
Identifiers

doi 10.46298/jtcam.9615

arxiv 2205.12264

History

Received May 27, 2022

Accepted Oct 4, 2022

Published Nov 11, 2022

Associate Editor

Alexander Popp

Reviewer

Anonymous

Open Review

oai hal-03808626

Supplementary Material

Software

doi 10.18419/darus-2870

Licence

CC BY 4.0

©The Authors

Journal of Theoretical,
Computational and
Applied Mechanicso

v
e

r
l
a
y

diamond open access

Efficient update of redundancy matrices for truss and

frame structures

Tim Krake
1,2, Malte von Scheven

3, Jan Gade
3, Moataz Abdelaal1,

DanielWeiskopf
1, and Manfred Bischoff

3

1 University of Stuttgart, Visualization Research Center (VISUS)
2 Hochschule der Medien
3 University of Stuttgart, Institute for Structural Mechanics

Redundancy matrices provide insights into the load carrying behavior of statically indeterminate structures.
This information can be employed for the design and analysis of structures with regard to certain
objectives, for example reliability, robustness, or adaptability. In this context, the structure is often
iteratively examined with the help of slight adjustments. However, this procedure generally requires a
high computational effort for the recalculation of the redundancy matrix due to the necessity of costly
matrix operations. This paper addresses this problem by providing generic algebraic formulations for
efficiently updating the redundancy matrix (and related matrices). The formulations include various
modifications like adding, removing, and exchanging elements and are applicable to truss and frame
structures. With several examples, we demonstrate the interaction between the formulas and their
mechanical interpretation. Finally, a performance test for a scaleable structure is presented.

Keywords: redundancy matrix, Woodbury formula, truss structures, frame structures

1 Introduction

The redundancy matrix is important for characterizing load carrying structures. It describes the

distribution of internal constraint and thus the ability of statically indeterminate structures to

carry loads along different paths. The degree of statical indeterminacy is a system-inherent

property of the spatially discrete, elastostatic models of a truss or frame structure. It is defined as

the difference between the number of unknown force quantities and the number of linearly

independent equilibrium equations. Usually, statical indeterminacy is only considered as one

aggregated integer number characterizing the entire structure or substructures. In contrast, the

redundancy matrix also provides the spatial distribution of the degree of statical indeterminacy as

well as information about different load carrying mechanisms. This additional information yields

important insights into the load carrying behavior for many aspects of design and analysis.

Driven by the analogy between Gaussian adjustment calculus in geodesy and structural

mechanics, a concept of redundancy in statically indeterminate truss and frame structures was

developed by Linkwitz (1961); Bahndorf (1991); Ströbel (1997) and revisited by von Scheven et al.

(2021). Another more recent work on the redundancy matrix was published by Liu and Liu (2005),

who used the redundancy matrix and its counterpart, the ‘importance indices’, to assess the

importance of structural elements in truss and frame structures. The idea of the redundancy

matrix was extended to kinematically indeterminate structures (Tibert 2005; Zhou et al. 2015;

Chen et al. 2018) and to continuous representations of structures by a connection between

concepts from applied mathematics and classical structural mechanics (Gade et al. 2021). Further

references for the calculation and application of the redundancy matrix can be found in the

works by von Scheven et al. (2021) and Gade et al. (2021).

The redundancy matrix can be used in numerous applications, including reliability and

robust design of structures (Frangopol and Curley 1987; Pandey and Barai 1997; Kou et al. 2017;

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 1
�� 19

https://dx.doi.org/10.46298/jtcam.9615
https://arxiv.org/abs/2205.12264
https://hal.archives-ouvertes.fr/hal-03808626
https://doi.org/10.18419/darus-2870
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4156-2355
https://orcid.org/0000-0002-0922-5885
https://orcid.org/0000-0003-4630-7916
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0003-1538-4281
https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

Spyridis and Strauss 2020), quantification of imperfection sensitivity (Eriksson and Tibert 2006;

Ströbel and Singer 2008), assessment of adaptability as well as actuator placement, and optimized

control in adaptive structures (Wagner et al. 2018; Geiger et al. 2020; Maierhofer and Menges

2019). However, this paper focuses on the efficient update procedures for the redundancy matrix

while the mechanical interpretation of the redundancy distribution can be found in the references

given above.

During the design process of structures, many different variants are usually studied. In

this case, the redundancy distribution in the structure can be used as an indicator of the load

bearing behaviour or robustness of the different variants. These values can be either used as

direct feedback to interactive design changes by an engineer or in an automatic optimization

process (Bahndorf 1991). In both cases, a fast calculation of the redundancy matrix is essential.

However, especially for larger structures, the recalculation of the redundancy matrix is time-

consuming as it involves the inverse of a matrix whose dimensionality is given by the number of

degrees of freedom in the system. It would be of great advantage to replace the recalculation

by an update of the redundancy matrix to reduce computational effort and enable immediate

feedback to the engineer or faster optimization loops.

Chen et al. (2010) derive such an update formula for the redundancy matrix for removing

single elements from a truss structure. The approach is used for the assessment of the reliability

of structures and the redistribution of inner forces due to damage of components. The same

formula is also applied to a truss system by Kou et al. (2017). However, this approach is limited to

removing elements from truss structures and cannot be extended to other modifications of the

structure, like adding elements or exchanging elements.

The Woodbury formula (Guttman 1946; Woodbury 1950), also known as the generalized

Sherman-Morrison-Woodbury formula, provides an explicit formula for the inverse of a matrix

after a rank-𝑘 update. In the context of structural mechanics, it was applied to compute a modified

flexibility matrix, e.g. after removal of elements (Sack et al. 1967; Argyris et al. 1971; Bahndorf 1991).

A good overview of further references for the application of the Sherman-Morrison-Woodbury

formula for structural reanalysis is provided by Akgün et al. (2001).

In case of a modification of the structural topology, the cross sections, or the elastic constants,

the inverse of the modified stiffness matrix is required to compute the modified redundancy

matrix. Thus, the computational complexity for the (re)computation of the modified redundancy

matrix scales cubically with the size of the problem. Therefore, for systems with a large number

of degrees of freedom an efficient update of the inverse elastic stiffness matrix is crucial to

efficiently update the redundancy matrix. This motivates employing the Woodbury formula to

the inversion of the elastic stiffness matrix. By this, the computationally expensive recalculation

of the redundancy matrix can be replaced by an efficient update for successive modifications. In

detail, we propose

· the first generic algebraic formulations for efficient updates of the redundancy matrix for various

modifications like adding, removing, and exchanging elements,

· application of these generic formulations to truss and frame structures, and

· a quantitative analysis of accuracy and performance of the update processes.

Due to the general matrix notation used for the derivation, the updates can also be applied to

groups of elements as well as to individual load-carrying types of elements. As the presented

update formulations only involve matrix-vector operations, the computational complexity scales

only quadratically with the problem size. Therefore, they prove to be very efficient and reduce

the computational effort, especially for large-scale structures. In sum, our novel formulations

provide the first framework to update the redundancy matrix in an efficient and generic way.

In the following Section 2, all relevant aspects of matrix structural analysis, the definition of

the redundancy matrix, and the Woodbury formula to update the inverse after a rank-𝑘 update

are provided. In Section 3, the efficient updates of the redundancy matrix are derived for adding,

removing, and exchanging elements and presented in ready-to-use algorithms. The first example

in Section 4 shows the application and algebraic correctness of these algorithms for a small

introductory example. A possible area of usage is demonstrated in the second example, while

performance tests are shown in the last subsection, including a scalabiblity analysis. The paper

concludes with a summary and an outlook.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 2
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

2 Background

In this section, relevant aspects of matrix structural analysis as well as the concept of redundancy

matrices are summarized. Moreover, the Woodbury formula, is the basis for the efficient update.

2.1 Matrix structural analysis

For discrete models of spatial truss and frame structures, static analysis can be represented in

matrix notation (Argyris and Scharpf 1969; Przemieniecki 1968). It is described in the following.

Given is a discrete model consisting of 𝑛 degrees of freedom, 𝑛n nodes, and 𝑛e elements, each

of which carries loads via 𝑛m load-carrying modes. The number of load-carrying modes is 𝑛m = 6

for a spatial beam element, 𝑛m = 3 for a plane beam element, and 𝑛m = 1 for a plane or spatial

truss element. In general, the model can consist of a combination of truss and beam elements, i.e.,

𝑛m may vary between the elements. Therefore, the index 𝑛q is introduced that defines the number

of all load-carrying modes of all elements (𝑛q = 𝑛m𝑛e in case of a pure truss or beam model).

