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Compositionśproperty correlations are fundamental to understand cement-based materials’ behavior and

optimize their formulation. Modeling based on fundamental material components constitutes a reliable tool

to establish these correlations with the advantage of better exploring the formulation space when compared

to the often adopted experimental trial-and-error approaches. In this context, Machine Learning (ML) and

Micromechanics-Based (MB) methods have been concurrently used for property prediction from the

material composition. We show that these techniques can be allies for establishing compositionśproperty

correlations. We focus on predicting the elastic properties of Ordinary Portland Cement pastes but the

outlined strategy can be extended to other cement systems. Various microstructural representations are

considered in MB estimates including multiscale representations possibly with ellipsoidal inclusions. In

contrast, ML predictions do not need any a priori assumption on the material microstructure. Predictions

using ML and MB yield similar accuracy when compared against test datasets but ML performs much

better regarding the error estimated in training datasets. Working as allies, ML can be deployed to evaluate

the (lack of) knowledge over the multi-dimensional parametric domains while micromechanics provides a

theoretical background for property data curation and is a tool to make up for missing data in databases.

Keywords: machine learning; micromechanics; ordinary Portland cement paste; elastic properties; data science; early

ages.

1 Introduction

Establishing ProcessingśCompositionś(Micro) StructureśPropertyśPerformance correlations is

the central paradigm for understanding material behavior in a bottom-up perspective as well as

to conceive and optimize materials for tailored applications (Olson 1997). Such correlations

are important for cement-based materials since, on the composition side, the key ingredients

vary largely according to the local availability of resources, processing spans lower and higher

technology contexts (Wangler et al. 2019), and the design of cement components and concrete

structures relies on property and performance requirements. Material property prediction having

as input the composition is therefore critical to optimize the use of cement-based materials.

MB modeling has been successfully used to unveil CompositionśProperty correlations for

various properties in cement-based materials, including mechanical (Wyrzykowski et al. 2017;

Pichler and Hellmich 2011; Sanahuja et al. 2007; Königsberger et al. 2021), transport and ther-

mal (Bary and Béjaoui 2006; Patel et al. 2016; Honório et al. 2018a), and electromagnetic (Guihard

et al. 2019; Honório et al. 2020b; Honório et al. 2020a) properties, as well as coupling properties in

the thermo-poro-mechanical framework (Ulm et al. 2004; Ghabezloo et al. 2009; Honório et al.

2018a; Honório et al. 2018b). An advantage of MB modeling is the simplicity of computations,

which enables assessing various scenarios of interest regarding the composition, uncertainty on

phase properties (Honório et al. 2020b), and morphology of phases in a heterogeneous material.

However, one may legitimately dispute the pertinence of representing the microstructure of
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Nomenclature

Acronyms
DOH Degree of Hydration
HD high-density
HS Hashin-Shtrikman
KHP Königsberger-Hellmich-Pichler
LD low-density
LOOCV Leave-One-Out Cross-Validation
MB Micromechanics-based
MRE Mean Relative Error
MT Mori-Tanaka
OPC Ordinary Portland Cement
REV representative elementary volume

RMSE Root Mean Square Error
SC Self-Consistent
SCM Supplementary Cementitious Materials
TJ Tennis and Jennings

Methods
ANN Artificial Neural Network
CART Classification and Regression Trees
DT Decision Tree
GBT Gradient Boosted Trees
LR Linear Regression
ML Machine Learning
NN Nearest Neighbors
RF Random Forest

cement paste under the usual assumptions adopted in analytical homogenization approaches.
These assumptions include

(i) a random microstructure (there is evidence that some correlation between phases volume
distribution has been quantified using microstructural hydration model (Hlobil 2020)),

(ii) phases being often represented by spherical (or ellipsoidal) inclusions (experimental evidence
shows that crystalline phases cement paste are not generally spherical or ellipsoidal),

(iii) perfect interfaces among phases (while some defects may exist), and
(iv) separability of scale (especially considering that heterogeneity size, for example of cement

particles, may span various magnitudes).
Numerical homogenization is not immune to the same questioning. In this context, ML arises
as a promising tool to directly establish CompositionśProperty correlations without a priori
assumptions on the microstructure characteristics (Agrawal and Choudhary 2016). The huge
amount of experimental data produced on cement-based materials in the last century can be used
to build databases that can be interrogated by ML. As highlighted by Bullard et al. (2019), a
łsystematic development of structure-property relationshipsž based on both the łcuration of
fundamental material component dataž and łvalidated modeling based on fundamental scientific
principlesž may łrevolutionizež the design of cement-based materials. However, as recognized by
the authors, such an approach was given comparatively little attention in the concrete research
community when compared to the łincreasingly laborious trial-and-error exploration of the
design space and mixture qualification processž. In cement-based materials research, ML has
been deployed since the 90’s to predict compressive strength (Kasperkiewicz et al. 1995; Yeh
1998; Yeh and Lien 2009; Duan et al. 2013; Young et al. 2019) using frequently ANN. Other
methods include support vector machines (Yan and Shi 2010), decision trees (Behnood et al.
2015), evolutionary algorithms (Golafshani and Behnood 2018). Elastic properties have also been
extensively studied using ML (Ben Chaabene et al. 2020) with a strong focus on the impact of
using recycled aggregates. As input variables, the composition in terms of cement and water
content, as well as SCM and admixture mass or volume, are often adopted (Ben Chaabene et al.
2020). The effects of the mineralogical composition of cement and the effects of age (and property
development, especially at early ages) are generally omitted.

In this work, a multi-technique modeling approach combining ML and MB methods is
proposed to link cement system composition and DOH to the material elastic properties. We
tackle specifically the predictions of OPC pastes elastic properties from the composition of the
cement (in terms of clinker composition and gypsum fraction𝑤/𝑐) and age, but the outlined
strategy can be extended to other cement systems and scales. Since OPC systems are simpler and
better experimentally characterized than other cement systems, they are ideal candidates for
testing our approach and for demonstrating its feasibility. We explore paths in which ML and MB
techniques can be allies, notably in the analysis of experimental databases to evaluate existing
experiments and lack of experiments and by providing missing data. Our results contribute to
the development of multiscale modeling of cement-based materials informed by the cement
composition variability and enhanced by blending data from different research projects. This
framework can be used to improve the comprehension of correlations among the composition,
microstructure, and properties of cement-based materials.
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2 Machine Learning approach and database construction for predict-

ing elastic properties

Knowledge about cement paste and behavior is fundamentally offered through experimental
observations. A direct approach for exploiting the large literature is collecting a wide range of
published experimental results and using ML methods to predict properties for new compositions
based on the training dataset.

2.1 A database construction for cement pastes linking composition and elastic
constants

Based on experimental data from the literature (Helmuth and Turk 1966; Haecker et al. 2005;
Boumiz 1996; Tamtsia et al. 2004; Wang and Subramaniam 2011; Constantinides and Ulm 2004;
Lura et al. 2003; Chamrova 2010; Sun et al. 2007; Maruyama and Igarashi 2014) a dataset with 376
entries is built, which will be used for training and validation. Details on database construction
are given in Appendix A. Input in the datasets are cement composition (in terms of clinker
minerals and gypsum contents), water-cement ratio, age, and DOH. Other input of interest for
the formulation, such as admixtures, curing conditions (including temperature), etc., are not
considered because of the lack of full data and the inadequacy of MB methods to date to take into
account these factors properly. Of course, future work might focus on introducing these effects as
input in ML-based strategies.

The outputs are the elastic constants: 𝐸 Young, 𝐾 bulk and 𝐺 shear moduli, and 𝜈 Poisson’s
ratio. Note that the dimensionality of the manifold can be reduced considering that the elastic
constants are linked through simple relations in the case of isotropic materials: 𝐸 = 9𝐾𝐺/(3𝐾+𝐺);
𝜈 = (3𝐾 − 2𝐺)/(2(3𝐾 +𝐺)); 𝐾 = 𝐸/(3(1 − 2𝜈)) and 𝐺 = 𝐸/(2(1 + 𝜈)). Also, the age and the
DOH can be related using a bijection e.g., a sigmoid function.

Table 1 shows the statistical parameters associated with the training dataset. In the various
ML applications for mechanical properties of cement-based materials, the dataset size spans
from 74 (Ben Chaabene et al. 2020) up to more than 10,000 (Young et al. 2019) observations, most
of the cases with data size in the range 100 to 1,000 observations (Ben Chaabene et al. 2020). The
size of the dataset provided here has, therefore, an intermediary size. It can already provide
sufficient support for learning but could surely be improved with complementary data in future
works.

Data Variable Min. Max. Mean St. Dev. Exceed Kurtosis∗ Skewness∗

Input age [days] 0.12 720 49 124 13.9 3.6

DOH [-] 0.03 1 0.5 0.3 −0.7 0.6

𝑤/𝑐 [-] 0.25 0.8 0.44 0.1 −0.2 0.64

𝑚C3S [%] 24.5 100 60.2 13.8 2.1 −0.7

𝑚C2S [%] 0 61.3 16.6 15.2 2.4 1.6

𝑚C3A [%] 0 12.7 8.1 3.4 −0.7 −0.6

𝑚C4AF [%] 0 12.7 5.8 4.2 −1.5 −0.2

𝑚gypsum [%] 0 6.8 2.9 2.9 −1.7 0.3

Output 𝐸 [GPa] 0.22 37.2 11.2 7.8 0.3 0.8

𝜈 [-] 0.07 0.49 0.3 0.07 0.88 0.58

𝐾 [GPa] 0.15 32.2 9.3 5.6 2 1.3

𝐺 [GPa] 0.07 14.6 4.4 3.1 0.3 0.8

Table 1 Statistical analysis of the cement paste dataset of 365 observations used for training. ∗dimensionless.

