strain energy density𝑊e is consistent with the trace

of stress tensor pattern, compare Figure 11(a) to Figure 8(b), with global maximum reached at the

crack tip and local maximum reached at few millimetres beyond the crack tip. On the other hand,

The plastic strain energy density𝑊p is consistent with plastic strain localization pattern, compare

Figure 11(b) to Figure 7. The extension of the area of high level of strain energy density is limited,

even though considering free surface of the specimen.

(a) (b)

Figure 11 Strain energy density at maximum applied loading using direct non-local field where characteristic length
is set to 400 µm: (a)𝑤e and (b)𝑤p (values are divided by 106 for reading purpose), applied strain level
corresponds to Δ𝜀/2 = 0.25 %.

The quantities𝑊e and𝑊p are plotted as functions of the distance to the crack tip 𝑟 in

Figure 9(e) and (f), respectively. These plots correspond to the same applied levels as described
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previously in Figure 9(a) to (d). The elastic strain energy decreases over a long range distance at

the mid-plane location, but it decreases drastically over a similar distance for both applied strain

levels on the free surface, limited in the range 200-300 µm, Figure 9(e). The elastic strain energy

appears to be strongly correlated to stress component 𝜎22, compare Figure 9(e) to (c).

On the other hand, the plastic strain energy decreases over a distance larger than 1.5mm for

both applied strain levels before reaching asymptotic values. The distance to the crack tip to

reach asymptotic values depends of applied strain level and of the considered location (free

surface or mid-plane), Figure 9(f). The evolution of plastic strain energy appears to be strongly

correlated to the accumulated plastic strain, compare Figure 9(f) to (d).

In the sequel, we choose to test distances for averaging process limiting the impact of such a

severe gradient for𝑤e assessment.

Non-local strain energy as a function of the crack length The chosen quantities of interest,

assumed to be driving forces for fatigue crack growth, correspond to the non-local values of strain

energy density obtained by averaging in quarter spheres located at the crack tip. Focusing on

observable free surface, this quarter sphere is evidenced by the red set of elements in Figure 5(d).

The associated strain energy density fields have been highlighted in Figure 11 using inserted

views. To ascertain the role of non-local length associated to averaging, two radii have been

tested: 250 and 400 µm respectively. These size are consistent with the minimum mesh size set to

50 µm. Accordingly to previous study, oversizing the mesh size for averaging method enables to

avoid further mesh dependency (Maurel et al. 2017).

On the one hand, plastic strain energy,𝑤p, increases with both the crack length and the

applied strain level, Figure 12(a). The range of𝑤p values is here of about three orders of magnitude,

see Figure 12(a) using logarithmic scale. This figure being plotted for 𝑎𝑡𝑜𝑡 = 𝑎0 + Δ𝑎, where 𝑎0
corresponds to the notch length. On the other hand, elastic strain energy,𝑤e, range is narrower

than the one observed for𝑤p, see Figure 12(b) using linear scale, exhibiting a sort of saturation

effect for highest applied strain values, consistently with saturation of stress level, Figure 4.

For Δ𝜀/2 ⩾ 0.125 %,𝑤p is one order of magnitude higher than𝑤e, Figure 12(a) and (b). It is

worth noting that the evolution of𝑤p and𝑤e with the crack length and applied strain level, are

similar for both ℓ𝑐 = 250 µm and ℓ𝑐 = 400 µm. Consistently with observed gradients and maxima

reached at the crack tip, the lower the critical length, the higher the assessed strain energy.

Finally, the non-local length used for energy averaging mainly impacts local oscillations for

elastic term𝑤e. The proposed method of averaging prescribes quarter sphere location, with a

precision of ± one finite element1, for which the gradient is the largest, yielding a maximum

sensitivity when using ℓ𝑐 = 250 µm.

5.4 FCGR model based on partition of strain energy

Former FCGRmodel based on static analysis implies the use of a virtual crack length 𝑎, Equation (3).