The diagram shown in Figure 1 gives an overview of the relevant equations and quantities

in matrix structural analysis for linear elastostatics. In this regard, the vector of generalized

generalized

elastic deformations

eel ∈ R𝑛q

generalized

displacements

d ∈ R𝑛

external loads

f ∈ R𝑛

generalized

stress resultants

s ∈ R𝑛q elastic material law

s = Ceel

compatibility

−eel = −Ad + e0

static equilibrium

A
⊤
s = f

A
⊤
CAd = f +A

⊤
Ce0

Figure 1 Overview of relevant equations and quantities in matrix structural analysis for linear elastostatics (inspired
by Tonti’s diagram for elastostatic problems (Tonti 1976, p. 50) and by Strang (1986, p. 91)).

displacements d ∈ R𝑛 assigned to the nodes satisfying static equilibrium, material law, and

compatibility can be computed by

A
⊤
CAd = f +A

⊤
Ce0. (1)

In Equation (1),A⊤ ∈ R𝑛×𝑛q is the equilibrium matrix,A ∈ R𝑛q×𝑛 is the compatibility matrix,

andC ∈ R𝑛q×𝑛q is the material matrix, which is a diagonal matrix with positive entries. The

vector f ∈ R𝑛 represents the external loads and the vector e0 ∈ R𝑛q represents the generalized

pre-deformations. The matrix

K = A
⊤
CA ∈ R𝑛×𝑛 (2)

is called the elastic stiffness matrix. It is symmetric by definition due to the diagonality ofC.

Equation (1) can alternatively be obtained by minimizing the potential energy.

It is assumed throughout the paper that the structures are statically indeterminate with

a degree of statical indeterminacy 𝑛s = 𝑛q − rank(A⊤). Furthermore, it is assumed that the

structures are kinematically determinate, i.e., rank(A) = 𝑛 (Pellegrino and Calladine 1986;

Pellegrino 1993), which is equivalent to K being regular. The latter assumption can be satisfied

by properly choosing structural topology and boundary conditions. It ensures that the structures

are able to equilibrate loads without pre-stress (and thus geometric stiffness effects) such that

linear structural theory is applicable.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 3
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

2.2 Redundancy distribution

Based on the matrix structural analysis of the previous subsection, the concept of the redun-

dancy (Bahndorf 1991; Ströbel 1997; von Scheven et al. 2021) is described in the following.

The redundancy distribution is independent of the external loads, thus f = 0 is assumed.

Solving Equation (1) for d and inserting into the compatibility equation (see Figure 1) yields

−eel = (I −AK
−1
A

⊤
C)e0 = Re0, (3)

with the redundancy matrix

R = I −AK
−1
A

⊤
C ∈ R𝑛q×𝑛q . (4)

Its main-diagonal entriesR𝑖𝑖 provide the spatial distribution of the degree of statical indeterminacy

of the structure (Bahndorf 1991; Ströbel 1997) such that
∑𝑛q

𝑖
R𝑖𝑖 = 𝑛s. Due to the inverse of the

stiffness matrix and the matrix-matrix multiplications, the computational complexity for the

calculation of the redundancy matrix is given by O(𝑛 · 𝑛2q). Since 𝑛 is typically proportional to 𝑛q,

the complexity scales cubically with the problem size.

A comparison of Equation (3) and the compatibility equation in Figure 1 reveals that R

extracts the incompatible, stress-inducing parts from the generalized pre-deformations e0 taking

the structural stiffness into account. In a statically determinate structure, R = 0 holds; thus, it is

eel = 0 for any e0 ≠ 0. The redundancy matrix has several algebraic and spectral-theoretic

properties. For more details, we refer to von Scheven et al. (2021) and Gade et al. (2021).

2.3 Woodbury formula

The Woodbury formula (Guttman 1946; Woodbury 1950) offers an explicit way to update a

matrix after a rank-𝑘 update (the related Sherman-Morrison-Woodbury formula characterizes

the special case of rank-1 updates). To be more precise, letM ∈ R𝑛×𝑛 be an invertible matrix

andU,V ∈ R𝑛×𝑘 two other matrices such that I −V
⊤
M

−1
U ∈ R𝑘×𝑘 is invertible. Then, the

following assertion holds:

(M −UV
⊤)−1 = M

−1 +M
−1
U(I −V

⊤
M

−1
U)−1V⊤

M
−1. (5)

We will use this formula to derive our algebraic formulations for efficient updates.

3 Method

In this section, the algebraic formulations for efficiently updating the redundancy matrix R (see

Equation (4)) are presented. Three different update scenarios are examined for truss and frame

structures: adding, removing, and exchanging elements. Although the exchange of elements is

methodically equivalent to removing with subsequently adding elements, the computational

cost of a direct exchange is lower. Besides the algebraic formulations, an algorithm is provided

for each scenario that focuses on computational efficiency. A MATLAB implementation of all

algorithms is publicly available on DaRUS (Krake and von Scheven 2022).

The structure of the derivation is similar for all scenarios and the notation is organized as

follows: Symbols without tilde are quantities prior to the update step, whereas symbols with tilde

characterize the updated ones (or objects that are new due to the update). Furthermore, due to

the generic matrix notation, the derivation covers both truss and frame structures.

3.1 Adding elements

Adding a new element to an existing truss or frame (or mixed) structure corresponds to the

integration of a new compatibility submatrix ã ∈ R�̃�m×𝑛 into the compatibility matrix A ∈ R𝑛q×𝑛

and a new material submatrix c̃ ∈ R�̃�m×�̃�m into the material matrix C ∈ R𝑛q×𝑛q . To realize this

step, we assume that the compatibility matrixA and material matrix C are represented by

A =

[
A1

A2

]
, C =

[
C1 0

0 C2

]
, (6)

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 4
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

where A1,A2,C1, and C2 are appropriate matrices. The updated compatibility matrix Ã ∈
R
(𝑛q+�̃�m)×𝑛 and updated material matrix C̃ ∈ R(𝑛q+�̃�m)×(𝑛q+�̃�m) are therefore given by

Ã =



A1

ã

A2


, C̃ =



C1 0 0

0 c̃ 0

0 0 C2


, (7)

provided that the integration of the submatrices is performed at the same row index (for a more

compact representation, we recommend adding the submatrices below the last row or column,

respectively). Consequently, the updated dimensions are given by �̃�q = 𝑛q + �̃�m and �̃� = 𝑛. The

next step is to update the elastic stiffness matrix K ∈ R𝑛×𝑛 (see Equation (2)), which is given by

K = A
⊤
CA =

[
A1

A2

]⊤ [
C1 0

0 C2

] [
A1

A2

]
= A

⊤
1C1A1 +A

⊤
2C2A2. (8)

The updated elastic stiffness matrix K̃ ∈ R𝑛×𝑛 can now be expressed as a sum of the elastic

stiffness matrixK and the new submatrices ã and c̃:

K̃ = Ã
⊤
C̃Ã =



A1

ã

A2



⊤ 

C1 0 0

0 c̃ 0

0 0 C2





A1

ã

A2


= A

⊤
1C1A1 +A⊤

2C2A2 + ã⊤c̃ã = K+ ã⊤c̃ã. (9)

This representation enables the application of the Woodbury formula (see Equation (5)) to obtain

the inverse of the updated elastic stiffness matrix:

K̃
−1

= (K + ã
⊤
c̃ã)−1 = K

−1 −K
−1
ã
⊤
c̃(I + ãK

−1
ã
⊤
c̃)−1ãK−1 (10)

= K
−1 −K

−1
ã
⊤
c̃G

−1
ãK

−1,

where we defineG−1
= (I+ ãK−1

ã
⊤
c̃)−1 ∈ R�̃�m×�̃�m . From a mechanical point of view, the inverse

K̃
−1 always exists, because adding elements to a kinematically determinate structure always leads

to a new kinematically determinate structure. Mathematically, the inverse K̃−1 exists if and only

if G−1 exists. And the latter is true because G−1
= (I + ãK

−1
ã
⊤
c̃)−1 = ((c̃−1 + ãK

−1
ã
⊤)c̃)−1 =

c̃
−1(c̃−1 + ãK

−1
ã
⊤)−1 is invertible due to the fact that c̃ is invertible (as a diagonal matrix with

positive diagonal) and c̃
−1 + ãK

−1
ã
⊤ is invertible (as it is symmetric positive definite).