2.2 Machine Learning methods

For prediction purposes, the following algorithms are employed:
Linear Regression The output is predicted using a linear combination of the numerical features

vector. The conditional probability is computed using a parameter vector estimated from the
minimization of a loss function.
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Decision Tree A decision tree (i.e., a flow chart structure in which the internal nodes correspond
to a test on a feature, while the branches correspond to an outcome of the test) is built using
the CART algorithm (Breiman et al. 2017).

Gradient Boosted Trees A prediction model is constructed in the form of an ensemble of trees
which is trained sequentially in order to enhance the capability of the previous trees. The
implementation adopted is based on the LightGBM algorithm (Ke et al. 2017).

Nearest Neighbors This instance-based learning technique predicts a value by analyzing the
nearest neighbors in the feature space.

Artificial Neural Network A neural network is constituted of stacked layers, each associated
with simple computation. The information is processed layer by layer, starting at the input
layer until the output layer. The neural network is trained in order to minimize a loss function
on the training set. A gradient descent method is used to perform this minimization.

Random Forest Various decision trees are constructed and the prediction is made by taking
the mean value of the tree predictions based on the bootstrap aggregating algorithm (Breiman
1996) where each decision tree is trained using only a random subset of the features.

Gaussian Process Predictions are made using Bayesian inference on the Gaussian process
conditioned to the training data (Williams and Rasmussen 1996). The underlying assumption
of the method is that the prediction function can be associated with a Gaussian process
defined by its kernel or covariance function. The training phase consists of estimating the
parameters of the kernel.
We use Mathematica 13.0 (Wolfram 2021) in which these algorithms are built-in. The

numerical cost associated with the creation of the predictor functions is detailed in Appendix B.
Methods like ANN, LR, and GP produce a smooth predictors, whilst DT, NN, and RF produce
discrete prediction values. The implementation of the various methods in Mathematica leaves the
user the possibility to impose the associated parameters or use built-in optimized procedures to
determine these parameters. The last option seemed more appropriate for us because it reduced
the number of cases to be tested. For reproducibility reasons, we provide the information used
by each method as supplementary material. For example, ANN uses two layers for 𝐸 and 𝐺
predictions and eight layers for 𝐾 and 𝜈 predictions; DT uses between 23-27 nodes and 12-14
leaves. The specific number of nodes and leaves is provided to GBT and RF.

2.3 Validation process

The performances of the ML methods are estimated using a 𝑘-fold cross-validation technique (Ben-
gio and Grandvalet 2004). The training dataset is divided in 𝑘 folds, i.e., subsets D𝑖 , in which
elements are randomly sampled from the dataset. In each fold construction, care is taken so that a
given element is not chosen more than once (in order to ensure that the intersection set of all
folds is the empty set: D𝑖 ∩ D𝑗 = ∅, ∀(𝑖, 𝑗) ∈ [1;𝑘]2 if 𝑖 ≠ 𝑗 ). The predictor is trained on 𝑘 − 1

folds and then is used to predict the values in the remaining fold. This operation is repeated 𝑘
times so that all folds are used for validation. Here, we use 𝑘-fold method with 𝑘 = 5 and 10 folds,
as usually done in the literature (Nematzadeh et al. 2015; Rodriguez et al. 2010).

3 Estimation of elastic properties from micromechanics

MB approaches have been proven useful to get accurate predictions of properties of cement
systems at various scales (Wyrzykowski et al. 2017), sometimes with error not even exceeding
3 % (Königsberger et al. 2021). In the literature, various propositions of representation of the
cement paste microstructure exist based on different number of scales, system morphology, and
on the use of different models to describe the volume fraction of the constituents in the system.
To fully explore the relevant microstructure representations mostly adopted, here we consider
sixteen representations (see details in Section 3.2). Each representation combines different
assumptions regarding the number of scales to be considered, the shape of the constituent phases,
or the model to describe phase assemblage. These representations are based on previous studies
on the upscaling of different physical properties of cement-based materials (Sanahuja et al. 2007;
Honório et al. 2016a; Honório et al. 2018a; Königsberger et al. 2021).
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The Powers (Powers and Brownyard 1946), KHP (Königsberger et al. 2016), and TJ (Tennis
and Jennings 2000) models are considered to evaluate the phases evolution with the DOH in OPC
pastes. The former is the earliest and one of the simplest strategies. The latter is one of the most
detailed descriptions of phase assemblage in OPC systems before resorting to thermodynamics
modeling. The KHP model updates the Powers model by introducing C-S-H densification. In
the following, we detail how we obtain the input for micromechanics estimations (i.e., volume
fractions of phases as a function of the age or DOH). Then, the formulation of the homogenization
schemes is recalled.

3.1 Phase assemblage approximation from hydration models for Ordinary Portland
Cement pastes

The Powers hydration model (Powers and Brownyard 1946) considers only three phases, as listed
in Table 2. It has been coupled with micromechanics strategies to study early-age property
development of cement-based materials in (Sanahuja et al. 2007; Pichler et al. 2013). This model
has the advantage of simplicity but does not account for a variety of phases that can be present in
OPC systems. The KHP model extends the Powers model by considering C-S-H densification (in
agreement with NMR data) and by providing the volume fraction of portlandite.

For comparison, a more elaborate model, the Tennis and Jennings (2000) model is explored. It
describes the chemical rearrangement due to the hydration process by stoichiometric relationships
based on a more detailed separation of phases, i.e., the evolution of clinker minerals and gypsum
fractions as well as the main hydrates separately as a function of the DOH, as listed in Table 2. It
even allows us to distinguish LD and HD C-S-H. More details about formulations of the Powers
and TJ models are given in Appendix C.

The elastic properties of the constituent phases are given in Table 2. A Poisson’s ratio of 0.5
is the typical value for fluids with zero shear rigidity. Adopting 𝐾 = 2.18GPa for the porosity
presupposes that the pores contribute to the mechanical response and are saturated with liquid
water, i.e., the active porosity assumption. We have also tested the inactive porosity assumption,
that is 𝐾 = 0 for the porosity, and the results of MB methods exhibited slightly large deviations
from the experimental data. Since the references consulted for the database do not provide, in all
cases, details about curing conditions, we decided to adopt hereon the active porosity assumption.

Hyd. model Phase 𝐸 [GPa] 𝜈 [GPa] 𝐺 [GPa] 𝐾 [GPa] Reference

clinker 140 0.3 53.8 116.7 Acker (2001)
Powers/KHP hydrates 22.06 0.24 11.8 18.7 Pichler and Hellmich (2011)

pores 0 0.5 0 2.18 Lide (1997)

C3S 135±7 0.3 51.9 112.5 Velez et al. (2001)
C2S 130±20 0.3 50 108.3 Velez et al. (2001)
C3A 145±10 0.3 55.8 120.8 Velez et al. (2001)
C4AF 125±25 0.3 48.1 104.2 Velez et al. (2001)
CS̄H **

2 45.7 0.33 17.2 44.8 Aller et al. (1996)

HD C-S-H 29.4±2.4 0.24 11.8 18.8 Constantinides and Ulm (2004)
TJ LD C-S-H 21.7±2.2 0.24 8.8 13.9 Constantinides and Ulm (2004)

CH 42 0.315 16 37.8 Monteiro and Chang (1995)
AFt 25±2 0.34±0.02 9.3 26 Speziale et al. (2008)
AFm* 24.5 0.34 9.1 25.5 Honório et al. (2020c)𝑎

C4AH13 25 0.34 9.3 26 Speziale et al. (2008)
hydrogarnet 55.5 0.35 20.6 61.7 Manzano (2009)𝑎

pores 0 0.5 0 2.18 Lide (1997)

Table 2 Elastic constants of phases. ∗Monosulfoaluminate. ∗∗Dihydrate. 𝑎Molecular simulations.

3.2 Representations of the microstructure

Sixteen representations of the microstructure of the cement paste are considered here, each one
combining different assumptions regarding the number of scales to be considered, the shape of
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Figure 1 Cement paste microstructure considered for micromechanics upscaling schemes: Input volume fractions
are obtained from Powers or TJ models. SC or MT are deployed to upscale cement paste elastic properties.
For 2-scale representations, C-S-H gel effective properties are upscaled using SC scheme. All the other
phases, including pores, are considered as spherical inclusions. SC scheme is deployed to upscale cement
paste elastic properties. For the representations with ellipsoidal inclusions: with Powers model, hydrates
are considered as prolate particles 𝑎𝑟 = 10; with TJ model, C-S-H LD and HD are considered as prolate
particles 𝑎𝑟 = 10, and CH and AFm as oblate particles 𝑎𝑟 = 0.2.

the constituent phases, or the model to describe phase assemblage.
Figure 1 shows the eight representations of the microstructure of the cement paste tested

in the case of spherical inclusions. The other eight representations refer to the adoption of
ellipsoidal inclusions to represent some phases. For the cases with ellipsoidal inclusions, similar
representations are adopted with the following modifications: (i) C-S-H (when TJ model is used)
or hydrates (when Powers model is used) are modeled as elongated inclusions with an aspect ratio
of 10; and (ii) AF-phases and CH (when TJ model is used) are modeled as oblate particles with an
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aspect ratio of 0.2. All the other phases, including pores, are considered as spherical inclusions.
Using the description of phases by the Powers model, the Mori-Tanaka, with hydrates

functioning as the matrix, and Self-Consistent schemes are concurrently considered, which leads
to the MTPow and SCPow macroscopic behaviors, respectively.