With this, only increase of driving force with crack length could be assessed, unless the loading is

actualized with crack growth (Heudt 2013; Dezecot et al. 2019). This point is a strong limitation

to structure analysis where driving forces should be assessed in 3D for any crack shape and

location in the structure. Thus, we propose here to take advantage of the implicit dependency

of strain energy with crack growth to suppress the virtual crack length 𝑎 from the previous

expression. This leads to the new FCGR model

1

𝜆

d𝑎

d𝑁
=

(𝑤e

𝑤∗
e

)𝑚e

+
(𝑤p

𝑤∗
p

)𝑚p

(9)

where 𝑚e, 𝑚p, 𝑤
∗
e and 𝑤∗

p are the material parameters. 𝜆 should be seen as a rationalizing

parameter to keep consistent value of𝑤∗
e and𝑤

∗
p with obtained energies. For sake of clarity in the

comparison of the two critical length, ℓ𝑐 , we chose a priori to set 𝜆 to the minimum sphere radius

used for averaging, i.e. 250 µm. This model is now independent of the mesh size, by chosen

non-local averaging method, and independent a priori of the structure geometry, by a direct

1 Due to local curvature of the crack tip, the half-sphere being localized by the only abscissa of its centre, some elements

are not considered, see Figure 5.
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Figure 12 Evolutions with crack length and applied loading of (a)𝑤e and (b)𝑤p. Solid and dashed lines correspond
to non-local length set to 400 and 250 µm, respectively. Stars correspond to large crack extension as
detailed in Section 6.1. Legend common to both subfigures.

evaluation of driving forces for fatigue crack growth thanks to energy terms. See Appendix A.2,

for the sensitivity analysis to the mesh size for strain energy analysis and its impact on FCGR.

A simple methodology for the identification of the models parameters is based on the

distinction between small and general scale yielding conditions. Assuming that the lowest applied

loading, corresponding to Δ𝜀/2 = 0.0625 %, is mostly driven by the elastic term, namely

1

𝜆

d𝑎

d𝑁
=

(𝑤e

𝑤∗
e

)𝑚e

+
(𝑤p

𝑤∗
p

)𝑚p

≃
(𝑤e

𝑤∗
e

)𝑚e

, (10)

the identification of𝑚e and𝑤
∗
e is obtained by a direct linear regression in the log-log plot of

FGCR as a function of𝑤e, see the solid lines in Figure 13. Similarly, assuming that one of the

highest applied loading condition, corresponding to Δ𝜀/2 = 0.375 %, is mostly driven by the

plastic term, namely

1

𝜆

d𝑎

d𝑁
=

(𝑤e

𝑤∗
e

)𝑚e

+
(𝑤p

𝑤∗
p

)𝑚p

≃
(𝑤p

𝑤∗
p

)𝑚p

, (11)

the identification of𝑚p and𝑤
∗
p is obtained by a direct linear regression in the log-log plot of

FGCR as a function of𝑤p, see the dashed lines in Figure 13.

Because of the proposed additive formulation of elastic and plastic contributions to FCGR,

the final values of𝑤∗
e and𝑤

∗
p are lower than the ones deduced from Equations (10) and (11),

respectively. This leads to the model results exposed in Figure 14 and associated model’s

parameters detailed in Table 5.

The elastic strain energy appears to bring an essential contribution to the quality of the

proposed model, this point will be further detailed in the discussion. Whereas, the plastic term is

observed to converge to a linear evolution in the log-log plot for both minimum and maximum

applied loads. It is worth noting that the plastic contribution could have been identified by fitting
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Figure 13 Identification of FCGR function of𝑤e (filled symbols and solid line, Equation (10)) and function of𝑤p

(empty symbols and dashed line, Equation (11)): (a) ℓc = 250 µm and (b) ℓc = 400 µm. Legends common to
both subfigures.

the minimum applied loading. However, this would have led to loss of consistency with higher

applied strain loading, because of the slope difference.