Now, the final step is to update the redundancy matrix R ∈ R𝑛q×𝑛q (see Equation (4)). To do

this, we represent the redundancy matrix in our notation:

R = I −AK
−1
A

⊤
C =

[
I 0

0 I

]
−
[
A1

A2

]
K

−1
[
A1

A2

]⊤ [
C1 0

0 C2

]
(11)

=

[
I −A1K

−1
A

⊤
1C1 −A1K

−1
A

⊤
2C2

−A2K
−1
A

⊤
1C1 I −A2K

−1
A

⊤
2C2

]
=

[
R1 R2

R3 R4

]
,

whereR1,R2,R3, andR4 are appropriate matrices. We use this equation to derive the final

formulation of the updated redundancy matrix R̃ ∈ R(𝑛q+�̃�m)×(𝑛q+�̃�m) :

R̃ = I − ÃK̃
−1
Ã

⊤
C̃ (12)

= I − Ã(K−1 −K
−1
ã
⊤
c̃G

−1
ãK

−1)Ã⊤
C̃

=



I 0 0

0 I 0

0 0 I


−


A1K
−1
A

⊤
1C1 A1K

−1
ã
⊤
c̃ A1K

−1
A

⊤
2C2

ãK
−1
A

⊤
1C1 ãK

−1
ã
⊤
c̃ ãK

−1
A

⊤
2C2

A2K
−1
A

⊤
1C1 A2K

−1
ã
⊤
c̃ A2K

−1
A

⊤
2C2



+


A1K
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 A1K

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ A1K

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2

ãK
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 ãK

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ ãK

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2

A2K
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 A2K

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ A2K

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2



=



R1 0 R2

0 0 0

R3 0 R4


+


0 −A1K
−1
ã
⊤
c̃ 0

−ãK−1
A

⊤
1C1 I − ãK

−1
ã
⊤
c̃ −ãK−1

A
⊤
2C2

0 −A2K
−1
ã
⊤
c̃ 0



+


A1K
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 A1K

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ A1K

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2

ãK
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 ãK

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ ãK

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2

A2K
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1 A2K

−1
ã
⊤
c̃G

−1
ãK

−1
ã
⊤
c̃ A2K

−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
2C2


.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 5
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

This formulation emphasizes the connection between the previous old matrix and the updated

one. We observe that the updated redundancy matrix consists of three different terms: the old

redundancy matrix R characterized by the parts R1, . . . ,R4 (the splitting simply results from the

notation), a sparse matrix that characterizes the new element in the structure, and a dense matrix

representing the general change due to the integration of a new element.

1 function EfficientUpdateAdd(A,C,K−1,R, ã, c̃)

2 Define A1,A2, C1, andC2 ⊲ see Equation (6)

3 Update Ã and C̃ ⊲ see Equation (7)

4 Compute K−1
ã
⊤

5 Compute a(K−1
ã
⊤)

6 Compute (aK−1
ã
⊤)c̃

7 Compute G = I + ãK
−1
ã
⊤
c̃

8 Compute G−1
= (I + ãK

−1
ã
⊤
c̃)−1

9 Compute c̃G−1

10 Update K̃−1
= K

−1 − (K−1
ã
⊤) (c̃G−1) (K−1

ã
⊤)⊤ ⊲ see Equation (10)

11 Compute A1 (K−1
ã
⊤) andA2 (K−1

ã
⊤)

12 Compute (A1K
−1
ã
⊤)c̃ and (A2K

−1
ã
⊤)c̃

13 Compute ãK−1
A
⊤
1C1 = (A1K

−1
ã
⊤)⊤C1 and ãK

−1
A
⊤
2C2 = (A2K

−1
ã
⊤)⊤C2

14 Update R̃ ⊲ see Equation (12)

15 return Ã, C̃, K̃−1, and R̃

16 end function

Algorithm 1 Efficient update of the redundancy matrix (and related matrices) when an element is added to a truss or
frame structure. The process is designed such that it can be performed in a repeatable manner.

To clearly represent the entire update step, Algorithm 1 summarizes the individual update

formulas, while focusing on computational efficiency. In general, the update (and thus the

algorithm) is designed such that it can be performed in a repeatable manner. This aspect can be

observed in Algorithm 1, where the input in line 1 is the same as the output in line 15, except for

the new quantities ã and c̃ (characterizing the new element). The lines in-between describe the

update steps of the four relevant matrices: A, C, K−1, and R.

The update of the compatibility matrix A and material matrix C is performed in lines 2ś3,

where the new elements ã and c̃ are simply inserted at a specific row into the two matrices

(see Equation (6) and Equation (7)). In lines 4ś9, various quantities are computed successively

that are used to update the inverse of the elastic stiffness matrix K−1 in line 10. In the case of

truss structures, i.e., �̃�m = 1 (otherwise it is �̃�m = 3 or �̃�m = 6), the computations in lines 4ś7 are

matrix-vector multiplications and the inverse in line 8 is simply the reciprocal. Moreover, the

update formula in line 10 (see Equation (10)) can be easily computed via an outer product. The

same applies to the update of the redundancy matrix R, where relevant parts are computed by

matrix-vector operations in lines 11ś13 and the final update happens in line 14. The update

formula can also be computed via outer products (see Equation (12)).

In sum, we observe that many computations can be deduced from previous results and all

operations are matrix-vector multiplications, matrix additions, outer products, or thin matrix

inverses (of dimension �̃�m × �̃�m). Consequently, the algorithm has a computational complexity of

O(𝑛2q) with a small coefficient. If the entire recomputation is used to update the redundancy

matrix, the computational complexity is given by O(𝑛 · 𝑛2q).

3.2 Removing elements

Removing an element 𝑖0 from an existing truss or frame (or mixed) structure equals the deletion of

specific rows or columns in the compatibility matrix A ∈ R𝑛q×𝑛 and material matrix C ∈ R𝑛q×𝑛q .

To this end, we assume that the compatibility matrixA and material matrixC are represented by

A =



A1

a

A2


, C =



C1 0 0

0 c 0

0 0 C2


, (13)

whereA1,A2,C1, andC2 are appropriate matrices and a ∈ R𝑛m×𝑛 and c ∈ R𝑛m×𝑛m correspond to

the specific element 𝑖0 that should be removed. The updated compatibility matrix Ã ∈ R(𝑛q−𝑛m)×𝑛

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 6
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

and updated material matrix C̃ ∈ R(𝑛q−𝑛m)×(𝑛q−𝑛m) are therefore given by

Ã = S
⊤
A =

[
A1

A2

]
, C̃ = S

⊤
CS =

[
C1 0

0 C2

]
, (14)

where the deletion operation is realized by a matrix S ∈ R𝑛q×(𝑛q−𝑛m) (the matrix notation of S is

used for theoretical purposes only and, for instance, the implementation of S⊤A should not be

done via matrix-matrix multiplication). Applying the matrix S from the left corresponds to the

deletion of rows regarding the element 𝑖0 and from the right to columns regarding element 𝑖0.

Consequently, the updated dimensions are given by �̃�q = 𝑛q − 𝑛m and �̃� = 𝑛. The next step is to

update the elastic stiffness matrixK ∈ R𝑛×𝑛 (see Equation (2)), which is given by

K = A
⊤
CA =



A1

a

A2



⊤ 

C1 0 0

0 c 0

0 0 C2





A1

a

A2


= A

⊤
1C1A1 + a

⊤
ca +A

⊤
2C2A2. (15)

With this, we can express the updated elastic stiffness matrix K̃ ∈ R𝑛×𝑛 by a sum of the elastic

stiffness matrixK and the deleted submatrices a and c:

K̃ = Ã
⊤
C̃Ã =

[
A1

A2

]⊤ [
C1 0

0 C2

] [
A1

A2

]
= A

⊤
1C1A1 +A

⊤
2C2A2 = K − a

⊤
ca. (16)

Now, we can apply the Woodbury formula (see Equation (5)) to obtain the inverse of the updated

elastic stiffness matrix:

K̃
−1

= (K − a
⊤
ca)−1 = K

−1 +K
−1
a
⊤
c(I − aK

−1
a
⊤
c)−1aK−1 (17)

= K
−1 +K

−1
a
⊤
cG

−1
aK

−1,

where we define G−1
= (I − aK

−1
a
⊤
c)−1 ∈ R𝑛m×𝑛m (we will later see that G is already a part of

the redundancy matrixR).

Finally, we can update the redundancy matrix R ∈ R𝑛q×𝑛q (see Equation (4)). We represent

the deleted submatrices by a = E
⊤
A and c = E

⊤
CE, where E ∈ R𝑛q×𝑛m is simply the projection

onto the entries that correspond to the element 𝑖0 (in the case of truss structures, i.e. 𝑛m = 1, E is

a canonical unit vector, otherwise, it is a collection of canonical unit vectors). We also use the

identities A⊤
EE

⊤
CE = A

⊤
CE and A

⊤
SS

⊤
CS = A

⊤
CS, which are easy to prove, to derive the

formulation of the updated redundancy matrix R̃ ∈ R(𝑛q−𝑛m)×(𝑛q−𝑛m) :

R̃ = I − ÃK̃
−1
Ã

⊤
C̃ (18)

= I − Ã(K−1 +K
−1
a
⊤
cG

−1
aK

−1)Ã⊤
C̃

= S
⊤
IS − S

⊤
AK

−1
A

⊤
SS

⊤
CS − S

⊤
AK

−1
a
⊤
cG

−1
aK

−1
A

⊤
SS

⊤
CS

= S
⊤
IS − S

⊤
AK

−1
A

⊤
CS − S

⊤
AK

−1
a
⊤
cG

−1
aK

−1
A

⊤
CS

= S
⊤(I −AK

−1
A

⊤
C)S − S

⊤
AK

−1
a
⊤
c(I − aK

−1
a
⊤
c)−1aK−1

A
⊤
CS

= S
⊤
RS − S

⊤
AK

−1
a
⊤
c(I − aK

−1
a
⊤
c)−1aK−1

A
⊤
CS

= S
⊤
RS − S

⊤
AK

−1
A

⊤
EE

⊤
CE(E⊤

IE −E
⊤
AK

−1
A

⊤
EE

⊤
CE)−1E⊤

AK
−1
A

⊤
CS

= S
⊤
RS − S

⊤
AK

−1
A

⊤
CE(E⊤

IE −E
⊤
AK

−1
A

⊤
CE)−1E⊤

AK
−1
A

⊤
CS

= S
⊤
RS − (S⊤(I −AK

−1
A

⊤
C)E) (E⊤(I −AK

−1
A

⊤
C)E)−1(E⊤(I −AK

−1
A

⊤
C)S)

= S
⊤
RS − (S⊤RE) (E⊤

RE)−1(E⊤
RS).