Using the TJ model, in addition to the flexibility offered by the two upscaling schemes, the
microstructure can be constructed with different perspectives. All hydrates, anhydrates, and
pores can be treated at the same scale, which gives MT1s and SC1s corresponding to MT with
LD C-S-H as matrix and self-consistent schemes, respectively. Or, C-S-H gel can be handled
at a smaller scale comprising LD and HD C-S-H domains and gel porosity. First, the effective
properties of C-S-H gel are obtained using the SC scheme on a heterogeneous material. The
effective properties of C-S-H gel are then used in parallel with the properties of other hydrates
and clinker inclusions at the cement paste scale as input for the second stage of homogenization,
which can be processed using MT with C-S-H gel as the hosting matrix or self-consistent schemes
to give MT2s and SC2s effective properties.

Using the description of phases by the KHP model, a two-scale representation is considered
with the C-S-H gel scale and a cement paste scale per se at the higher level.

3.3 Analytical homogenization of the elastic properties of micro and macro isotropic
heterogeneous materials

We deploy the MT and SC homogenization schemes for micro and macro-isotropic heterogeneous
materials with ellipsoidal inclusions randomly distributed in a REV. According to these schemes,
the effective stiffness tensor Cest, the subscript ‘est’ designating the MT or SC estimate, of a
heterogeneous material is given by e.g., (Zaoui 2002)

Cest =

( 𝑁∑

𝑟=1

𝑓𝑟C𝑟 : [I + P
0 : (C𝑟 − C

0)]−1
)
:

( 𝑁∑

𝑟=1

𝑓𝑟 [I + P
0 : (C𝑟 − C

0)]−1
)−1

(1)

where 𝑓𝑟 is the volume fraction of the phase 𝑟 , C𝑟 is the stiffness tensor of phase 𝑟 ; P0 = S
0
𝐻
: C0

is the Hill tensor obtained from the Eshelby tensor S0
𝐻
(which depends only on the properties of

the reference medium, see (Mura 1987) for the expressions of Eshelby tensors including the case
of ellipsoidal inclusions) and the stiffness tensor of the reference medium C0, which is defined
according to the scheme chosen:

· C
0
= C0 where C0 refers to the matrix stiffness tensor (subscript 0 stands for matrix properties).

· C
0
= C

SC for the SC scheme, i.e., the reference medium is the effective medium itself.
An important input for estimations using non-spherical particles is the aspect ratio of the

particles. We adopt an aspect ratio of 𝑎𝑟 = 10 (prolate particle) for C-S-H needles and 𝑎𝑟 = 0.2

(oblate particle) for crystalline hydrates such as CH and AFm.
In the case of spherical isotropic inclusions, Equation (1) simplifies into the forms described

below.
· For an (𝑁 + 1)-phase heterogeneous material with a matrix/inclusion morphology constituted
of 𝑁 isotropic spherical inclusions randomly distributed in a matrix (percolating phase), the
MT estimates of the effective bulk 𝐾MT and shear 𝐺MT moduli are, respectively, obtained
from (Torquato 2002)

𝐾MT − 𝐾0

𝐾MT + 4
3𝐺0

=

𝑁∑

𝑟=1

𝑓𝑟
𝐾𝑟 − 𝐾0

𝐾𝑟 +
4
3𝐺0

and
𝐺MT −𝐺0

𝐺MT + 4
3𝐻0

=

𝑁∑

𝑟=1

𝑓𝑟
𝐺𝑟 −𝐺0

𝐺𝑟 +
4
3𝐻0

(2)

with 𝐻0 =

3
2𝐾𝑟+

4
3𝐺𝑟

𝐾𝑟+2𝐺𝑟

𝐺𝑟 , the subscript 0 denoting the (isotropic) matrix phase.
· For an 𝑁 -phase heterogeneous materials with 𝑁 isotropic equiaxed inclusions randomly
distributed in a representative elementary volume following a polycrystalline-like morphology
(i.e., in which no phase clearly functions as a matrix), the Self-Consistent effective bulk 𝐾SC and
shear 𝐺SC moduli are given, respectively, by the implicit relations (Torquato 2002)

𝑁∑

𝑟=1

𝑓𝑟
𝐾𝑟 − 𝐾

SC

𝐾𝑟 +
4
3𝐺

SC
= 0 and

𝑁∑

𝑟=1

𝑓𝑟
𝐺𝑟 −𝐺

SC

𝐺𝑟 + 𝐻𝑆𝐶
= 0. (3)
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3.4 Bounds for the elastic properties

From the properties of the constituent phases and their volume fraction, micromechanics
offers not only the effective properties but also bounds between which the elastic properties of
the heterogeneous material should lie within. It is then possible to cross-check the observed
experimental values with the bounds given by the theoretical models based on specific modeling
assumptions.

In the present paper, two theoretical bounds defined in terms of the effective bulk 𝐾eff and
shear 𝐺eff moduli are considered (Zaoui 2002):
Voigt-Reuss bounds They are associated with series and parallel models:

( 𝑁∑

𝑟=1

𝑓𝑟

𝐾𝑟

)−1
⩽ 𝐾eff

⩽

𝑁∑

𝑟=1

𝑓𝑟𝐾𝑟 ;

( 𝑁∑

𝑟=1

𝑓𝑟

𝐺𝑟

)−1
⩽ 𝐺eff

⩽

𝑁∑

𝑟=1

𝑓𝑟𝐺𝑟 (4)

where the leftmost term is the Reuss estimate and the rightmost term is the Voigt estimate.
Hashin-Shtrikman bounds They are defined for heterogeneous materials with an isotropic

distribution of phases for an arbitrary phase geometry based on the variational principle in
linear elasticity (Hashin and Shtrikman 1963):

𝑁∑

𝑟=1

𝑓𝑟𝐾𝑟/[𝐾
− + 𝛼−(𝐾𝑟 − 𝐾

−)]

𝑓𝑟/[𝐾− + 𝛼−(𝐾𝑟 − 𝐾−)]
⩽ 𝐾eff

⩽

𝑁∑

𝑟=1

𝑓𝑟𝐾𝑟/[𝐾
+ + 𝛼+(𝐾𝑟 − 𝐾

+)]

𝑓𝑟/[𝐾+ + 𝛼−(𝐾𝑟 − 𝐾+)]
(5)

𝑁∑

𝑟=1

𝑓𝑟𝐺𝑟/[𝐺
− + 𝛽−(𝐺𝑟 −𝐺

−)]

𝑓𝑟/[𝐺− + 𝛽−(𝐺𝑟 −𝐺−)]
⩽ 𝐺eff

⩽

𝑁∑

𝑟=1

𝑓𝑟𝐺𝑟/[𝐺
+ + 𝛽+(𝐺𝑟 −𝐺

+)]

𝑓𝑟/[𝐺+ + 𝛽−(𝐺𝑟 −𝐺+)]
(6)

where 𝐺−
= inf 𝐺𝑟 ; 𝐾−

= inf 𝐾𝑟 ; 𝐺+
= sup𝐺𝑟 ; 𝐾+

= sup𝐾𝑟 are the extreme values of the bulk
and shear moduli considering all 𝑟 phases; 𝛽± =

6(𝐾±+2𝐺±)
5(3𝐾±+4𝐺±)

and 𝛼± =
3𝐾±

3𝐾±+4𝐺± . HS bounds are
narrower than Voigt-Reuss bounds.

The Young’s modulus bounds can be directly computed from the lower and upper bounds
using (Zimmerman 1992)

9𝐾L𝐺L

3𝐾L +𝐺L
⩽ 𝐸eff ⩽

9𝐾U𝐺U

3𝐾U +𝐺U
(7)

where the subscript L refers to the lower (HS or Reuss) bound; and the subscript U, to the upper
(HS or Voigt) bound. For Poisson’s ratio, Zimmerman (1992) showed that the correct bounds are

3𝐾L − 2𝐺U

6𝐾L + 2𝐺U
⩽ 𝜈eff ⩽

3𝐾U − 2𝐺L

6𝐾U + 2𝐺L
(8)

where the largest possible value of 𝜈 refers to the largest value of 𝐾 combined with the smallest
value of 𝐺 , and vice versa. The argument is valid for both Voigt-Reuss and HS bounds.

4 Results and Discussion

MB and ML methods are investigated for predictions and analysis of various properties of cement
paste. Then, bounds for elastic properties given by MB methods are compared with experimental
observations. Predictions of elastic properties given by MB and ML methods are compared for
training and test datasets. Finally, the lack of knowledge on the parametric input is evaluated,
and the experimental dataset is enriched with MB observations guided by ML evaluations.