Using strain energy partition method, and summation of both elastic and plastic contribution

to FCGR, Equation (9), yields to a pretty good assessment of FCGR for the whole range of applied

loading condition, irrespective of the chosen ℓ𝑐 , see Figure 14. This result is a direct consequence

of the saturation of elastic strain energy term,𝑤e, with increasing applied strain loading and the

consistency of plastic strain energy term,𝑤p with observed increase of FCGR with increase in

applied strain level Δ𝜀.

Besides, this identification is relevant for both small and long crack regimes. Minimum

crack modelled corresponds to the crack extension Δ𝑎 = 200 µm, which is relative to short crack

regime. Final crack length corresponds to a crack extension higher than 2mm, which is relative

to long crack regime. Due to notch plasticity, only for the lowest applied loading, a short crack

effect could be associated to local increase in FCGR for 𝑎 < 1.3mm as compared to 𝑎 > 1.3mm,

Figure 14. The global consistency from short to long crack regimes is observed as a direct benefit

of the non-local model developed in this study.

Partition of energy model [Equation (9)] ℓ𝑐 (𝜇m) 𝑤∗
e (kJ/m3) 𝑚e 𝑤∗

p (MJ/m3) 𝑚p

250 748 3 234 2.5

400 792 2.5 265 2

Elastic strain energy model [Equation (13)] 250 647 3

400 684 2.5

Paris’s model [Equation (8)] 𝐶 𝑚

9.98 × 10−7 1.8

Table 5 FCGR model parameters identified with the set of tested conditions described in Table 3, here 𝜆 = 250 µm.
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Figure 14 FCGR as a function of crack length 𝑎 using complete model, Equation (9), experimental fatigue crack
growth (symbols) and identified model (lines): (a) ℓc = 250 µm and (b) ℓc = 400 µm.

6 Discussion

6.1 Crack propagation and plastic wake impact on driving forces

The chosen methodology for fatigue crack propagation implies the projection step in order

to consider history during crack growth: plastic wake and associated residual stress field are

thus accounted for. To question the optimal computation time, this should be analyzed through

relevant strategy of FEA for long crack. Should all crack increments been calculated? or could we

introduce a priori any crack length, and through slight crack increment be confident with crack

driving forces? This point is of particular interest for complex structure analysis, where lengthy

time cost could be prohibitive.

As an example, we use the case Δ𝜀/2 = 0.25 % described above, corresponding to the transition

to general scale yielding. The rather limited level of plasticity and subsequent reasonable CPU

time, make this case of interest. A crack increment of 600 µm is considered derived from above

computation. That is to say that for this crack increment, we only used the corresponding mesh,

ignoring any prior history, starting computation of crack growth from a natural stress state from

this point.

The evolution of Δ𝐽 ∗ from this point starts from a clear maximum, strongly over-evaluating

the Δ𝐽 ∗ assessed by continuous crack increment analyzed above, see Figure 15(a). After five to six

new crack increments from this point, the Δ𝐽 ∗ assessment is similar for both crack analysis from

new crack location and from initial starting crack. One could consider that, this point highlights

the relevancy of the proposed scheme of crack growth analysis.

On the other hand, the strain energy terms converge to the continuous crack growth analysis

after only one step of crack increment, see Figures 15(b) and (c). This is obvious for both plastic

and elastic terms, despite local oscillations associated to scatter already described with elastic

term. These results correspond to ℓ𝑐 = 250 µm, this being the most critical case.

This sensitivity analysis to the starting point of crack reveals two major points: the plastic

wake influence on J-integral could be analyzed after 5 to 6 crack increments, whereas, a single
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Figure 15 Quantities (a) Δ𝐽 ∗, (b)𝑊p and (c)𝑊e as functions of the crack length, from initial crack and from a crack
increment of 600 µm for Δ𝜀/2 = 0.25 % (ℓ𝑐 = 250 µm).

crack increment is sufficient to get excellent assessment of strain energy density for both elastic

and plastic terms. Thus any error in the size of a crack used for structure analysis should be of a

lower impact considering the strain energy model proposed in this study as compared to classical

J-integral model. This point could be related to the chosen strategy for location/orientation of the

half-sphere used for energy averaging: the associated volume is not directly impacted by the

contact behavior, because the crack lips are not included in the considered volume for integration.