This formulation shows that the updated redundancy matrix consists of two different terms: the

old redundancy matrix R that only needs to be shrunken and a dense matrix representing the

general change due to the removing of the element. We also observe that the two terms can

be directly computed by the redundancy matrix R (while the elastic stiffness matrix K or the

deleted submatrices a or c are not necessary). In fact, the inverse (E⊤
RE)−1 is equal to G

−1 and,
therefore, the update will fail if (E⊤

RE)−1 = G
−1 (or equivalently K

−1) does not exist. This is
the case if the element 𝑖0 is a statically determinate part of the structure. As a consequence, the

new structure would be kinematically indeterminate.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 7
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

1 function EfficientUpdateRemove(A,C,K−1,R, index 𝑖0)

2 Define A1, a,A2,C1, c, andC2 ⊲ see Equation (13)

3 Update Ã and C̃ ⊲ see Equation (14)

4 Compute K−1
a
⊤

5 Compute G = I − aK
−1
a
⊤
c = E

⊤
RE

6 Compute G−1
= (I − aK

−1
a
⊤
c)−1 = (E⊤

RE)−1
7 Update K̃−1

= K
−1 + (K−1

a
⊤) (cG−1) (K−1

a
⊤)⊤ ⊲ see Equation (17)

8 Update R̃ = S
⊤
RS − (S⊤RE) (E⊤

RE)−1 (E⊤
RS) ⊲ see Equation (18)

9 return Ã, C̃, K̃−1, and R̃

10 end function

Algorithm 2 Efficient update of the redundancy matrix (and related matrices) when an element is removed from a truss
or frame structure. The process is designed such that it can be performed in a repeatable manner (although
the redundancy matrix can be computed without previous steps).

In general, the formulation for R̃ is consistent with the formula derived by Chen et al. (2010),

which is a special case of our formulation considering truss structures, i.e., 𝑛m = 1.

To clearly represent the entire update step, Algorithm 2 summarizes the individual update

formulas, while focusing on computational efficiency. Analogously to the previous subsection,

the update (and thus the algorithm) is designed such that it can be performed in a repeatable

manner. Actually, when updating the redundancy matrix R, the previous computations are not

necessary, as Equation (18) is only based on R. However, if different update scenarios are mixed

(e.g., removing with a subsequent adding), it is necessary to update the matrices A, C, and K
−1

as well. Therefore, Algorithm 2 considers these quantities as well.

The update of the compatibility matrix A and material matrix C is performed in lines 2ś3,

where the submatrices a and c belonging to the desired element are simply deleted. In lines 4ś6,

various quantities are computed successively that are used to update the inverse of the elastic

stiffness matrix K
−1 in line 7. In the case of removing a truss element, i.e., 𝑛m = 1 (otherwise it is

𝑛m = 3 or 𝑛m = 6), the computations in lines 4ś5 are matrix-vector multiplications. Moreover, the

update formula in line 7 (see Equation (17)) can be easily computed via an outer product. The

redundancy matrix R can be directly updated in line 8 (see Equation (18)). As mentioned before,

the computations that use the matrices S (from the left or right) are simple deletion operations

(and should not be implemented via matrix-matrix multiplication).

In sum, we observe that many computations can be deduced from previous results and

all operations are matrix-vector multiplications, matrix additions, outer products, thin matrix

inverses (of dimension 𝑛m × 𝑛m), or elementary matrix operations (operations with the matrix

S or E). Consequently, the algorithm has a computational complexity of O(𝑛2q) with a small

coefficient. If the entire recomputation is used to update the redundancy matrix, the computational

complexity is given by O(𝑛 · 𝑛2q).

3.3 Exchanging elements

Exchanging an element of an existing truss or frame (or mixed) structure is equal to substituting

specific rows or columns in the compatibility matrix A ∈ R𝑛q×𝑛 and material matrix C ∈ R𝑛q×𝑛q .

For this purpose, we assume that the compatibility matrixA and material matrix C read

A =



A1

a

A2


, C =



C1 0 0

0 c 0

0 0 C2


, (19)

where A1, A2, C1, and C2 are appropriate matrices and a ∈ R𝑛m×𝑛 and c ∈ R𝑛m×𝑛m correspond

to the specific element with index 𝑖0 that should be exchanged. To update these matrices, a new

compatibility submatrix ã ∈ R�̃�m×𝑛 and new material submatrix c̃ ∈ R�̃�m×�̃�m are considered.

Although it is possible to exchange elements with different numbers of load-carrying modes, we

restrict our derivation to �̃�m = 𝑛m. Otherwise, the components need to be embedded such that

the dimensions match, e.g., via Sa = ã (compare Section 3.2). The updated compatibility matrix

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 8
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

Ã ∈ R(𝑛q−𝑛m+�̃�m)×𝑛 and updated material matrix C̃ ∈ R(𝑛q−𝑛m+�̃�m)×(𝑛q−𝑛m+�̃�m) are thus given by

Ã =



A1

ã

A2


, C̃ =



C1 0 0

0 c̃ 0

0 0 C2


. (20)

Consequently, the updated dimensions are given by �̃�q = 𝑛q − 𝑛m + �̃�m = 𝑛q and �̃� = 𝑛. Next, we

want to update the elastic stiffness matrixK ∈ R𝑛×𝑛 (see Equation (2)), which is given by

K = A
⊤
CA =



A1

a

A2



⊤ 

C1 0 0

0 c 0

0 0 C2





A1

a

A2


= A

⊤
1C1A1 + a

⊤
ca +A

⊤
2C2A2. (21)

Now, the updated elastic stiffness matrix K̃ ∈ R𝑛×𝑛 can be represented by a sum of the elastic

stiffness matrixK and all substitution submatrices a, c, ã, and c̃:

K̃ = Ã
⊤
C̃Ã =



A1

ã

A2



⊤ 

C1 0 0

0 c̃ 0

0 0 C2





A1

ã

A2


= A

⊤
1C1A1 +A

⊤
2C2A2 + ã

⊤
c̃ã (22)

= K + ã
⊤
c̃ã − a

⊤
ca

= K +
[
a

ã

]⊤ [
−c 0

0 c̃

] [
a

ã

]
= K + 𝔞

⊤
𝔠𝔞,

where we define

𝔞 =

[
a

ã

]
and 𝔠 =

[
−c 0

0 c̃

]

for the sake of transparency. The formulation enables the application of the Woodbury formula

(see Equation (5)) to obtain the inverse of the update elastic stiffness matrix:

K̃
−1

= (K + 𝔞
⊤
𝔠𝔞)−1 = K

−1 −K
−1
𝔞
⊤
𝔠(I + 𝔞K

−1
𝔞
⊤
𝔠)−1𝔞K−1 (23)

= K
−1 −K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1,

where we define G−1
= (I + 𝔞K

−1
𝔞
⊤
𝔠)−1 ∈ R𝑛m+�̃�m×𝑛m+�̃�m .

We conclude the derivation with the update of the redundancy matrix R ∈ R𝑛q×𝑛q (see

Equation (4)). To this end, we represent the redundancy matrix in our notation:

R = I −AK
−1
A

⊤
C =



I 0 0

0 I 0

0 0 I


−


A1

a

A2


K

−1


A1

a

A2



⊤ 

C1 0 0

0 c 0

0 0 C2


(24)

=



I 0 0

0 I 0

0 0 I


−


A1K
−1
A

⊤
1C1 A1K

−1
a
⊤
c A1K

−1
A

⊤
2C2

aK
−1
A

⊤
1C1 aK

−1
a
⊤
c aK

−1
A

⊤
2C2

A2K
−1
A

⊤
1C1 A2K

−1
a
⊤
c A2K

−1
A

⊤
2C2


.