4.1 Micromechanics bounds for dataset curation

Knowing𝑤/𝑐 and DOH (or age, from which DOH can be estimated), fractions of phases are
evaluated from hydration models, and bounds for 𝐸, 𝜈 , 𝐺 , and 𝐾 are derived from Voigt-Reuss
and HS theories (as detailed in Section 3.4). Comparing the experimental elastic properties
and the bounds, both lower bounds, being null, are satisfied by all experimental observations.
However, some experimental observations of 𝐾 and 𝜈 exceed the upper bounds. Proportions of
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values exceeding the theoretical bounds are summarized in Table 3. Since the phase intrinsic
properties are associated with a variability/uncertainty on the order of 10 − 20 % as reported in
Table 2, we also provide bounds estimation accounting for an average 15 % uncertainty (i.e., the
bulk and shear moduli are increased of 15 % before upper bound calculation). The bounds are
computed for Powers and TJ models (with the assumption of gel and capillary water having the
same behavior, the bounds computed for Powers and KHP are identical).

Upper bounds Hydration model 𝐸 𝜈 𝐾 𝐺

Voigt Powers 0 % (0 %) 0 % (0.27 %) 0 % (0.82 %) 0 % (0 %)
Voigt TJ 0 % (0 %) 0 % (0 %) 0 % (0.55 %) 0 % (0 %)
HS Powers 0 % (0 %) 0 % (0 %) 1.4 % (4.1 %) 0 % (0 %)
HS TJ 0 % (0 %) 0 % (0.82 %) 1.4 % (3.5 %) 0 % (0 %)

Table 3 Percentage of values exceeding the upper bounds, Voigt and HS, for each elastic constant tested. Bounds
computed using Powers or TJ hydration models and considering a 15 % uncertainty on 𝐾 and 𝐺 reported
as phase properties in Table 2. Bracketed values refer to bounds computed using average values without
the 15 % uncertainty reported in Table 2.

All values of both shear and Young moduli are below the upper bounds. A few values of the
bulk modulus, less than 5 % for the worst case of the experimental observations, exceed the upper
bounds when the uncertainty on the phase elastic moduli is not accounted for. As expected, more
points exceed HS than Voigt bound since the HS bounds are tighter. For Poisson’s ratio, the
proportion of experimental observations exceeding the theoretical bonds is still smaller. It must
be noted that a precise experimental evaluation of Poisson’s ratio can be a challenge, provided
the much smaller range of variation when compared to the elastic moduli. Detailed results on the
differences between the experimental values comprised in the training dataset and the theoretical
bounds are shown in Appendix D.

By comparing the values according to the hydration model, fewer points are outside the
bounds when the TJ model is adopted for 𝐾 or 𝜈 , which provides a more precise description of
cement phases than the Powers model. These observations might suggest that the adoption of a
precise description of cement paste phase assemblage is critical if theoretical bounds are used to
curate databases.

To conclude, experimental Young and shear moduli are in concordance with the bounds. For
bulk modulus and Poisson’s ratio, only a few points are in contradiction with the theoretical
bounds. Depending on the trust given to the model in comparison with the experiments, it could
be decided to filter out the database of some experimental observations. However, here, for the
proof of concept, all the data is conserved to evaluate the ML performances without arbitration
on the experimental results.

4.2 Prediction of elastic properties using ML and Micromechanics

ML and MB methods are evaluated to predict the elastic properties of the samples contained in
the training and test datasets.

4.2.1 Reproducing the training dataset observations

ML predictions Knowing the𝑤/𝑐 , DOH, and percentage fractions of clinker and gypsum in
cement, the four elastic properties are estimated by ML approaches. The validation procedure for
one of the validation stages is illustrated in Figure 2.

The accuracy of predictions of elastic constants of cement pastes is compared for the
various ML methods tested, see Figure 3. The comparison serves to analyze the consistency and
compatibility of the method regarding the database on which they are trained. The qualitative
analysis suggests that the prediction of Poisson’s ratio is less accurate when compared to
predictions of the elastic moduli. Visually, NN, ANN, and GP perform better in predictions.
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Figure 2 𝑘-fold validation method with 𝑘 = 5. Predicted Young’s modulus 𝐸 plotted against the experimental 𝐸 at
one validation stage out of 5 for the various ML methods tested: 292 values of the 4 training folds are
depicted by empty blue dots, full red symbols depict the 73 elements used for validation.

Errors are quantified using the RMSE:

RMSE(𝑥) =

√
∑𝑛
𝑖=1(𝑥

pred
𝑖 − 𝑥

exp
𝑖 )2

𝑛
(9)

and MRE:

MRE(𝑥) =
1

𝑛

𝑛∑

𝑖=1

|𝑥
pred
𝑖 − 𝑥

exp
𝑖 |

𝑥
exp
𝑖

(10)

computed as a function of each prediction 𝑥pred𝑖 and experimental 𝑥exp𝑖 output averaged over the
𝑛 observations 𝑖 covering the whole training set obtained from the validation on all 𝑘-folds for
the elastic constants. Tables 4 and 5 show the RMSE and MRE, respectively, obtained for each ML
method prediction. ANN, GP, and NN yield the best accuracy in terms of RMSE and MRE for the
elastic constants.

methods RMSE(𝐸) [GPa] RMSE(𝜈) [-] RMSE(𝐾) [GPa] RMSE(𝐺) [GPa]

cross-validation 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold

LR 2.4 2.4 0.061 0.062 2.2 2.2 1.0 1.0

DT 2.8 2.9 0.042 0.042 2.3 2.3 1.0 1.1

GBT 1.3 1.5 0.037 0.037 1.8 1.8 0.5 0.5

NN 1.1 1.1 0.034 0.032 1.6 1.5 0.4 0.4

ANN 0.6 0.6 0.034 0.033 1.5 1.4 0.3 0.2

RF 3.0 3.0 0.044 0.043 2.6 2.6 1.2 1.2

GP 0.7 0.8 0.032 0.031 2.0 2.9 0.3 0.2

Table 4 RMSE of the elastic constants obtained from 𝑘-fold cross-validation technique based on 5-fold or 10-fold.
Most accurate values marked in bold.

Table 6 shows the (mean) coefficient of determination R2 of the elastic constants obtained
from the 𝑘-fold cross-validation technique based on 5-fold or 10-fold. The R2 is a scale-free
quantity, quantifying how a model explains a phenomenon. All models yield high R2 (closer or
higher than 0.9) for the elastic moduli, while the R2 for 𝜈 is overall lower. ANN predictions
exhibit higher R2 in most cases.

MB estimations Knowing the𝑤/𝑐 , DOH, and percentage fractions of clinker and gypsum in
cement the four elastic characteristics are also predicted by MB methods. Performances are shown
in Figure 4. It can be noted that performances vary with the DOH. The homogenization yields
predictions of the elastic constants that are, in most cases, better when only the observations
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Figure 3 ML performances for elastic prediction of the training set: predicted values based on the various ML
methods tested plotted against the experimental elastic constants from the training dataset (Young’s
modulus 𝐸, Poisson’s ratio 𝜈 , bulk 𝐾 and shear 𝐺 moduli).

in the training dataset with DOH ⩾ 0.7 (i.e., associated with late ages) are accounted for (this
effect can be more pronounced when MT estimates are used). The accuracy of MB estimations is
quantified in Tables 7 and 8 using RMSE and MRE, respectively. These parameters were measured
for the entire data set and also for the values in the training dataset with DOH ⩾ 0.7. The late
ages estimates exhibit lower errors overall. Thus a fine description of hydration kinetics, phase
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methods MRE(𝐸) [-] MRE(𝜈) [-] MRE(𝐾) [-] MRE(𝐺) [-]

cross-validation 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold

LR 0.50 0.50 0.18 0.18 0.34 0.34 0.54 0.56

DT 0.53 0.60 0.12 0.11 0.39 0.35 0.55 0.63

GBT 0.19 0.23 0.09 0.09 0.19 0.18 0.19 0.20

NN 0.17 0.16 0.07 0.07 0.13 0.13 0.18 0.17

ANN 0.08 0.10 0.08 0.07 0.16 0.15 0.13 0.11

RF 0.69 0.74 0.12 0.11 0.47 0.46 0.80 0.78

GP 0.10 0.09 0.06 0.06 0.17 0.22 0.12 0.10

Table 5 MRE of the elastic constants obtained from 𝑘-fold cross-validation technique based on 5-fold or 10-fold.
Most accurate values marked in bold.

methods R2 (𝐸) [-] R2 (𝜈) [-] R2 (𝐾) [-] R2 (𝐺) [-]

cross-validation 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold 5-fold 10-fold

LR 0.91 0.90 0.25 0.26 0.84 0.86 0.90 0.90

DT 0.84 0.85 0.60 0.68 0.81 0.82 0.85 0.85

GBT 0.97 0.98 0.70 0.78 0.89 0.91 0.97 0.98

NN 0.97 0.98 0.74 0.78 0.89 0.92 0.97 0.98

ANN 0.99 0.99 0.76 0.76 0.91 0.93 0.99 0.99

RF 0.88 0.94 0.65 0.69 0.82 0.83 0.89 0.89

GP 0.99 0.99 0.71 0.78 0.82 0.87 0.98 0.99

Table 6 Mean coefficient of determination R2 of the elastic constants obtained from 𝑘-fold cross-validation
technique based on 5-fold or 10-fold. Most accurate values marked in bold.

assemblage, and particular effects associated, such as C-S-H gel densification, C-S-H structural
and compositional variability, could enhance estimate accuracy. When both error estimates are
taken into consideration, the best MB estimates are given by SCPow and SC1s schemes for both
cases when only spherical or ellipsoidal inclusions are considered. These four cases are used for
comparison with ML methods. The KHP model yields results closer to the ones obtained with
Powers model.