Thus, the considered values of strain energies are mainly associated to the so-called process zone

associated to the elaboration of damage at the crack tip in fatigue.

We applied this method to assess Δ𝐽 ∗,𝑤p and𝑤e for the two maximum applied strain values,

Δ𝜀/2 = 0.375 % and 0.45 % respectively, for the maximum crack length tested. These points are

highlighted by star-markers in Figures 12 and 15(a).

6.2 Role of elastic and plastic strain energy in FCGR

For the new FCGR model proposed in Equation (9), the relative weight of elastic and plastic strain

energies in FCGR has to be investigated. If one considers that the total FCGR d𝑎/d𝑁 = 𝑣 = 𝑣e + 𝑣p
in Equation (9) is driven by the summation of the elastic and plastic terms, respectively

𝑣e = 𝜆
(𝑤e

𝑤∗
e

)𝑚e

and 𝑣p = 𝜆
(𝑤p

𝑤∗
p

)𝑚p

(12)

where the ratio 𝑣e/(𝑣e + 𝑣p) = 𝑣e/𝑣 corresponds to the relative weight of 𝑣e to the total FCGR 𝑣 .

The averaged value of this ratio has been plotted as a function of the applied strain level, Figure 16.

It is obvious that for the lowest applied strain level, Δ𝜀/2 = 0.0625 %, 𝑣e/𝑣 is close to unity,

Figure 16 Evolution of the ratio between FCGR related to elastic term 𝑣e
and FCGR complete model using partition of energy 𝑣 .
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denoting a major influence of elastic strain energy onto FCGR. This is fully consistent with both

identification method and with the fact that elastic strain energy is proportional to the square of

stress amplitude, namely𝑤e ≃ 1/2𝜎2/𝐸, making 𝑣e similar in its formulation to a classical Paris’

law.

On the other hand, for higher applied strain values, and general scale yielding condition, the

elastic contribution on FCGR, 𝑣e term, decreases down to 65 % of the total FCGR for ℓ𝑐 = 250 µm,

but only to 75 % of the total FCGR for ℓ𝑐 = 400 µm. Despite the chosen identification methodology,
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using Δ𝜀/2 = 0.375 % to obtain a first evaluation of 𝑣p parametersÐnamely 𝑤∗
p and𝑚pÐthe

elastic term 𝑣e contributes to a large extent in the quality of FCGR model. Thus we propose to

assess FCGR using only the elastic term

1

𝜆

d𝑎

d𝑁
=

(𝑤e

𝑤∗
e

)𝑚e

. (13)

The obtained identifications of this simplified model are plotted in Figure 17. It is obvious that

despite some local oscillations, this model yields a very good assessment of experimental FCGR

in comparison with standard Δ𝐽 and Paris’ law. Besides, the partition of strain energy into
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Figure 17 FCGR as a function of𝑤e: (a) ℓ𝑐 = 250 µm; (b) ℓ𝑐 = 400 µm.

elastic and plastic terms has enabled a clear identification of driving forces: the elastic term is

the dominant driving force for fatigue crack growth, the plastic term being mostly dissipated

into heat and diffuse damage. In addition to what, this is worth noting that this conclusion is

consistent with most of the work accounting for plasticity in fatigue crack propagation: the crack

evolves in a residual stress field induced by plasticity. This means that the quality of stress field

assessment, using additional dof to control the pressure field 𝑃𝑛 , is a key point of the chosen

methodology.

On the other hand, the poor correlation of Δ𝐽 to the FCGR could be related to the contribution

of plastic work in its evaluation. It is still complex to extract from the term 𝑔𝑟𝑎𝑑 𝑢 in Equation (6),

the elastic and plastic contributions for a general mechanical behavior model. Whereas, this

operation is clarified by the partition of strain energy developed above.