We use this equation and the definitions Δa = ã−a and Δc = c̃−c to derive the final formulation

of the updated redundancy matrix R̃ ∈ R𝑛q−𝑛m+�̃�m×𝑛q−𝑛m+�̃�m :

R̃ = I − ÃK̃
−1
Ã

⊤
C̃ (25)

= I − Ã(K−1 −K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1)Ã⊤
C̃

= I −


A1K
−1
A

⊤
1C1 A1K

−1
ã
⊤
c̃ A1K

−1
A

⊤
2C2

ãK
−1
A

⊤
1C1 ãK

−1
ã
⊤
c̃ ãK

−1
A

⊤
2C2

A2K
−1
A

⊤
1C1 A2K

−1
ã
⊤
c̃ A2K

−1
A

⊤
2C2



+


A1K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

ãK
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

A2K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2



= I −


A1K
−1
A

⊤
1C1 A1K

−1(a + Δa)⊤(c + Δc) A1K
−1
A

⊤
2C2

(a + Δa)K−1
A

⊤
1C1 (a + Δa)K−1(a + Δa)⊤(c + Δc) (a + Δa)K−1

A
⊤
2C2

A2K
−1
A

⊤
1C1 A2K

−1(a + Δa)⊤(c + Δc) A2K
−1
A

⊤
2C2



Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 9
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

+


A1K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

ãK
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

A2K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2



= R −


0 A1K
−1(a⊤Δc + Δa

⊤
c + Δa

⊤
Δc) 0

ΔaK
−1
A

⊤
1C1 ΔaK

−1
a
⊤
c + ãK

−1(a⊤Δc + Δa
⊤
c + Δa

⊤
Δc) ΔaK

−1
A

⊤
2C2

0 A2K
−1(a⊤Δc + Δa

⊤
c + Δa

⊤
Δc) 0



+


A1K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A1K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

ãK
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ ãK

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2

A2K
−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
1C1 A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
ã
⊤
c̃ A2K

−1
𝔞
⊤
𝔠G

−1
𝔞K

−1
A

⊤
2C2


.

This formulation emphasizes the connection between the old redundancy matrix and the updated

one. We observe that the updated redundancy matrix consists of three different terms: the old

redundancy matrix R, a sparse matrix that characterizes the exchanged element in the structure,

and a dense matrix representing the general change due to the exchange of an element.

1 function EfficientUpdateExchange(A,C,K−1,R, index 𝑖0, ã, c̃)

2 Define A1, a,A2,C1, c, andC2 ⊲ see Equation (19)

3 Update Ã and C̃ ⊲ see Equation (20)

4 Define

𝔞 =

[
a

ã

]
and 𝔠 =

[
−c 0

0 c̃

]

5 Compute K−1
𝔞
⊤

6 Compute 𝔞(K−1
𝔞
⊤) via a(K−1

𝔞
⊤) and ã(K−1

𝔞
⊤)

7 Compute (𝔞K−1
𝔞
⊤)𝔠 via (𝔞K−1

𝔞
⊤)c and (𝔞K−1

𝔞
⊤)c̃

8 Compute G = I + 𝔞K
−1
𝔞
⊤
𝔠

9 Compute G−1
= (I + 𝔞K

−1
𝔞
⊤
𝔠)−1

10 Compute 𝔠G−1

11 Update K̃−1
= K

−1 − (K−1
𝔞
⊤) (𝔠G−1) (K−1

𝔞
⊤)⊤. ⊲ see Equation (23)

12 Compute A1 (K−1
𝔞
⊤) andA2 (K−1

𝔞
⊤)

13 Compute 𝔞K−1
A
⊤
1C1 = (A1K

−1
𝔞
⊤)⊤C1 and 𝔞K

−1
A
⊤
2C2 = (A2K

−1
𝔞
⊤)⊤C2

14 Compute ΔaK−1
A
⊤
1C1 =

[
−I I

]
(𝔞K−1

A
⊤
1C1), ΔaK−1

A
⊤
2C2 =

[
−I I

]
(𝔞K−1

A
⊤
2C2), and

ΔaK
−1
a
⊤
c =

[
−I I

]
(𝔞K−1

a
⊤
c) =

[
−I I

]
(𝔞K−1

𝔞
⊤
𝔠)

[
−I
0

]

15 Compute 𝜹 = a
⊤
Δc + Δa

⊤
c + Δa

⊤
Δc andK

−1
𝜹

16 Compute A1 (K−1
𝜹),A2 (K−1

𝜹), and ã(K−1
𝜹)

17 Update R̃ ⊲ see Equation (25)

18 return Ã, C̃, K̃−1, and R̃

19 end function

Algorithm 3 Efficient update of the redundancy matrix (and related matrices) when an element is exchanged in a
truss or frame structure. The process is designed such that it can be performed in a repeatable manner.
Although the exchange of elements is methodically equivalent to removing with subsequently adding of
elements, the computational cost of a direct exchange is lower.

To clearly represent the entire update step, Algorithm 3 summarizes the individual update

formulas, while focusing on computational efficiency. In general, the update (and thus the

algorithm) is designed such that it can be performed in a repeatable manner. In Algorithm 3, the

four relevant matrices A, C, K−1, and R get updated while additionally an index 𝑖0 (which

determines the element that should be exchanged) and new quantities ã and c̃ are given.

The update of the compatibility matrix A and material matrix C is performed in lines

2ś3, where the new quantities ã and c̃ overwrite the quantities a and c (see Equation (19) and

Equation (20)). In lines 4ś10, various quantities are defined and computed successively that are

used to update the inverse of the elastic stiffness matrix K
−1 in line 11. In the case of truss

structures, i.e., �̃�m = 1 (otherwise it is �̃�m = 3 or �̃�m = 6), the computations in lines 5ś8 are

common matrix-vector multiplications and the inverse in line 9 is simply the reciprocal. Moreover,

the update formula in line 11 (see Equation (23)) can be easily computed via an outer product.

The same applies to the update of the redundancy matrix R, where relevant parts are computed

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 10
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

by matrix-vector operations in lines 12ś17 and the final update happens in line 18. The update

formula can also be computed via outer products (see Equation (24)).

We again observe that many computations can be deduced from previous results and all

operations are matrix-vector multiplications, matrix additions, outer products, or thin matrix

inverses (of dimension �̃�m × �̃�m). Consequently, the algorithm has a computational complexity of

O(𝑛2q). If the entire recomputation is used to update the redundancy matrix, the computational

complexity is given by O(𝑛 · 𝑛2q).

4 Examples

This section demonstrates the application of the proposed update formulations. The first two

examples show the range of application with possible scenarios and provide initial interpretations.

On the other hand, the third example has a scaleable size and is used for performance tests.

4.1 Introductory Example

In this introductory example, three plane truss structures, as shown in Figure 2, will be examined.

Young’s modulus 𝐸 and cross sectional area 𝐴 are constant for all elements. Starting from

1

3 4

2

5

1
2

3

4 5

1

3 4

2

5

1
2 3 4

5 6

1

3 4

2

5

1
2 3

4 5

System A: System B: System C:

5.0 5.0 5.0 5.0

5
.0

5.0 5.0

5
.0

5
.0

0.0 0.207

0
.0

0
.2
070.

58
6

0.178 0.319

0
.1
78

0
.2
15

0.
60
7

0.503

0.172 0.172

0
.1
72

0.
0 0.485

Figure 2 Introductory example: Three truss systems A, B, and C that result from each other by a single update step
(top) and the corresponding redundancy distributions (bottom).

structure A, system B can be obtained by adding the new element 3. Removing then element 4

yields structure C. By exchanging element 3 from the connection between nodes 3 and 2 to the

connection of nodes 4 and 2, system A is reproduced. The changes to the redundancy matrix will

be calculated by the update algorithms described in Section 3, starting from the redundancy

matrix for system A.

4.1.1 Adding a New Element

Firstly, the modification of the redundancy matrix from system A to system B due to adding a

second diagonal element (new element 3) will be demonstrated in detail. Following Algorithm 1,

the compatibility matrix A, material matrix C, and redundancy matrix R of the original system

(system A),

A =



0 1 0 0

0 0
√
2/2 √

2/2
0 0 0 1

−1 0 1 0

0 0 −1 0



,C = diag



200

100
√
2

200

200

200



,R =



0.0 0.0 0.0 0.0 0.0

0.0 0.586 −0.414 0.0 0.414

0.0 −0.293 0.207 0.0 −0.207
0.0 0.0 0.0 0.0 0.0

0.0 0.293 −0.207 0.0 0.207



(26)

are required as input, as well as the inverse of the stiffness matrixK = A
⊤
CA.

To add a new element between nodes 2 and 3, the new row ã = [−√
2/2 √

2/2 0 0] of the
compatibility matrix and the new entry c̃ = [100

√
2] of the material matrix are needed.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 11
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

Following the steps in Algorithm 1, the redundancy matrix R̃ for system B can be computed

as an update of the redundancy matrix of system A:

R̃ =



0.178 −0.0521 −0.252 0.0368 0.178 0.141

−0.0737 0.607 0.104 −0.429 −0.0737 0.356

−0.356 0.104 0.503 −0.0737 −0.356 −0.282
0.0368 −0.304 −0.0521 0.215 0.0368 −0.178
0.178 −0.0521 −0.252 0.0368 0.178 0.141

0.141 0.252 −0.199 −0.178 0.141 0.319



. (27)

Besides computational efficiency, the advantage of the presented update algorithms is the

possibility to predict the changes to the redundancy matrix a new element will make. One

common application could be to avoid bars with zero redundancy, i.e., statically determinate parts

in the structure. The modification to the redundancy of existing elements caused by adding a new

element is determined only by the diagonal blocks of the last summand in Equation (12), e.g. for

the left upper block:

ΔR1 = A1K
−1
ã
⊤
c̃G

−1
ãK

−1
A

⊤
1C1. (28)

If we try to achieve non-zero entries on the diagonals of this matrix ΔR11, the scalar (for 𝑛m = 1)

factors c̃ and G
−1 as well as the diagonal matrix C1 can be neglected for the further derivation.