Table 9 gathers the coefficients of determination (R2) of elastic constants. The estimates with
ellipsoidal inclusions using the Powers model, MTEllip Powers and SCEllip Powers, show a higher
R2 for the elastic moduli. SC Powers (with spherical inclusions) also exhibits one of the highest
R2. The R2 is overall low, showing the difficulty of the model to properly capture this elastic
constant. Since two elastic constants are sufficient to fully determine an isotropic behavior, this
last observation suggests that dealing with the elastic moduli (𝐸, 𝐾 , or 𝐺) is a strategy less prone
to errors.

As expected, when MB and ML methods predictions are confronted with the training dataset,
ML methods display, in general, better accuracy than MB methods, with the less accurate ML
methods (RF, DT) yielding predictions with similar accuracy to the best MB estimations. The best
RMSE and MRE for Young moduli predictions was with ANN, and the accuracy was roughly
4-fold the accuracy of the best micromechanics estimation. Note however that the comparison
according to the training dataset, of course, favors ML methods since these are trained specifically
for them, whereas MB methods do not have any a priori information on this correlation except
the underlying theoretical model assumption.

4.2.2 Reproducing the test dataset observations

Predictions of elastic constants for a test dataset by ML methods and homogenization methods
are also evaluated. As detailed in Appendix A.1, the test dataset is composed of 58 observations
including both static and dynamics measurements of elastic properties from various authors (Con-
stantinides and Ulm 2004; Šavija et al. 2020; Chamrova 2010; Maruyama and Igarashi 2014;
Tamtsia et al. 2004; Haecker et al. 2005). The performance of MB and ML methods are analyzed in
detail for selected cases in the sequel.

Comparisons with data by Constantinides and Ulm (2004) are given in Figure 5. For that case,
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Figure 4 MB performances for elastic prediction of the training set (only the representations with the best
performance are shown): experimental elastic constants from the training dataset (Young’s modulus
𝐸, Poisson’s ratio 𝜈 , bulk 𝐾 and shear 𝐺 moduli) plotted against the estimated values using various
homogenization methods. Influence of the DOH on the performances: the empty blue circles correspond to
DOH ⩽ 0.7 and the solid black circles, to DOH ⩾ 0.7, i.e., predictions at late ages.

ML methods (in particular, LR, ANN, and DT) perform better in predicting experimental data
than MB techniques. ML and MB yield comparable results when used to predict the Haecker et al.
(2005) experimental data, see Figure 6; the exceptions are the cases of homogenization methods
using the Powers model. A similar result is obtained by Tamtsia et al. (2004) as visualized in
Figure 7. In this case, homogenization with TJ hydration model performs quite well. On this
test dataset, we can conclude that ML and MB have similar accuracy, none of them performs
significantly better than the other.

Figure 5 Prediction of Young’s modulus 𝐸 to
reproduce the experimental observation
by Constantinides and Ulm (2004) (solid
green line): results from ML (full blue
dots) and MB (red empty dots) methods.
HS upper bounds using Powers and TJ
model (dashed lines) are shown for
reference.
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The total RMSE and MRE associated with the test dataset for ML methods are shown in
Figure 9 (values referring to the original training dataset 𝑙orig) and will be discussed in the next
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Methods RMSE(𝐸) [GPa] RMSE(𝜈) [-] RMSE(𝐾) [GPa] RMSE(𝐺) [GPa]

MT Powers (MTPow) 9.7 (4.0) 0.10 (0.06) 4.5 (4.1) 4.1 (1.8)
SC Powers (SCPow) 2.8 (2.8) 0.11 (0.06) 3.4 (4.6) 1.2 (1.2)

MT KHP (MTKHP) 10.2 (7.2) 0.16 (0.06) 5.4 (5.8) 4.1 (2.9)
SC KHP (SCKHP) 8.1 (7.1) 0.10 (0.05) 6.4 (6.5) 3.2 (2.8)

MT 1-scale (MT1s) 6.9 (2.4) 0.09 (0.04) 3.6 (4.5) 2.8 (0.8)
SC 1-scale (SC1s) 3.8 (3.7) 0.10 (0.05) 3.8 (5.4) 1.5 (1.3)
MT 2-scales (MT2s) 6.9 (2.5) 0.09 (0.04) 3.6 (4.5) 2.8 (0.8)
SC 2-scales (SC2s) 7.6 (9.8) 0.08 (0.05) 6.7 (8.7) 2.9 (3.8)

MTEllip Powers (MTPow Ellip) 9.3 (3.9) 0.13 (0.06) 3.7 (4.4) 4.1 (1.8)
SCEllip Powers (SCPow Ellip) 2.5 (2.7) 0.30 (0.09) 4.2 (5.2) 1.1 (1.2)

MTEllip KHP (MTKHP Ellip) 12.7 (5.18) 0.08 (0.04) 9.0 (6.4) 5.1 (2.2)
SCEllip KHP (SCKHP Ellip) 3.2 (3.4) 0.30 (0.04) 5.0 (5.7) 1.6 (1.5)

MTEllip 1-scale (MT1s Ellip) 6.6 (2.5) 0.11 (0.04) 3.2 (4.5) 2.8 (0.8)
SCEllip 1-scale (SC1s Ellip) 3.7 (3.6) 0.16 (0.06) 4.1 (5.5) 1.4 (1.3)
MTEllip 2-scales (MT2s Ellip) 6.6 (2.5) 0.11 (0.05) 3.2 (4.7) 2.8 (0.8)
SCEllip 2-scales (SC2s Ellip) 7.3 (9.1) 0.72 (0.44) 6.7 (8.2) 2.8 (3.4)

Table 7 RMSE of elastic constants as a measure of the accuracy of the homogenization estimations. Bracketed
values correspond to estimations for elements in the dataset with DOH ⩾ 0.7 only. Most accurate values
marked in bold.

Methods MRE(𝐸) [-] MRE(𝜈) [-] MRE(𝐾) [-] MRE(𝐺) [-]

MT Powers (MTPow) 0.46 (0.23) 0.24 (0.18) 1.1 (0.22) 3.5 (0.27)
SC Powers (SCPow) 0.38 (0.14) 0.27 (0.19) 0.19 (0.38) 0.41 (0.15)

MT KHP (MTKHP) 3.6 (0.38) 0.52 (0.20) 0.94 (0.28) 2.5 (0.39)
SC KHP (SCKHP) 1.8 (0.38) 0.29 (0.14) 0.73 (0.33) 0.39 (0.77)

MT 1-scale (MT1s) 2.3 (0.11) 0.21 (0.12) 0.87 (0.21) 2.6 (0.10)
SC 1-scale (SC1s) 0.68 (0.18) 0.22 (0.13) 0.40 (0.27) 0.76 (0.17)
MT 2-scales (MT2s) 2.2 (0.10) 0.20 (0.12) 0.85 (0.20) 2.6 (0.09)
SC 2-scales (SC2s) 0.75 (0.53) 0.20 (0.15) 0.72 (0.56) 0.77 (0.53)

MTEllip Powers (MTPow Ellip) 0.45 (0.22) 0.32 (0.20) 0.87 (0.22) 3.5 (0.27)
SCEllip Powers (SCPow Ellip) 0.37 (0.13) 0.75 (0.27) 0.47 (0.22) 0.40 (0.16)

MTEllip KHP (MTKHP Ellip) 0.66 (0.19) 0.18 (0.12) 1.6 (0.30) 4.1 (0.24)
SCEllip KHP (SCKHP Ellip) 2.0 (0.13) 0.39 (0.12) 0.52 (0.26) 0.41 (0.18)

MTEllip 1-scale (MT1s Ellip) 2.2 (0.11) 0.26 (0.12) 0.68 (0.20) 2.6 (0.10)
SCEllip 1-scale (SC1s Ellip) 0.61 (0.17) 0.37 (0.14) 0.42 (0.28) 0.71 (0.16)
MTEllip 2-scales (MT2s Ellip) 2.2 (0.11) 0.26 (0.13) 0.67 (0.21) 2.5 (0.09)
SCEllip 2-scales (SC2s Ellip) 0.70 (0.49) 0.73 (1.55) 0.73 (0.53) 0.68 (0.48)

Table 8 MRE of elastic constants as a measure of the accuracy of the homogenization estimations. Bracketed
values correspond to estimations for elements in the dataset with DOH ⩾ 0.7 only. The most accurate
values are marked in bold.

section in comparison with prediction using extended training datasets.