7 Conclusions

This paper has proposed a global methodology to assess fatigue crack growth rate from small

scale yielding to general scale yielding conditions. It was supported by a complete numerical

scheme using remeshing techniques and projection of internal variable fields, including additional

dof to reach convergence of the pressure field. This step was seen to be successful considering

the quality of stress and strain fields obtained after crack growth.
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Based on this numerical assessment of stress and strain fields, both energy release rate

and strain energy quantities have been analyzed. Then, a Paris’ like model, using only Δ𝐽 ∗

values derived from G-𝜃 -method, yields large overestimation of FCGR for large and general scale

yielding conditions. The proposed original FCGR model based on strain energy partitioning, was

adapted from a previous analysis initially developed without crack modeling. Together with a

non-local averaging of strain energies, this new FCGR model yields a significant improve of FCGR

assessment for a large range of applied strain loading levels. Last but not least, considering only

the elastic contribution derived from energy partitioning has led to a simplified and promising

model for FCGR.

Complementary works are underway to take into consideration the role of modal mixity on

FCGR considering large scale yielding condition.

A Driving forces sensitivity analysis

A.1 Dependency of Δ𝐽 ∗ to chosen domain

To analyze the Δ𝐽 ∗ dependency to the chosen domain of integration, extreme values have been

plotted in the range of loading tested in this study: Δ𝜀/2 = 0.0625 % and Δ𝜀/2 = 0.45 %. Two

domains have been plotted, corresponding to a radius of 0.3mm and 1.2mm respectively, as

illustrated in Figure A.1.
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Figure A.1 Dependency of Δ𝐽 ∗ to the chosen domain size 𝑎 for loading corresponding to Δ𝜀/2 = 0.45 %: (a) surface
representation of the chosen domain radius; (b) Δ𝐽 ∗ for two domains and two loads; 𝑥 describes the
location along the crack front, 𝑥 = 0 corresponds to the free surface.

The maximum difference is observed accordingly to the free surface effect, for maximum

applied loading and is less than 20 %. Whereas it is obvious that at the middle of the specimen

no effect of the size of the domain of integration is observed. Last but not least, in small scale

yielding, despite very large differences in chosen domains, a very good path-independence of Δ𝐽 ∗

is reached.

A.2 Dependency to the mesh size

To analyze the driving forces dependency to the mesh size, a simple case has been tested: it

corresponds to pure tension, at the transition from small to large scale yielding, ie Δ𝜀/2 = 0.25 %.

Figure A.2 shows the results of the domain dependency of the three driving force parameters

computed at mid-thickness with three elements, and for two characteristic domain lengths,

namely ℓ𝑐 = 250 and 400 µm consistently to the above analysis. Ratios are plotted from the

values found for a minimum mesh size of ℎ = 25 µm. All quantities evolve with the mesh size.

The highest impact is observed for𝑤p with a linear decrease of values with the mesh size for

ℓ𝑐 = 250 µm. The error being non-linear but more limited for ℓ𝑐 = 400 µm. For the mesh size

of 50 µm chosen in this study, the variation is less than 10 % on strain energy values, for both

ℓ𝑐 = 250 and 400 µm. This induces a possible variation on FCGR lower than 5 % with the identified

model based on energy partitioning.

Journal of Theoretical, Computational and Applied Mechanics
�

� February 2023
�

� jtcam.episciences.org 21
�

� 25

https://jtcam.episciences.org


VincentMaurel et al. Fatigue crack growth under large scale yielding condition: a tool based on explicit crack growth

20 40 60 80 100
0.6

0.7

0.8

0.9

1

1.1
(a)

ℎ (µm)

ra
ti
o

20 40 60 80 100

(b)

𝐺/𝐺 (25 µm)

𝑤p/𝑤p (25 µm)

𝑤e/𝑤e (25 µm)
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