The remaining term is the Gramian matrix of ãK−1
A

⊤
1 . The term K

−1
ã
⊤ is proportional to the

nodal displacements caused by an elongation of the new element, whileA1K
−1
ã
⊤ is proportional

to the resulting elastic elongations and therefore normal forces in the elements that correspond

to A1. To obtain a non-zero value on a diagonal entry of ΔR11, the corresponding entry in

A1K
−1
ã
⊤ must be non-zero, i.e., an elongation of the new element must cause a normal force in

the respective element.

The diagonal terms of ΔR11 are always non-negative. Mechanically, this means that the

redundancy of all elements in the structure can only be increased by adding a new element. For

𝑛m = 1, this can be directly seen from Equation (28). The term c̃G
−1 is a positive scalar and

C1 a diagonal matrix with only positive entries. The remaining term is the Gramian matrix of

ãK
−1
A
⊤
1 , which has always non-negative diagonal entries. Cases with 𝑛m > 1 can be interpreted

as multiple applications of the update algorithm with 𝑛m = 1 and therefore follow the same rule.

4.1.2 Removing an Element

In the second step, element 4 will be removed from system B to obtain system C. Again, an

update procedure as described in Section 3.2 and Algorithm 2 will be used instead of recalculating

the redundancy matrix from scratch. Starting point is system B with its compatibility matrix A

and material matrix C,

A =



0 1 0 0

0 0
√
2/2 √

2/2
−√

2/2 √
2/2 0 0

0 0 0 1

−1 0 1 0

0 0 −1 0



C = diag



200

100
√
2

100
√
2

200

200

200



, (29)

as well as the inverse of the stiffness matrix K = A
⊤
CA, and the redundancy matrix R as given

in Equation (27) as R̃.

Following Algorithm 2, first the inverse of the stiffness matrix K can be updated according to

Equation (17). The redundancy matrix itself is updated as described in the last line of Equation (18)

or line 10 in Algorithm 2. For this example, the matrix S represents the deletion of the fourth row

or column. This yields the updated redundancy matrix of system C as:

R̃ =



0.172 0.0 −0.243 0.172 0.172

0.0 0.0 0.0 0.0 0.0

−0.343 0.0 0.485 −0.343 −0.343
0.172 0.0 −0.243 0.172 0.172

0.172 0.0 −0.243 0.172 0.172



. (30)

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 12
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

The modification to the redundancy of existing elements caused by removing an element is

determined by the second term in the last line of Equation (18):

ΔR = (S⊤RE) (E⊤
RE)−1(E⊤

RS). (31)

For 𝑛m = 1, the term (E⊤
RE) is a scalar, equal to the redundancy of the element to be removed

and therefore always positive. The remaining term (S⊤RE) (E⊤
RS) is the Gramian matrix of

E
⊤
RS and therefore has non-negative diagonal entries. Hence, the diagonal terms of ΔR are

all non-negative. Mechanically this means, that the redundancy of remaining elements in the

structure can only be reduced by removing an element. This statement also applies to cases with

𝑛m > 1, since these can be interpreted as multiple applications of the update algorithm with

𝑛m = 1.

4.1.3 Exchanging an Element

Finally, exchanging element number 3 in system C from nodes 2ś3 to nodes 2ś4 will reproduce

system A. Applying the update procedure as described in Section 3.3 and Algorithm 3, the original

redundancy matrix of system A (Equation (26)) should be obtained. The input to the algorithms

are the compatibility matrixA and material matrix C of system C,

A =



0 1 0 0

0 0
√
2/2 √

2/2
−√

2/2 √
2/2 0 0

−1 0 1 0

0 0 −1 0



, C = diag



200

100
√
2

100
√
2

200

200



, (32)

as well as the inverse of the stiffness matrixK = A
⊤
CA and the redundancy matrix (Equation (30))

of system C. Furthermore, the new row ã = [0 0 0 1] of the compatibility matrix and the new

entry c̃ = [200] of the material matrix corresponding to the new element are required, as well as

the position of the element to be exchanged 𝑖0 = 3.

Using these quantities, the inverse of the stiffness matrixK can be updated according to

Equation (23) or line 11 in Algorithm 3. The redundancy matrix R itself is updated as described

in the last line Equation (25) or line 17 in Algorithm 3.

R̃ =



0.0 0.0 0.0 0.0 0.0

0.0 0.586 −0.414 0.0 0.414

0.0 −0.293 0.207 0.0 −0.207
0.0 0.0 0.0 0.0 0.0

0.0 0.293 −0.207 0.0 0.207



(33)

The result is identical to the original redundancy matrix R of system A as given in Equation (26).

This indicates that the three efficient update procedures described above are algebraically correct.

4.2 Multi-storey Frame Structures

In this subsection, the update algorithms are applied to the analysis of the load-bearing structure

of a multi-storey frame structure. For better comprehensibility, we use a simplified model with

only idealised hinges or rigid connections. The original structure A is shown in Figure 3 (left) and

consists of a bending resistant core modeled with plane Euler-Bernoulli beam elements and

attached statically determinate slab-column systems. Young’s modulus 𝐸, cross sectional area 𝐴,

and moment of inertia 𝐼 are constant for all elements.

The structure has a high degree of statical indeterminacy given by 𝑛𝑠 = 30. This statical inde-

terminacy is concentrated in the core as shown in the redundancy distribution in Figure 3 (right).

Due to the three load-bearing mechanism in each beam element (elongation, shear, and bending),

i.e. 𝑛m = 3, the redundancy of every element can be as high as three. The attached slab-column

system has zero redundancy. Failure of only one column leads to a progressive collapse of all

stories above (Pearson and Delatte 2005). To avoid such catastrophic failure, the robustness of

structures should be increased by avoiding large parts in the structure with zero redundancy.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 13
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

5.0 5.03.0 3.0

3
.0

3
.0

3
.0

3
.0

3
.0

1.23

1.03

1.25

1.26

1.29

1
.4

1
.1
4

1
.1
3

1
.1
2

0
.9
96

1
.1

1
.2
2

1
.2
3

1
.2
6

1
.4
8

Figure 3 Multi-storey frame system A with a stiff core and attached statically determinate slab-column systems
(left) and the corresponding redundancy distribution (right).

Using the presented efficient update algorithms, the designer can check the redundancy

distributions of many variants of a structure to design a robust structure. In this example, two

variants of the original structure A will be presented and the necessary updates of the redundancy

matrix are described.

Firstly, the redundancy of the slab-column systems is increased by adding diagonal elements

as shown in system B (Figure 4, left). The effect of the 10 new truss elements added to the

0.165

3
.0

3
.0

3
.0

3
.0

3
.0

5.0 5.03.0 3.0

1.180.104

0.110

0.119

0.129

1.48

1.51

1.52

1.560.162

0.175

1
.3
4

0.188

0.204

1
.4
1

0.258

1
.7
4

1
.1
4

1
.3
7

1
.3
8

0
.0
23

0
.0
40

0
.0
53

0
.0
70

0
.1
03

1
.4
8

1
.5
0

1
.5
3

1
.7
8

Figure 4 Multi-storey frame system B with a stiff core and attached statically indeterminate truss systems (left) and
the redundancy corresponding distribution (right).

structure on the redundancy matrix can be computed efficiently by applying Algorithm 1 ten

times with the respective new compatibility submatrices ã ∈ R1×𝑛 . Due to the general matrix

notation used for the derivation in Section 3, the updates for all ten elements could also be

combined in one step using a combined compatibility submatrix ã ∈ R10×𝑛 and the corresponding

material submatrix c̃ ∈ R10×10.
It is obvious that the diagonals make the slab-column systems statically indeterminate. This

can be seen in the updated redundancy distribution shown in Figure 4 (right). But still, the

redundancy in the indeterminate truss systems is much lower than in the beam elements of the

core. This is also due to the higher number of load-bearing mechanisms in the beam elements.

An alternative to adding diagonal elements to the slab-column systems would be, for example,

a clamped connection of the slabs and the core. This will also introduce statical indeterminacy to

the slab-column part and increase robustness. As shown in system C (Figure 5, left), only the

connection between core and the slab is modeled as clamped, whereas the columns are still

hinged to the slabs.

To calculate the change of the redundancy matrix due to this modification, various approaches

are possible. The intuitive approach would be to remove the truss elements of the slabs using

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 14
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

5.0 5.03.0 3.0

3
.0

3
.0

3
.0

3
.0

3
.0

0.768 1.15

1
.1
4

1
.1
1

0
.0
01

0
.0
01

1
.2
4

1
.2
6

1
.2
8

1
.5
0

1.310.825

0.828

0.831

0.831

1.32

1.33

1.36

1
.2
1

1
.2
1

1
.2
3

1
.4
5

0
.0
02

0
.0
02

0
.0
03

Figure 5 Multi-storey frame system C with a stiff core and attached statically indeterminate frame systems (left)
and the corresponding redundancy distribution (right).