4.3 Missing data and extended database

ML and MB approaches can be used competitively, but the ML approach can also be employed to
guide experiments and obtain optimized information over the whole parametric space and MB
can be exploited to generate supplementary observations. Thus, direct experimental observations
can be evaluated by ML and combined with synthetic observations obtained from MB schemes.
Various methods are proposed in the literature to optimize the plan of experiments (Fuhg et al.
2020). Here, we adopt a distance-based approach to identify the zones in which a fewer number
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Methods R2 (𝐸) [-] R2 (𝜈) [-] R2 (𝐾) [-] R2 (𝐺) [-]

MT Powers (MTPow) 0.70 (0.87) 0.10 (0.00) 0.70 (0.58) 0.68 (0.88)
SC Powers (SCPow) 0.90 (0.84) 0.12 (0.00) 0.77 (0.54) 0.90 (0.86)

MT KHP (MTKHP) 0.19 (0.80) 0.00 (0.00) 0.29 (0.51) 0.18 (0.83)
SC KHP (SCKHP) 0.72 (0.82) 0.06 (0.00) 0.72 (0.53) 0.71 (0.84)

MT 1-scale (MT1s) 0.63 (0.85) 0.07 (0.01) 0.67 (0.55) 0.61 (0.87)
SC 1-scale (SC1s) 0.78 (0.83) 0.05 (0.00) 0.74 (0.53) 0.77 (0.86)
MT 2-scales (MT2s) 0.60 (0.85) 0.07 (0.00) 0.65 (0.56) 0.58 (0.87)
SC 2-scales (SC2s) 0.67 (0.84) 0.05 (0.04) 0.63 (0.54) 0.66 (0.86)

MTEllip Powers (MTPow Ellip) 0.73 (0.86) 0.19 (0.04) 0.78 (0.54) 0.68 (0.89)
SCEllip Powers (SCPow Ellip) 0.91 (0.84) 0.10 (0.07) 0.78 (0.51) 0.92 (0.86)

MTEllip KHP (MTKHP Ellip) 0.02 (0.72) 0.05 (0.01) 0.06 (0.46) 0.02 (0.74)
SCEllip KHP (SCKHP Ellip) 0.91 (0.85) 0.13 (0.05) 0.77 (0.53) 0.89 (0.87)

MTEllip 1-scale (MT1s Ellip) 0.64 (0.86) 0.10 (0.00) 0.71 (0.55) 0.60 (0.87)
SCEllip 1-scale (SC1s Ellip) 0.80 (0.84) 0.12 (0.03) 0.75 (0.53) 0.75 (0.53)
MTEllip 2-scales (MT2s Ellip) 0.63 (0.85) 0.10 (0.00) 0.71 (0.56) 0.59 (0.87)
SCEllip 2-scales (SC2s Ellip) 0.69 (0.85) 0.03 (0.01) 0.64 (0.55) 0.68 (0.87)

Table 9 Coefficient of determination R2 of elastic constants as a measure of the accuracy of the homogenization
estimations. Bracketed values correspond to estimations for elements in the dataset with DOH ⩾ 0.7 only.
Most accurate values marked in bold.
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Figure 6 Prediction of the elastic constants (Young’s modulus 𝐸, Poisson’s ratio 𝜈 , shear 𝐺 and bulk 𝐾 moduli) to
reproduce the experimental observations obtained by Haecker et al. (2005) (solid green line): results from
ML (full blue dots) and MB (empty red squares) methods. HS upper bounds using Powers and TJ model
(dashed lines) are shown for reference.

of experiments have been made. Then, we deploy a 𝑘-fold cross validation strategy to exploit
domains in which metamodel interpolations are sufficiently accurate and the domain in which
information is lacking.

4.3.1 Distance-based approach to identify the domains with missing data

To identify the domains with missing data, we adopt a simple strategy based on the distance of
data in a given dimension of input space. In each dimension of the input space, we order the
components of the observations in ascending order as shown in Figure 8(top). The normalized
difference

Δ𝑂𝑁 =
1

∑
𝑖 𝑥𝑖

(𝑥𝑖′+1 − 𝑥𝑖′) (11)
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Figure 7 Prediction of Young’s modulus 𝐸 for 𝑤/𝑐 = 0.35 and 𝑤/𝑐 = 0.5 at different ages to reproduce the
experimental observations by Tamtsia et al. (2004) (green solid line): results from ML (full blue dots) and
MB (empty red squares) methods. HS upper bounds using Powers and TJ model (dashed lines) are shown
for reference.

between two components 𝑥𝑖′+1 and 𝑥𝑖′ is related to the extent of the domain associated with
missing data, where 𝑖 ′ denotes the ordered position of an observation. Figure 8 (bottom) shows
Δ𝑂𝑁 (𝑖

′) for all input components considered here. A large Δ𝑂𝑁 (𝑖 ′) indicates that two ordered
observations 𝑥𝑖′+1 and 𝑥𝑖′ are relatively far from each other and that the interval ]𝑥𝑖′, 𝑥𝑖′+1 [ is a zone
in which data is missing. To identify the most relevant zones in which data is missing according
to this approach, we adopt the following criterion: an new observation 𝑥∗𝑖 =

1
2 (𝑥𝑖′ + 𝑥𝑖′+1) is to be

generated whenever Δ𝑂𝑁 ⩾ 𝑐0, where 𝑐0 is an arbitrary cut-off. We adopt 𝑐0 = 0.0001 for the
𝑤/𝑐 and DOH, and 𝑐0 = 0.0005 for the clinker minerals and gypsum mass fractions, shown as
gray dashed lines in Figure 8(bottom). With this approach, the selected 𝑥∗𝑖 per input are

· 𝑗 = DOH [-]: 0.70, 0.95
· 𝑗 = 𝑤/𝑐 [-]: 0.28, 0.37, 0.72
· 𝑗 =𝑚C3S [%]: 33.05, 52.405, 85.25
· 𝑗 =𝑚C2S [%]: 5.40, 11.24, 16.70, 20.70, 31.75, 49.95
· 𝑗 =𝑚C3A [%]: 1.10, 9.95
· 𝑗 =𝑚C4AF [%]: 4.40, 11.25
· 𝑗 =𝑚gypsum [%]: 1.05, 2.00, 2.90, 3.65, 4.69, 6.09.

To generate the new data in these zones, we defined three new datasets:
· The minimum dataset 𝑙min covering all 𝑥∗𝑖 for all input vector 𝑂𝑚 identified by the strategy above.
The minimum number of observations to be generated covering all these values is 6.

· A dataset 𝑙1𝑃exist with one new observation by 𝑂∗
𝑖 𝑗 per input identified, with each one of the 24 𝑂∗

𝑖 𝑗

values associated with an already existing (randomly sampled) set of input.
· A dataset 𝑙1𝑃self also with 24 observations with each observation being a random combination of
the 𝑂∗

𝑖 𝑗 identified by the strategy above.
To generate the new data on elastic constants, we adopt the MB method SC1sEllip, which yields

Journal of Theoretical, Computational and Applied Mechanics
�� February 2023

�� jtcam.episciences.org 16
�� 28

https://jtcam.episciences.org


Túlio Honório et al. Machine learning and micromechanics as allies to establish composition-property correlations in cement pastes

/

[
]

C3S

C2S

C3A

C4AF

CSH2

[
]

/

[
]

C3S

C2S

C3A

C4AF

CSH2[%
]

x
(i

’)
 [

-]

x
(i

’)
 [

%
]

Figure 8 Strategy to identify the zones with missing data. [Top] Ordered input vector 𝑥 (𝑖 ′) for each input component
in {age,𝑤/𝑐,𝑚C3S,𝑚C2S,𝑚C3A,𝑚C4AF,𝑚gypsum} as a function of the ordered observation index 𝑖 ′. [Bottom]
Normalized difference defined in Equation (11) as a function of index 𝑖 ′ indicating ascending order per
component. Gray dashed lines depict the limit criterion adopted to identify the most relevant domains
with missing data.

one of the best performances of MB methods, as discussed in Section 4.2.1.
In Figure 9, we compare the performance of ML methods trained on the original and extended

datasets on the estimation of Young’s modulus of the test dataset (RMSE and MRE at the left), and
training dataset via a cross-validation approach (𝑘 = 5 folds) on the training dataset (RMSE and
MRE at the right).

k-fold methodwithk=5
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Figure 9 RMSE and MRE computed for the test dataset (left) and using a cross-validation approach (𝑘 = 5 folds)
on the training dataset (right) for various ML methods using only the original training dataset 𝑙orig, or
extended training datasets 𝑙min, 𝑙1𝑃exist, or 𝑙

1𝑃
self. New data is generated with SC1sEllip.

Regarding the performance when the test dataset is considered, the use of the extended
training dataset 𝑙1𝑃exist improves the accuracy of ANN predictions, and the use of 𝑙2𝑃exist improves the
accuracy of GP predictions. Regarding the performance when the training dataset is considered,
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the use of extended training datasets generally increases the error as computed by the 𝑘-fold
methods except for DT, GBT, and RF. When the extended training datasets lead to largest
inaccuracies, it must be noted that the increase in RMSE and MRE is not too large (except in some
of the 𝑙1𝑃exist cases in which the error is duplicated when the training dataset is considered). This
observation suggests that using MB methods to generate missing data does not significantly
impair the precision of predictions.

These results show that MB methods can be used to generate new data to complete databases
for establishing composition-property correlations in cement-based materials leading in some
cases (ANN and GP, the best performances in prediction) to an improvement in the prediction
accuracy regarding the test dataset.

5 Conclusions

In this article, Machine Learning (ML) and Micromechanics-based (MB) methods were deployed
to establish correlations between the composition and the elastic property of OPC pastes. In
the exploration of the methods, we identified opportunities for using them as promising allies.
ML arises as a proficient tool to exploit a variety of results from different authors with a set
of input characteristics, and identify a significant lack of knowledge. Micromechanics is an
opportunity to judge experimental results, provides bounds to check ML predictions, and furnishes
supplementary/complementary data for ML to be trained on. The main conclusions of this study
are as follows:
Methods to link composition and elastic properties The accuracy of ML and MB predic-

tions are comparable for predicting elastic properties of the test dataset. When MB and
ML are confronted with the training dataset, ML gives better accuracy than MB methods,
with the less accurate ML methods (RF, DT) yielding predictions with a similar accuracy
of the best MB estimations (the comparison according to the training dataset, of course,
favors ML methods since these are trained specifically for them, whereas MB methods have
not any a priori information on this correlation except the underlying theoretical model
assumption.). It must be noted that the test dataset used in this work encompasses both
dynamic and static measurements, while the ML methods were trained only in dynamic
experimental data. Both ML and analytical micromechanics computations performed here are
not computer-intensive, especially when compared to often fastidious numerical homogeniza-
tion approaches. This aspect is a clear advantage of ML and analytical MB methods, notably
when a larger exploration of the compositional design space is desired.

Data-driven estimates and importance of reliable databases Even with a relatively small
training dataset, ML methods have proven to be reliable and robust in the prediction of elastic
properties of cement pastes from their composition for the test dataset. Thus, the effort to
build and enlarge the databases on cement composition and properties, for instance, including
static measurements in the training data set or even using the same strategy for properties
other than elastic properties, may benefit cement and concrete research by providing a
reliable tool to tailor the composition of the material for a target property or performance
specification.

Providing missing data Analytical micromechanics methods appear proficient in completing
the database for input values that have not been explored by experimental campaigns.
Indeed, the accuracy of ML and MB being comparable corroborates that MB methods can
be used to provide missing data in the databases of cement-based materials despite their
well-known variability, and the significant lack of knowledge being robustly identified from
the ML approaches. This observation adds to the accumulating evidence showing that MB
approaches are a powerful tool to estimate the property from the composition based on a few
fundamental component data set and assumptions on cement hydration and microstructure
models. Besides providing virtual estimations for concealing missing experimental data, they
can also serve to cross-check uncertain or suspicious observations.
The strategy outlined in this study combines MB and ML methods to explore the space of

formulation design, it also links the formulation to the effective properties of the materials. It
can be extended to other properties in cement and concrete science. This approach arises an
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interesting and not costly tool to feed mechanical simulations taking into account the local
variability of material properties based on physical and micro-scale properties, even for large
simulations. It has been exploited for domains with missing data; it could also be enriched with
analysis of subdomains with non-trustable data.

A reviewer of this work indicated another exciting way in which MB and ML can be allies:
starting from a mechanistic templateÐas the one provided by MB methodsÐand using ML to
provide missing parameters or even the constitutive relation. These kinds of hybrid mechanisticś
ML models have been proposed in other fields (e.g., Fuhg et al. 2021; Fuhg et al. 2023), but in the
case of cement and concrete research, they are yet to be fully worked out. In this direction, one
way of using ML to improve MB estimates would be to use data to determine more appropriate
localization relations (i.e., the relations determining the contribution of each phase to the effective
behavior) instead of relying on the ones provided in the classic homogenization schemes.

A Database collection

Experimental observations, as detailed below, are collected from various papers. The database
collected comprises 365 observations with łfullž information on which ML methods are trained,
and 11 observations with łpartialž information used for testing both ML and MB approaches.

A.1 Training dataset

Only data from dynamical measurements of elastic constants are considered in the training
dataset.
Helmuth and Turk (1966) The authors do not provide the𝑤/𝑐 ratio chosen for experimental

formulation, but instead they measure the ratio𝑤𝑡/𝑐𝑖 between the total water content𝑤𝑡 and
the ignited weight 𝑐𝑖 at late ages. As proposed by other authors (Achour et al. 2020; Sanahuja
et al. 2007), it is possible to estimate the𝑤/𝑐 ratio using

𝑤𝑡/𝑐𝑖 =




𝑤/𝑐
𝜅𝑤

𝜅ℎ − 1
if𝑤/𝑐 ⩽

𝜅ℎ − 1

𝜌clinker

𝑤/𝑐 +
1 + 𝜅𝑤 − 𝜅ℎ

𝜌clinker
otherwise

(A.1)

where 𝜌clinker = 3.13 is the density of clinker. The quantities 𝜅ℎ = 2.13 and 𝜅𝑤 = 1.31 are the
volumes of depleted water and formed hydrates, respectively, per unit of clinker consumed by
hydration processes.

Boumiz (1996) Only data on cement pastes were published. For some observations, elastic
properties were provided without knowledge about age or DOH. In these cases, missing
key information has been approximated by local linear least-squares regression. Since the
experimental data is pretty smooth, approximating the local behavior (in the range of a few
observation points) by a linear fitting is a reasonable choice.

Haecker et al. (2005) The data on cements łHž and łDž were collected as presented by the
authors.

Sun et al. (2007) As for (Boumiz 1996), local linear least-squared regression was performed to
obtain age and DOH for some experimental observations. Modified Bogue formula was used
to compute clinker mineral fractions. Besides elastic constants of cement pastes, the same
study reports also results at mortar and concrete scales that can be used in future work.

Wang and Subramaniam (2011) As for (Boumiz 1996), local linear least-squared regression
was performed to obtain age and DOH for some experimental observations. The modified
Bogue formula was used to compute clinker mineral fractions.

Chamrova (2010) The data was collected as presented by the authors.
Maruyama and Igarashi (2014) As for (Boumiz 1996), the age and DOH were estimated for

some observations by local linear least-squares regression.

A.2 Test dataset

Experimental observations from (Tamtsia et al. 2004; Constantinides and Ulm 2004; Lura et al.
2003; Šavija et al. 2020) did not include information regarding either age, DOH, or the pair of
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elastic constants necessary to characterize isotropic elastic behavior. Therefore, these samples
could not be included in the training dataset, they form the core of the test dataset. The data on
cement łLž from (Haecker et al. 2005) is also incorporated in the test dataset.

For the test dataset, both static and dynamical measurements are considered indistinctly.

B Numerical cost of the predictor functions

We compare the CPU time associated with the creation of the predictor functions based on
the training dataset, and the realization of one prediction (using the already created predictor
functions) in Figure B.1. ANN takes much longer to build the predictor functions than the other
methods. Once the predictor function is created, the prediction realization is obtained in a
fraction of a second for all the methods.

Figure B.1 CPU time associated with the creation of the predictor
functions based on the training dataset (full blue dots), and
with one prediction using the already created predictor
functions (empty red dots) for the various ML methods.
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C Hydration assemblage model

Micromechanics approaches are based on the knowledge of phases intrinsic properties and
volume fractions (which evolve with time and DOH). Models used to estimate the phases fraction
during the hydration process are briefly exposed in this appendix.

C.1 Powers model

The ratio𝑤/𝑐 determines the initial porosity in cement systems and can be used to estimate the
porosity as a function of the DOH. In the absence of filler blended in the binder, the Powers
model (Powers 1960; Pichler and Hellmich 2011) estimates the volume fractions of the clinker,
water (capillary porosity), hydrates and chemical shrinkage (or łairž), respectively as:

𝑓clinker =
1 − DOH

1 +𝑤/𝑐
𝜌clinker
𝜌water

=
20(1 − DOH)

20 + 63𝑤/𝑐
⩾ 0, (C.1)

𝑓water =
𝜌clinker(𝑤/𝑐 − 0.42DOH)

𝜌water +𝑤/𝑐𝜌clinker
=
63(𝑤/𝑐 − 0.42DOH)

20 + 63𝑤/𝑐
⩾ 0 (C.2)

𝑓hydrates =
1.42𝜌clinkerDOH

𝜌hydrates +𝑤/𝑐𝜌clinker/𝜌water
=

43.15DOH

20 + 63𝑤/𝑐
(C.3)

𝑓air = 1 − 𝑓clinker − 𝑓water − 𝑓hydrates =
3.31DOH

20 + 63𝑤/𝑐
(C.4)

with the mass volume of clinker 𝜌clinker = 3.15 g/cm3, water 𝜌water = 1 g/cm3 and hydrates
𝜌hydrates = 2.073 g/cm3 (Pichler and Hellmich 2011).

Following Hansen (1986), the maximum DOH 𝛼max is a function of the𝑤/𝑐 ratio and depends
on curing conditions. For curing without an external water supply, the maximum DOH denoted
𝛼NWmax is reached when water or cement is depleted, thus

𝛼NWmax =




𝑤/𝑐

𝜅𝑤/𝜌clinker
if𝑤/𝑐 ⩽ 𝜅𝑤/𝜌clinker,

1 otherwise.