Algorithm 2 and then add beam elements with Algorithm 1. Due to the general matrix notation

used for the derivation in Section 3, the updates for all ten elements can again be combined in

one update step. Applying Algorithm 3 for exchanging a truss element with a beam element is

not straightforward, as in this case �̃�m ≠ 𝑛m. As described in Section 3.3, a deletion or expansion

matrix S needs to be introduced to match the dimensions.

Instead of first removing the truss elements, it is also possible to directly add the two new

load-bearing mechanisms of the beam element by adding two rows to the compatibility matrix

via ã ∈ R2×𝑛 and Algorithm 1. By avoiding the additional remove and reducing the size of

the compatibility submatrix ã for the add, this will increase performance noticeably. Again,

the updates for all 10 elements can be combined in one step using a combined compatibility

submatrix ã ∈ R20×𝑛 .
The redundancy distribution of system C is shown in Figure 5 (right). It can be seen that

also for this modification all elements in the system have a non-zero redundancy. However,

compared to system B, the redundancy of the columns is very small. This means that, in the case

of failure of one column, the displacement of the slabs under self-weight become larger compared

to system B (compare with (Bahndorf 1991)). Using the efficient update algorithms described in

this paper, the designer can efficiently check the redundancy distributions for different variants

of a structure and then decide for the most suitable solution.

4.3 Performance Test

In this subsection, we evaluate the efficiency of our update formulas. To this end, we apply our

update algorithms to a scaleable truss structure. It is generated by stacking a unit cell 𝑘 times in

all three spacial directions. To get an impression of how the structure scales, a visualization for

𝑘 = 1, 𝑘 = 2, and 𝑘 = 3 is provided in Figure 6. It can be observed that the structure consists of

Figure 6 Scaleable structure for the parameters 𝑘 = 1, 𝑘 = 2, and 𝑘 = 3.

block-like truss structures with additional diagonal elements. For all nodes on the planes 𝑥 = 0,

𝑦 = 0, and 𝑧 = 0, all three degrees of freedom are constrained. Young’s modulus 𝐸 and cross

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 15
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

sectional area 𝐴 are constant for all elements.

The statical indeterminacy of the structure depends on the parameter 𝑘 and is given by

𝑛𝑠 = 2𝑘3. This is also the case for the number of elements 𝑛e = 5𝑘3 and the number of degrees of

freedom 𝑛 = 3𝑘3. However, the structure has a fixed 𝑛e-𝑛-ratio of 5/3. Besides these numbers,

Table 1 also shows the averaged computation time for adding, removing, and exchanging a single

element with our efficient update formulas. These numbers are compared to the computation

efficient adding efficient removing efficient exchanging

𝑘 𝑛e 𝑛 recomp. time speedup time speedup time speedup

4 320 192 2 ms 0 ms 8.27 0 ms 10.79 0 ms 5.35

6 1080 648 26 ms 3 ms 8.57 2 ms 10.54 3 ms 7.48

8 2560 1536 217 ms 11 ms 19.46 10 ms 21.02 17 ms 12.84

10 5000 3000 1557 ms 35 ms 44.11 35 ms 44.97 56 ms 27.98

12 8640 5184 8603 ms 103 ms 83.36 102 ms 84.06 172 ms 49.99

14 13720 8232 33201 ms 262 ms 126.86 272 ms 122.00 451 ms 73.60

16 20480 12288 113409 ms 589 ms 192.70 603 ms 188.21 960 ms 118.16

18 29160 17496 306149 ms 1189 ms 257.42 1143 ms 267.96 1812 ms 168.94

20 40000 24000 809161 ms 2496 ms 324.24 2248 ms 360.01 3537 ms 228.79

Table 1 Averaged computation times for the entire recomputation (which is similar for all three scenarios) and our
update algorithms. Besides the raw measurements, the speedup ratio is shown.

time of an entire recomputation (since recomputation is similar for the three scenarios, a single

value is used). The evaluation was done with MATLAB R2020b on a machine with 2.90 GHz Intel

Core i9-8950HK processor and 32 GB RAM. An implementation of the scaleable truss structure

for arbitrary 𝑘 is also publicly available on DaRUS (Krake and von Scheven 2022).

For all three modifications, it can be observed that our algorithms perform significantly faster.

We achieve ratios up to 360 times faster. This relative value grows even more for increasing

number of elements. The reason for this is that our algorithm has quadratic computational

complexity, whereas the entire recomputation has a cubic one. This fact can be observed in

Figure 7, where the computation times are plotted as a function of the number of elements 𝑛e.

The three efficient update algorithms (adding in green, removing in orange, exchanging in blue)

103 104 105
101

102

103

104

105

106

0.5

1.5

0.5

1

Number of elements

C
P
U
ti
m
e
[m

s]

Recomputation
Efficient adding
Efficient removing
Efficient exchanging

Figure 7 Log-log plot for the computation times of the entire recomputation and our update formulas. The
computation time is plotted against the number of elements (compare Table 1). The dashed black line
corresponds to quadratic behavior, whereas the dotted black line characterizes cubic behavior.

are parallel to the dashed black line, which corresponds to quadratic behavior (the slope is 2). In

contrast, the entire recomputation (purple line) is not parallel to the dashed black line. Instead,

the recomputation is parallel to the dotted black line, indicating cubic behavior (the slope is 3).

Another important observation is that the update process for structures with a large number

of elements still only takes a few seconds, whereas a recomputation takes more than hundreds of

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 16
�� 19

https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

seconds. In general, these low absolute values enable an almost instantaneous interaction with a

structure, which allows an effective investigation of large buildings via updates.

Besides the comparison to the entire recomputation, we also observe that the exchange

operation is faster than a combined removing with subsequent adding. In fact, exchanging

takes approximately three-fourths of the time. This aspect should be taken into account if large

structures are investigated or/and multiple exchange operations are performed.

5 Conclusion

This paper addresses the problem of efficiently updating the redundancy matrix for truss and

frame structures. The proposed generic algebraic formulations enable adding, removing, and

exchanging of elements, groups of elements, or individual load-carrying types without computing

relevant quantities from scratch. As a result, not only computational effort is reduced while

preserving analytical correctness and enabling instantaneous interaction with a structure, but

also new insights into the update process of statically indeterminate structures are gained. One of

these insights is the understanding of how a new element affects certain regions in the structure.

In sum, new possibilities for the design and analysis of truss and frame structures are provided.

In the future, the update procedures can be extended to be also applicable for kinematically

indeterminate structures or non-linear problems. Furthermore, we plan to exploit the update

formulations even more to purposely achieve a specific redundancy distribution in a structure.

This may be done either manually by studying cause-and-effect relationships in the update steps,

or algorithmically by solving an optimization problem that exploits the efficiency of the update

methods. In this regard, the development of an appropriate software tool that guides the user is a

relevant research direction.

A completely different idea is to use the formulas to study the inverse problem, i.e., given a

redundancy matrix, the goal is to find a suitable structure. In this context, the update formulations

may help to find a structure that can be realized mechanically.

References

Akgün, M. A., J. H. Garcelon, and R. T. Haftka (2001). Fast exact linear and non-linear struc-

tural reanalysis and the ShermanśMorrisonśWoodbury formulas. International Journal for

Numerical Methods in Engineering 50(7):1587ś1606. [doi].

Argyris, J. H., O. E. Bronlund, J. R. Roy, and D. W. Scharpf (1971). A direct modification procedure

for the displacement method. AIAA Journal 9(9):1861ś1864. [doi].

Argyris, J. H. and D. W. Scharpf (1969). Some general considerations on the natural mode

technique: part I. small displacements. The Aeronautical Journal 73(699):218ś226. [doi].

Bahndorf, J. (1991). Zür Systematisierung der Seilnetzberechnung und zür Optimierung von Seilnetzen.

Dissertation, Universität Stuttgart, Deutsche Geodatische Kommission bei der Bayerischen

Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 373. München: Beck Verlag.

isbn: 3769694201.

Chen, Q., X.-J. Kou, and Y.-M. Zhang (2010). Internal force and deformation matrixes and their

applications in load path. Journal of Zhejiang University-SCIENCE A 11(8):563ś570. [doi].

Chen, Y., J. Feng, H. Lv, and Q. Sun (2018). Symmetry representations and elastic redundancy for

members of tensegrity structures. Composite Structures 203:672ś680. [doi].

Eriksson, A. and A. G. Tibert (2006). Redundant and force-differentiated systems in engineering

and nature. Computer Methods in Applied Mechanics and Engineering 195(41-43):5437ś5453.

[doi].

Frangopol, D. M. and J. P. Curley (1987). Effects of damage and redundancy on structural reliability.

Journal of Structural Engineering 113(7):1533ś1549. [doi].

Gade, J., A. Tkachuk, M. von Scheven, and M. Bischoff (2021). A continuum-mechanical theory

of redundancy in elastostatic structures. International Journal of Solids and Structures 226-

227:110977. [doi], [oa].

Geiger, F., J. Gade, M. von Scheven, and M. Bischoff (2020). Anwendung der Redundanzmatrix bei

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 17
�� 19

http://dx.doi.org/10.1002/nme.87
http://dx.doi.org/10.2514/3.6434
http://dx.doi.org/10.1017/S0001924000085894
http://dx.doi.org/10.1631/jzus.a0900630
http://dx.doi.org/10.1016/j.compstruct.2018.07.044
http://dx.doi.org/10.1016/j.cma.2005.11.007
http://dx.doi.org/10.1061/(asce)0733-9445(1987)113:7(1533)
http://dx.doi.org/10.1016/j.ijsolstr.2021.01.022
https://doi.org/10.1016/j.ijsolstr.2021.01.022
https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

der Bewertung adaptiver Strukturen. Berichte der Fachtagung Baustatik - Baupraxis 14. Ed. by

M. Bischoff, M. von Scheven, and B. Oesterle.

Guttman, L. (1946). Enlargement methods for computing the inverse matrix. The Annals of

Mathematical Statistics 17(3):336ś343. [doi], [oa].

Kou, X., L. Li, Y. Zhou, and J. Song (2017). Redundancy component matrix and structural robustness.

International Journal of Civil and Environmental Engineering 11(8):1150ś1155. [oa].

Krake, T. and M. von Scheven (2022). Matlab implementation of efficient updates of redundancy

matrices. Version 1. [doi], [oa].

Linkwitz, K. (1961). Fehlertheorie und Ausgleichung von Streckennetzen nach der Theorie elastischer

Systeme. Dissertation, Universität Stuttgart, Deutsche Geodatische Kommission bei der

Bayerischen Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 46. München:

Beck Verlag.

Liu, C.-M. and X.-L. Liu (2005). Stiffness-based evaluation of component importance and its

relationship with redundancy. Mandarin. Journal of Shanghai Jiaotong University 39(5). [doi].

Maierhofer, M. and A. Menges (2019). Towards integrative design processes and computational

design tools for the design space exploration of adaptive architectural structures. International

Conference on Emerging Technologies In Architectural Design (ICETAD2019), pp 113ś120. [hal].

Pandey, P. C. and S. V. Barai (1997). Structural sensitivity as a measure of redundancy. Journal of

Structural Engineering 123(3):360ś364. [doi].

Pearson, C. and N. Delatte (2005). Ronan point apartment tower collapse and its effect on building

codes. Journal of Performance of Constructed Facilities 19(2):172ś177. [doi], [oa].

Pellegrino, S. (1993). Structural computations with the singular value decomposition of the

equilibrium matrix. International Journal of Solids and Structures 30(21):3025ś3035. [doi].

Pellegrino, S. and C. Calladine (1986). Matrix analysis of statically and kinematically indeterminate

frameworks. International Journal of Solids and Structures 22(4):409ś428. [doi].

Przemieniecki, J. S. (1968). Theory of matrix structural analysis. New York: McGraw-Hill. isbn:

9780070509047.

Sack, R. L., W. C. Carpenter, and G. L. Hatch (1967). Modification of elements in the displacement

method. AIAA Journal 5(9):1708ś1710. [doi].

Spyridis, P. and A. Strauss (2020). Robustness assessment of redundant structural systems based

on design provisions and probabilistic damage analyses. Buildings 10(12):213. [doi], [oa].

Strang, G. (1986). Introduction to Applied Mathematics. Wellesley-Cambridge Press. isbn: 978-

0961408800.

Ströbel, D. (1997). Die Anwendung der Ausgleichungsrechnung auf elastomechanische Systeme.

Dissertation, Universität Stuttgart, Deutsche Geodatische Kommission bei der Bayerischen

Akademie der Wissenschaften, Reihe C: Dissertationen Heft Nr. 478. München: Beck Verlag.

isbn: 3769695186.

Ströbel, D. and P. Singer (2008). Recent developments in the computational modelling of

textile membranes and inflatable structures. Textile Composites and Inflatable Structures II.

Computational Methods in Applied Sciences. Springer, pp 253ś266. [doi].

Tibert, G. (2005). Distributed indeterminacy in frameworks. 5th International Conference on

Computation of Shell and Spatial Structures (Salzburg, Austria, June 1, 2005śJune 4, 2005).

Tonti, E. (1976). The reason for analogies between physical theories. Applied Mathematical

Modelling 1(1):37ś50. [doi], [oa].

von Scheven, M., E. Ramm, and M. Bischoff (2021). Quantification of the redundancy distribution

in truss and beam structures. International Journal of Solids and Structures 213:41ś49. [doi],

[oa].

Wagner, J. L., J. Gade, M. Heidingsfeld, F. Geiger, M. von Scheven, M. Böhm, M. Bischoff, and

O. Sawodny (2018). On steady-state disturbance compensability for actuator placement in

adaptive structures. Automatisierungstechnik 66(8):591ś603. [doi].

Woodbury, M. (1950). Inverting modified matrices. Memorandum Report 42. Statistical Research

Group. Princeton University.

Zhou, J.-Y., W.-J. Chen, B. Zhao, Z.-Y. Qiu, and S.-L. Dong (2015). Distributed indeterminacy

evaluation of cable-strut structures: formulations and applications. Journal of Zhejiang

University-SCIENCE A 16(9):737ś748. [doi], [oa].

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 18
�� 19

http://dx.doi.org/10.1214/aoms/1177730946
https://doi.org/10.1214/aoms/1177730946
https://doi.org/10.5281/zenodo.1131990
http://dx.doi.org/10.18419/darus-2870
https://doi.org/10.18419/darus-2870
http://dx.doi.org/10.16183/j.cnki.jsjtu.2005.05.019
https://hal.archives-ouvertes.fr/hal-03807010
http://dx.doi.org/10.1061/(asce)0733-9445(1997)123:3(360)
http://dx.doi.org/10.1061/(asce)0887-3828(2005)19:2(172)
https://engagedscholarship.csuohio.edu/encee_facpub/24
http://dx.doi.org/10.1016/0020-7683(93)90210-x
http://dx.doi.org/10.1016/0020-7683(86)90014-4
http://dx.doi.org/10.2514/3.4286
http://dx.doi.org/10.3390/buildings10120213
https://doi.org/10.3390/buildings10120213
http://dx.doi.org/10.1007/978-1-4020-6856-0_14
http://dx.doi.org/10.1016/0307-904x(76)90023-8
https://doi.org/10.1016/0307-904x(76)90023-8
http://dx.doi.org/10.1016/j.ijsolstr.2020.11.002
https://doi.org/10.1016/j.ijsolstr.2020.11.002
http://dx.doi.org/10.1515/auto-2017-0099
http://dx.doi.org/10.1631/jzus.a1500081
https://doi.org/10.1631/jzus.a1500081
https://jtcam.episciences.org


Krake et al. Efficient update of redundancy matrices for truss and frame structures

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,

and indicate if changes were made. The images or other third party material in this article are included in the article’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the authorsśthe copyright holder. To view a copy of

this license, visit creativecommons.org/licenses/by/4.0.

Authors’ contributions Tim Krake: Conceptualization, Methodology, Software, Visualization, Writing ś Original

Draft, Writing ś Review and Editing. Malte von Scheven: Conceptualization, Software, Visualization, Writing ś

Original Draft, Writing ś Review and Editing. Jan Gade: Conceptualization, Writing ś Original Draft, Writing ś

Review and Editing. Moataz Abdelaal: Conceptualization, Software, Visualization, Writing ś Review and Editing.

Daniel Weiskopf: Conceptualization, Writing ś Review and Editing, Supervision. Manfred Bischoff: Conceptualization,

Writing ś Review and Editing, Supervision.

Supplementary Material Matlab files: 10.18419/darus-2870

Acknowledgements This work is partly funded by łDeutsche Forschungsgemeinschaftž (DFG, German Research

Foundation)ÐProject-ID 251654672śTRR 161; Project-ID 279064222śSFB 1244; and under Germany’s Excellence

Strategy EXC 2120/1ś390831618.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare that they have no competing interests.

Journal’s Note JTCAM remains neutral with regard to the content of the publication and institutional affiliations.

Journal of Theoretical, Computational and Applied Mechanics
�� November 2022

�� jtcam.episciences.org 19
�� 19

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18419/darus-2870
https://jtcam.episciences.org

	Efficient update of redundancy matrices for truss and frame structures
	Abstract
	1 Introduction
	2 Background
	2.1 Matrix structural analysis
	2.2 Redundancy distribution
	2.3 Woodbury formula

	3 Method
	3.1 Adding elements
	3.2 Removing elements
	3.3 Exchanging elements

	4 Examples
	4.1 Introductory Example
	4.1.1 Adding a New Element
	4.1.2 Removing an Element
	4.1.3 Exchanging an Element

	4.2 Multi-storey Frame Structures
	4.3 Performance Test

	5 Conclusion
	References