(C.5)
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For curing condition with supplementary external water supply, the maximum DOH denoted
𝛼Wmax is reached when cement is depleted or when the entire space available for hydrate growth,
i.e., full capillary porosity, is depleted:

𝛼Wmax =




𝑤/𝑐𝜌clinker

𝜅ℎ − 1
if𝑤/𝑐 ⩽ (𝜅ℎ − 1)/𝜌clinker,

1 otherwise.
(C.6)

C.2 Königsberger-Hellmich-Pichler model

We adopt the model of the evolution of phase volume fractions proposed by Königsberger et al.
(2016), which extends the Powers model. C-S-H densification is accounted for, in agreement with
the NMR evidence (Muller et al. 2012). C-S-H Densification is described using three hydration
regimes: regime I dense C-S-H particles precipitate on cement particle boundaries; regime II

C-S-H precipitates in a loosely packed configuration where gel porosity appears; and, regime III

C-S-H precipitation completely fills the capillary porosity. The volume fractions of cement
𝑓cem (approximated as clinker), other hydrates 𝑓CH (assuming that portlandite CH is the main
crystalline hydrate constituting the other hydration products), solid C-S-H 𝑓sCSH (considered as a
microporous phase with interlayer pores), capillary pore 𝑓CP, void volume 𝑓void (or chemical
shrinkage), and gel pores 𝑓GP are, respectively, given by

𝑓cem =
1 − 𝜉

1 + 3.185𝑤/𝑐
⩾ 0 (C.7)

𝑓CH =
0.484𝜉

1 + 3.185𝑤/𝑐
(C.8)

𝑓sCSH =
1.105𝜉

1 + 3.185𝑤/𝑐
(C.9)

𝑓CP =
3.185𝑤/𝑐 − 0.755𝜉

1 + 3.185𝑤/𝑐
− 𝑓GP ⩾ 0 (C.10)

𝑓void =
0.167𝜉

1 + 3.185𝑤/𝑐
(C.11)

𝑓GP =




0 0 ⩽ 𝜉 ⩽ 𝜉𝐼−𝐼 𝐼

4.824𝑤/𝑐𝜉 − 0.799(𝑤/𝑐)2 − 0.793𝜉2

(1 + 3.185𝑤/𝑐) (0.864𝑤/𝑐 + 1.278𝜉)
𝜉𝐼−𝐼 𝐼 < 𝜉 < 𝜉𝐼 𝐼−𝐼 𝐼 𝐼

3.185𝑤/𝑐 − 0.755𝜉

1 + 3.185𝑤/𝑐
𝜉𝐼 𝐼−𝐼 𝐼 𝐼 ⩽ 𝜉 ⩽ 1

(C.12)

where 𝜉𝐼−𝐼 𝐼 = 0.170𝑤/𝑐 and 𝜉𝐼 𝐼−𝐼 𝐼 𝐼 = 2.022𝑤/𝑐 are the transition hydration degrees between
hydration regimes.

C.3 Tennis and Jennings model

The phase assemblage in the Tennis and Jennings (2000) model is based on the equations

2C3S + 10.6H → C3.4 − S2 − H8 + 2.6CH (C.13)

2C2S + 8.6H → C3.4 − S2 − H8 + 0.6CH (C.14)

C3A + 3CS̄H2 + 26H → C6AS̄3H32 (C.15)

2C3A + C6AS̄3H32 + 4H → 3C4AS̄H12 (C.16)

C3A + CH + 12H → C4AH13 (C.17)

C4AF + 2CH + 10H → 2C3(A,F)H6 (C.18)

With these stoichiometric relations and the molar volumes of the phases, it is possible to
compute the volume fractions of the phases as a function of the DOH. In this approach, the
aluminum bearing phases are ettringite (C6AS̄3H32 or AFt), monosulfoaluminate (3C4AS̄H12

or AFm), hydrogarnet (2C3(A,F)H6) and C4AH13. With the progress of hydration, ettringite is
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assumed to be completely converted into monosulfoaluminate if water and C3A are available. No
phases bearing carbonates are taken into account.

This model distinguishes between LD and HD C-S-H, as well as gel pores. The volumes of
C-S-H HD and LD are given, respectively, by

𝑉HD =
𝑀𝑡 − (𝑀𝑟𝑀𝑡 )

𝜌HD
and 𝑉LD =

𝑀𝑟𝑀𝑡

𝜌LD
(C.19)

where 𝜌HD = 1750 kg/m3 and 𝜌LD = 1440 kg/m3 are the łdriedž densities of C-S-H HD and LD,
respectively, as reported in (Tennis and Jennings 2000). The LD mass ratio with respect to the
total mass of C-S-H denoted𝑀𝑡 and computed from the stoichiometric equations presented
above, is denoted𝑀𝑟 = 3.017(𝑤/𝑐)DOH − 1.347DOH + 0.538. The volume of gel pore reads

𝑉gel pore = 𝑉LD −
𝑀𝑟𝑀𝑡

𝜌HD
. (C.20)

The TJ model is used to get the volume fraction of phases as a function of the DOH for three
different commercial cements studied in previous works. For a ratio𝑤/𝑐 = 0.5, the resulting
phase assemblages are shown in Figure C.2. The variations on C3A content lead to significant
differences in the emergence of various Al-bearing phases: the fractions of AF-phases and C4AH13

are clearly more significant in systems (b) and (c). The high-C4AF content of cement (b) leads to a
higher fraction of hydrogarnet formed.
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Figure C.2 Volume fraction of phases versus the DOH for three commercial cements studied in references (a) (Honório
et al. 2016a; Honório et al. 2018a; Honório et al. 2016b), (b) (Wyrzykowski et al. 2017) and (c) (Termkhajornkit
and Barbarulo 2012) with𝑤/𝑐 = 0.5. The variations on C3A content lead to significant differences in the
emergence of various Al-bearing phases. Colors defined in Figure C.3.

Figure C.3 shows the evolution of the volume fraction of phases with the DOH as estimated
using the TJ model for the samples included in the test dataset, see Section 4.2.2. Note that
in Figure C.3(c), hydration is stopped at a DOH of approximately 0.9 since there is no water
anymore available.

D Database analysis: comparison with theoretical models

The experimental observations are compared with the theoretical bounds of elastic properties
provided by analytical estimations for random heterogeneous media. The Voigt-Reuss bounds
and the HS bounds, as introduced in Section 3.4, are considered. Figure D.4 shows the differences
for each observation included in the training set between the experimental values of the elastic
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Figure C.3 Evolution of the volume fraction of different phases versus the DOH for three commercial cements
studied by (a) (Constantinides and Ulm 2004) for𝑤/𝑐 = 0.5, (b) (Haecker et al. 2005) for𝑤/𝑐 = 0.6, (c and
d) (Tamtsia et al. 2004) for (c)𝑤/𝑐 = 0.35 and (d)𝑤/𝑐 = 0.5.

properties and the upper Voigt and HS bounds obtained from the knowledge of the phase fractions
and the homogenization schemes. The positive values correspond to experimental observations
exceeding the upper bounds estimated from the theoretical models. All experimental observations
for 𝐸 and 𝐺 are lower than the upper bounds, whereas a few experimental values for 𝜈 and 𝐾
exceed the upper bounds. Variability, and uncertainties in experimental determination and bound
computation may explain this observation. Only some experimental values of 𝐾 exceed the
bounds, their numbers in the training database are identified and depicted in Figure D.4(e) so that
the reader can easily extract them from the data collection in case of interest.

Positions of the experimental observations with respect to the lower bounds are not shown
since lower bounds being null and the elastic constants non-negative, all experimental observations
within the training dataset satisfy the theoretical lower bounds.

E Leave-One-Out Cross-Validation

The Leave-One-Out Cross-Validation (LOOCV) is a technique to exploit the domains associated
with larger prediction error or exhibits a marked non-linear behavior (Fuhg et al. 2020). This
approach consists in using a 𝑘-fold cross-validation with 𝑘 = 𝑛, 𝑛 being the total number
of observations. For each observation 𝑖 ∈ [1, 𝑛], a surrogate model M−𝑖 is trained on 𝑛 − 1

observations, which constitute a subset M−𝑖 . This training stage can be computationally
expensive. The accuracy is finally computed using (Fuhg et al. 2020)

𝑒LOOCV(x𝑖) = |M(x𝑖) −M−𝑖 (x𝑖) | ∀𝑖 ∈ [𝑖, 𝑛] (E.1)

where M(x𝑖) is the metamodel of interest evaluated for the input x𝑖 . A small 𝑒LOOCV(x𝑖) means
that suppressing the observations 𝑖 will not significantly affect the metamodel. In other words,
the interpolations made around x𝑖 are sufficiently accurate. Conversely, a large 𝑒LOOCV(x𝑖) means
that the information around x𝑖 is lacking.

For ANN and GP, the five observations with larger 𝑒LOOCV are {5, 6, 11, 16, 17}, all from (Hel-
muth and Turk 1966), and {16, 17, 69, 263, 364}, respectively. In the case of GP, data regarding
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Figure D.4 Difference between the experimental values in the dataset (subscript ‘exp’) and the Voigt and HS upper
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larger 𝑤/𝑐 values is lacking. Such information can be useful to guide future experimental
campaigns and optimize experiment design.
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